Title

Multijets in the EFT

Centre for Cosmology, Particle Physics and Phenomenology (CP3)
 Université Catholique de Louvain (UCLouvain)

loannis Tsinikos, in collaboration with

Fabio Maltoni, Eleni Vryonidou

LLN, 22 March 2017
 LHC Theory ERC meeting

(1) Introduction

- SMEFT
- The triple-gluon operator
(2) EFT validity
- Increasing the jet multiplicity
- S_{T} vs M
- Include dim-8 operators
(3) Jet multiplicity
- 4-jet production
- Gluonic channels

4) Subprocesses

- 2-jet production
- 3-jet production
- 4-jet production
- 4-b production

5 Further steps

- The CP-odd triple-gluon operator

6 Conclusions

- No evidence of a light BSM state after the first LHC13 results.
- Study the effect of any heavy state at the LHC energy range.
- EFT approach

$$
\mathcal{L}_{E f f}=\mathcal{L}_{S M}+\sum_{i} \frac{C_{i}^{(6)} O_{i}^{(6)}}{\Lambda^{2}}+O\left(\Lambda^{-4}\right)
$$

- Uses the SM symmetries to reduce the number of relevant operators. [arXiv:1008.4884]
- It is gauge invariant.
- It is renormalisable order by order in the $(1 / \Lambda)$ expansion.
- It assumes that the new possible states are heavier than the energy probed.
- One cannot be selective on the effect of a new heavy state \Longrightarrow Global EFT analysis is recommended in a process by process basis.
- TopSMEFT

$$
\longleftarrow O_{t G}^{(6)}, O_{G}^{(6)}, O_{\phi G}^{(6)}
$$

$$
\longleftarrow O_{t W}^{(6)}, O_{\phi Q, 3}^{(6)}
$$

$$
\longleftarrow O_{t G}^{(6)}, O_{G}^{(6)}, O_{\phi Q, 3}^{(6)}, O_{\phi Q, 1}^{(6)}, O_{\phi t}^{(6)}, O_{t W}^{(6)}, O_{t B}^{(6)}
$$

$+O_{4 F}^{(6)}$ operators

- The more the operators, the more difficult to constrain them.
- What about the operators that enter almost all the LHC processes? Look in specific processes and observables where their effect is enhanced.

The triple-gluon operator

Structure of $O_{G}^{(6)}$

- Operator $O_{G}^{(6)}$

$$
g_{s} f_{a b c} G_{a \nu}^{\rho} G_{b \lambda}^{\nu} G_{c \rho}^{\lambda}, G_{a}^{\rho \nu}=\partial^{\rho} G_{a}^{\nu}-\partial^{\nu} G_{a}^{\rho}-i g_{s} f_{a b c} G^{b \rho} G^{c \nu}
$$

- It provides from 3- to 6- point gluon vertices.

The triple-gluon operator

Special features of $O_{G}^{(6)}$

- The helicity structure of the $O_{G}^{(6)}$ in $g g \rightarrow g g$ is orthogonal w.r.t. the QCD one \Longrightarrow The interference term $\left(O\left(1 / \Lambda^{2}\right)\right)$ is zero. [hep-ph/9312363]
- It has been studied in $t \bar{t}$ [hep-ph/9408206] and 3-jet [hep-ph/9312363] production.

The triple-gluon operator

Special features of $O_{G}^{(6)}$

- The helicity structure of the $O_{G}^{(6)}$ in $g g \rightarrow g g$ is orthogonal w.r.t. the QCD one \Longrightarrow The interference term $\left(O\left(1 / \Lambda^{2}\right)\right)$ is zero. [hep-ph/9312363]
- It has been studied in $t \bar{t}$ [hep-ph/9408206] and 3-jet [hep-ph/9312363] production.
- Start with $t \bar{t}$ and $t \bar{t} j$ processes.
- Small effect in all observables.

The triple-gluon operator
Special features of $O_{G}^{(6)}$

- Search in a rich environment on these vertices: multijet production. [arXiv:1611.00767]
- Choose a sensitive variable

$$
S_{T}=\sum_{j=1}^{N j e t s} E_{T, j}
$$

- Recent experimental results became public on this observable. [CMS-PAS-EXO-15-007]
- Other relevant operators are the $O_{4 q}^{(6)}$: strong bounds from di-jet ATLAS analysis. [arXiv:1512.01530]

Increasing the jet multiplicity
$O_{G}^{(6)}$ in multijet production

- The effect changes with the jet multiplicity.

Increasing the jet multiplicity
$O_{G}^{(6)}$ in multijet production

- The effect changes with the jet multiplicity.

Increasing the jet multiplicity
$O_{G}^{(6)}$ in multijet production

- The effect changes with the jet multiplicity.

- The ratio R increases with the jet multiplicity.
- Even in higher multiplicities the interference term is small.
- Multiple insertions become important for $S_{T}>\Lambda$.

Increasing the jet multiplicity
Recent constraints on $O_{G}^{(6)}{ }_{\text {[arXiv:1611.00767] }}$

- Expected signal CL's vs integrated luminosity.
- Show the EFT validity.
- Understand the increase of the $O_{G}^{(6)}$ effect with the jet multiplicity.
- Correlation plot of S_{T} vs M.
- The variable M is closer to $\sqrt{\hat{s}}$, which should be compared to Λ.
- Correlation plot of S_{T} vs M.
- The variable M is closer to $\sqrt{\hat{s}}$, which should be compared to Λ.

- M is always larger or equal to S_{T}. Even for $S_{T}<5 \mathrm{TeV}$ we can have $M>5 \mathrm{TeV}$.
- Can we keep these events? What is the effect if we drop them?
- Compare the results for 4-jet production with an extra cut of $M<5 \mathrm{TeV}$.
- Compare the results for 4 -jet production with an extra cut of $M<5 \mathrm{TeV}$.

- The ratio R is not affected.
- This behaviour is verified also in 3-jet production.
- Need for dim-8 check because the effect comes from the $O\left(1 / \Lambda^{4}\right)$ term.
- List of relevant dim-8 operators.
[hep-ph/9408206]
- Choose two

$$
\begin{aligned}
& O_{4}^{(8)}=\frac{g_{s}^{2}}{2} G_{\mu \nu}^{a} G_{a}^{\mu \nu} G_{\lambda \sigma}^{b} G_{b}^{\lambda \sigma} \\
& O_{6}^{(8)}=\frac{g_{s}^{2}}{2} G_{\mu \nu}^{a} G_{b}^{\mu \nu} G_{\lambda \sigma}^{a} G_{b}^{\lambda \sigma}
\end{aligned}
$$

- Need for dim-8 check because the effect comes from the $O\left(1 / \Lambda^{4}\right)$ term.
- List of relevant dim-8 operators.
[hep-ph/9408206]
- Choose two

$$
\begin{aligned}
& O_{4}^{(8)}=\frac{g_{s}^{2}}{2} G_{\mu \nu}^{a} G_{a}^{\mu \nu} G_{\lambda \sigma}^{b} G_{b}^{\lambda \sigma} \\
& O_{6}^{(8)}=\frac{g_{s}^{2}}{2} G_{\mu \nu}^{a} G_{b}^{\mu \nu} G_{\lambda \sigma}^{a} G_{b}^{\lambda \sigma}
\end{aligned}
$$

- Very small effect w.r.t. $O_{G}^{(6)}$.

- We are within the EFT validity regime.
- The higher the multiplicity the higher-point $O_{G}^{(6)}$ insertions are allowed.
- Check if the high n-point vertices are the most important.
- Compare the 4 -jet with the $4-q$ production.
- The higher the multiplicity the higher-point $O_{G}^{(6)}$ insertions are allowed.
- Check if the high n-point vertices are the most important.
- Compare the 4 -jet with the $4-q$ production.

- In 4-q production the 5- and 6- point vertices are absent, but the ratio R increases.

Gluonic channels

- Isolate the gluonic channels.

Gluonic channels

- Isolate the gluonic channels.
- Gluons $\uparrow \Longrightarrow R \downarrow$
- What we see at multijet production is not seen in the gluonic channels.
- $G \uparrow \Longrightarrow \partial \downarrow$
- Look at the different channel luminosities in all cases.

Gluonic channels

- Isolate the gluonic channels.
- Gluons $\uparrow \Longrightarrow R \downarrow$
- What we see at multijet production is not seen in the gluonic channels.
- $G \uparrow \Longrightarrow \partial \downarrow$
- Look at the different channel luminosities in all cases.

$\frac{g_{s}^{2} c_{G}}{\Lambda^{2}} \partial \partial G G G G$

$\frac{g_{s}^{4} c_{G}}{\Lambda^{2}}$ GGGGGG

2-jet production

			$\mathrm{ST}>4.7 \mathrm{TeV}$					
SM				SM+OG				
channe1	xsec	(\%)		channe 1	xsec	(\%)	(SM+OG)/SM	
GG $->$ GG	$1.98 \mathrm{E}-04$	2.115		GG $->$ GG	1.00E-03	6.950	GG $\rightarrow>$ GG	5.05
GG $->$ qq	$9.64 \mathrm{E}-06$	0.103		GG $->$ qq	1.10E-04	0.764	GG $->$ qq	11.42
$\mathrm{Gq} \rightarrow>\mathrm{Gq}$	$2.62 \mathrm{E}-03$	27.888		$\mathrm{Gq} \rightarrow>\mathrm{Gq}$	$6.44 \mathrm{E}-03$	44.636	$\mathrm{Gq} \rightarrow \mathrm{Gq}$	2.46
qq $\rightarrow>$ GG	$2.92 \mathrm{E}-05$	0.312		qq $\rightarrow>$ GG	3.48E-04	2.414	qq $\rightarrow>$ GG	11.91
$\mathrm{qq}->\mathrm{qq}$	6.52E-03	69.577		qq $->$ qq	$6.52 \mathrm{E}-03$	45.233	$\mathrm{qq}->\mathrm{qq}$	1.00
tota 1	$9.38 \mathrm{E}-03$	99.995		total	$1.44 \mathrm{E}-02$	99.997	total	1.54

- $R(q \bar{q} \rightarrow q \bar{q})=1$ regardless S_{T}, no $O_{G}^{(6)}$ insertions.
- At large S_{T} values the high R subprocesses are not the ones that dominate.

- $q \bar{q}$ still dominant, but there are no subprocess with $R=1$.
- From 2- to 3 - jets the $q g$ channel is enhanced.

4-jet production

			$\mathrm{ST}>4.7 \mathrm{TeV}$					
SM				SM+OG				
channe1	xsec	(\%)		channe1	xsec	(\%)	(SM+OG)/SM	
GG $->$ GGGG	6.09E-04	3.857		GG $->$ GGGG	2.21E-03	7.492	GG $->$ GGGG	3.63
GG $->$ GGqq	$7.52 \mathrm{E}-05$	0.476		GG $->$ GGqq	$4.34 \mathrm{E}-04$	1.471	GG $->$ GGqq	5.77
GG $->$ qqqq	$1.30 \mathrm{E}-06$	0.008		GG $->$ qqqq	8.58E-06	0.029	GG $->$ qqqq	6.62
$\mathrm{Gq}->$ GGGq	$5.45 \mathrm{E}-03$	34.530		Gq $->$ GGGq	1.24E-02	42.057	Gq $\rightarrow>$ GGGq	2.28
$\mathrm{Gq} \rightarrow>\mathrm{Gqqq}$	14.58E-04	2.900		$\mathrm{Gq}->\mathrm{Gqqq}$	$1.38 \mathrm{E}-03$	4.684	$\mathrm{Gq} \rightarrow>\mathrm{Gqqq}$	3.02
qq $->$ GGGG	3.52E-05	0.223		qq $->$ GGGG	4.78E-04	1.622	qq $->$ GGGG	13.60
qq $->$ GGqq	8.89E-03	56.350		qq -> GGqq	1.21E-02	40.870	qq -> GGqq	1.36
qq -> qqqq	$2.62 \mathrm{E}-04$	1.660		qq -> qqqq	5.23E-04	1.775	qq -> qqqq	2.00
total	$1.58 \mathrm{E}-02$	100.005		total	$2.95 \mathrm{E}-02$	99.999	total	1.87

- Further increase of R for high S_{T}.

- No qg channel.
- $g g$ channel is large even at the tail with a large $R($ from 2-jet $R(g g \rightarrow g g) \approx 5)$.
- 4-q channel is even more sensitive to $O_{G}^{(6)}$, but it is cross section suppressed.
- Increase of the $O_{G}^{(6)}$ effect at the high jet multiplicities \Longleftarrow The large R channels become luminosity favoured.

The CP-odd triple-gluon operator

- Operator $O_{\overleftarrow{G}}^{(6)}$

$$
g_{s} f_{a b c} \varepsilon^{\mu \nu \rho \sigma} G_{\rho \sigma}^{a} G_{\mu \lambda}^{b} G_{\nu}^{c \lambda}, G_{a}^{\rho \nu}=\partial^{\rho} G_{a}^{\nu}-\partial^{\nu} G_{a}^{\rho}-i g_{s} f_{a b c} G^{b \rho} G^{c \nu}
$$

- Contributes to neutron EDM: strong limits. [arXiv:1303.3156]
- Subject to large uncertainties, $1-O_{i}^{(6)}$ fit.

The CP-odd triple-gluon operator

- Operator $O_{\overleftarrow{G}}^{(6)}$

$$
g_{s} f_{a b c} \varepsilon^{\mu \nu \rho \sigma} G_{\rho \sigma}^{a} G_{\mu \lambda}^{b} G_{\nu}^{c \lambda}, G_{a}^{\rho \nu}=\partial^{\rho} G_{a}^{\nu}-\partial^{\nu} G_{a}^{\rho}-i g_{s} f_{a b c} G^{b \rho} G^{c \nu}
$$

- Contributes to neutron EDM: strong limits. [arXiv:1303.3156]
- Subject to large uncertainties, $1-O_{i}^{(6)}$ fit.

- Independent direct limits from colliders.

Conclusions- Further research

- The S_{T} variable in multijet processes can be used to constrain the $O_{G}^{(6)}$ operator. [see also the arXiv:1611.00767]
- Strong limit in high jet multiplicity within the EFT validity region.
- The effect of the $O_{G}^{(6)}$ is a combination of the different channel luminosities and the energy dependence of different $O_{G}^{(6)}$ parts.
- Larger enhancement in 4-b but this process is cross-section suppressed.
- Include the CP-odd $O_{\tilde{G}} \sim \tilde{G} G G$ operator.
- Use this result to put indirect bounds to heavy states (stops, vector-like quarks), appearing in loop corrections of the gluonic vertices.

Conclusions- Further research

- The S_{T} variable in multijet processes can be used to constrain the $O_{G}^{(6)}$ operator. [see also the arXiv:1611.00767]
- Strong limit in high jet multiplicity within the EFT validity region.
- The effect of the $O_{G}^{(6)}$ is a combination of the different channel luminosities and the energy dependence of different $O_{G}^{(6)}$ parts.
- Larger enhancement in 4-b but this process is cross-section suppressed.
- Include the CP-odd $O_{\tilde{G}} \sim \tilde{G} G G$ operator.
- Use this result to put indirect bounds to heavy states (stops, vector-like quarks), appearing in loop corrections of the gluonic vertices.
...Thank you

$$
\begin{aligned}
& O_{t G}^{(6)}=y_{t} g_{s}\left(\bar{Q} \sigma^{\mu \nu} T^{A} t\right) \tilde{\varphi} G_{\mu \nu}^{A} \\
& O_{\phi G}^{(6)}=g_{s}\left(\phi^{\dagger} \phi\right) G_{\mu \nu}^{a} G^{a \mu \nu}
\end{aligned}
$$

$$
\begin{aligned}
& O_{\varphi Q, 3}^{(6)}=i \frac{1}{2} y_{t}^{2}\left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu}^{\prime} \varphi\right)\left(\bar{Q} \gamma^{\mu} \tau^{\prime} Q\right) \\
& O_{\varphi Q, 1}^{(6)}=i \frac{1}{2} y_{t}^{2}\left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi\right)\left(\bar{Q} \gamma^{\mu} Q\right) \\
& O_{\varphi t}^{(6)}=i \frac{1}{2} y_{t}^{2}\left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi\right)\left(\bar{t} \gamma^{\mu} t\right) \\
& O_{t W}^{(6)}=y_{t} g_{w}\left(\bar{Q} \sigma^{\mu \nu} \tau^{\prime} t\right) \tilde{\varphi} W_{\mu \nu}^{\prime} \\
& O_{t B}^{(6)}=y_{t} g_{\gamma}\left(\bar{Q}^{\mu \nu} t\right) \tilde{\varphi} B_{\mu \nu}
\end{aligned}
$$

$$
O_{4 q}^{(6)}=\sum_{q, q^{\prime}}\left(\bar{q}_{L} \gamma^{\mu} q_{L}\right)\left(\bar{q}_{L}^{\prime} \gamma^{\mu} q_{L}^{\prime}\right)
$$

Angles

- Cross $\Longrightarrow S_{T} \approx M$
(largest ratio R)
- $45^{\circ} \Longrightarrow S_{T}<M$
- Forward $\Longrightarrow S_{T} \ll M$

3-jet production, $M<5 \mathrm{TeV}$

- 4-jet and 3-jet S_{T} distribution with and without the $M<5 \mathrm{TeV}$ cut
- $E_{c m}$ for 4-jet, 3-jet and dijet

Enhance the $G G \rightarrow q q$ channel $(R=11.42)$

			$\mathrm{ST}>2 \mathrm{TeV}$			
SM				SM+OG		
channe1	xsec	(\%)		channe1	xsec	(\%)
GG $->$ ttx	$1.08 \mathrm{E}-02$	50.730		GG $->$ ttx	$1.56 \mathrm{E}-02$	59.775
qq $->$ ttx	$1.05 \mathrm{E}-02$	49.278		qq $->$ ttx	$1.05 \mathrm{E}-02$	40.233

$(\mathrm{SM}+\mathrm{OG}) / \mathrm{SM}$		
$\mathrm{GG}->$ ttx	1.44	
qq	$->$ ttx	

tota7	$2.13 \mathrm{E}-02$	100.008

tota1	$2.61 \mathrm{E}-02$	100.008

tota1	1.22

		S
SM		
channe1	xsec	$(\%)$
GG $->$ ttx	$1.86 \mathrm{E}-06$	15.891
qq $->$ ttx	$9.82 \mathrm{E}-06$	84.106

$\mathrm{ST}>4.7 \mathrm{TeV}$

tota1	$1.17 \mathrm{E}-05$	99.998

SM+OG		
channe1	xsec	(\%)
GG \rightarrow ttx	$2.15 \mathrm{E}-05$	68.627
qq \rightarrow ttx	$9.83 \mathrm{E}-06$	31.385

$(\mathrm{SM}+\mathrm{OG}) / \mathrm{SM}$		
GG $->$ ttx	11.58	
qq $->$ ttx	1.00	

tota1	$3.13 \mathrm{E}-05$	100.011

tota1	2.68

- No qg channel
- Probes the $g g \rightarrow q q$ with the largest R , but there is also the $q q \rightarrow q q$ with $R=1$
- Smaller effect w.r.t. $t \bar{t} j$
$t \bar{t} j$ production
Enhance the $G G \rightarrow q q G$ channel $(R=7.16)$

			ST>2 TeV			
SM				SM+OG		
channe1	xsec	(\%)		channe1	xsec	(\%)
GG -> ttxG	$4.46 \mathrm{E}-02$	37.056		GG -> ttxG	5.83E-02	40.556
Gq \rightarrow ttxq	6.33E-02	52.532		Gq $->$ ttxq	7.25E-02	50.456
qq -> ttxG	$1.25 \mathrm{E}-02$	10.412		qq -> ttxG	1.29E-02	8.988

(SM+OG)/SM	
GG $->$ ttxG	1.31
Gq $->$ ttxq	1.15
qq \rightarrow ttxG	1.03

tota1	$1.20 \mathrm{E}-01$	99.999

tota7	$1.44 \mathrm{E}-01$	100.000

tota1	1.19

- Large $q g$ and $g g$ contribution with large R's
- No effect from $O_{t G}^{(6)}$ operator $\left(O_{t G}^{(6)}=y_{t} g_{s}\left(\bar{Q} \sigma^{\mu \nu} T^{A} t\right) \tilde{\varphi} G_{\mu \nu}^{A}\right)$

			$\mathrm{ST}>2 \mathrm{TeV}$			
SM				SM+OG		
channe1	xsec	(\%)		channe1	xsec	(\%)
GG $->$ bbxG	$1.85 \mathrm{E}-01$	35.479		GG $->$ bbxG	$2.25 \mathrm{E}-01$	38.464
$\mathrm{Gq} \rightarrow$ bbxq	3.05E-01	58.430		$\mathrm{Gq} \rightarrow>\mathrm{bbxq}$	3.27E-01	55.792
qq -> bbxG	3.18E-02	6.094		qq -> bbxG	3.37E-02	5.748

| | | |
| :--- | :--- | :--- | :--- |
| tota7 | $5.22 E-01$ | 100.003 |

tota1
5.86E-01 100.005

(SM+OG)/SM		
GG	$->$ bbxG	
Gq	$->$ bbxq	
qq	1.22	

$(\mathrm{SM}+\mathrm{OG}) / \mathrm{SM}$		
GG	$->$ bbxG	

| tota1 | $1.50 \mathrm{E}-04$ | 100.025 |
| :--- | :--- | :--- | :--- |

ST $>4.7 \mathrm{TeV}$			
	SM+OG		
	channe1	xsec	$(\%)$
	GG $->$ bbxG	$1.23 \mathrm{E}-04$	27.723
	Gq $->$ bbxq	$2.69 \mathrm{E}-04$	60.709
	qq $->$ bbxG	$5.12 \mathrm{E}-05$	11.568

tota1	$1.50 \mathrm{E}-04$	100.025

tota1	$4.43 \mathrm{E}-04$	100.000

tota1	2.95

- Smaller effect w.r.t. $t \bar{t} j$

4-jet production $O_{\tilde{G}}^{(6)}$

tota1	$2.59 \mathrm{E}+01$	100.000	tota1	$3.27 \mathrm{E}+01$

(SM+OG) $/ \mathrm{SM}$	
GG $->$ GGGG	1.50
GG $->$ GGqq	1.72
GG \rightarrow qqqq	2.02
Gq \rightarrow GGGq	1.23
Gq \rightarrow Gqqq	1.36
qq $\rightarrow>$ GGGG	3.01
qq $\rightarrow>$ GGqq	1.11
qq \rightarrow qqqq	1.16

SM		
channe1	xsec	(\%)
GG -> GGGG	$6.09 \mathrm{E}-04$	3.857
GG -> GGqq	$7.52 \mathrm{E}-05$	0.476
GG -> qqqq	$1.30 \mathrm{E}-06$	0.008
Gq -> GGGq	$5.45 \mathrm{E}-03$	34.530
Gq -> Gqqq	4.58E-04	2.900
qq -> GGGG	$3.52 \mathrm{E}-05$	0.223
qq -> GGqq	8.89E-03	56.350
qq -> qqqq	2.62E-04	1.660

ST $>4.7 \mathrm{TeV}$

tota1	$1.58 \mathrm{E}-02$	100.005

SM+OG		
channe1	xsec	(\%)
GG -> GGGG	$8.63 \mathrm{E}-03$	10.913
GG -> GGqq	$1.79 \mathrm{E}-03$	2.263
GG -> qqqq	3.87E-05	0.049
Gq $->$ GGGq	$3.72 \mathrm{E}-02$	47.074
Gq -> Gqqq	$4.64 \mathrm{E}-03$	5.872
qq -> GGGG	$2.08 \mathrm{E}-03$	2.627
qq -> GGqq	2.35E-02	29.651
qq -> qqqq	$1.23 \mathrm{E}-03$	1.549

(SM+OG) $/ \mathrm{SM}$	
GG $->$ GGGG	14.18
GG $->$ GGqq	23.82
GG $->$ qqqq	29.85
Gq $\rightarrow>$ GGGq	6.83
Gq $->$ Gqqq	10.15
qq $->$ GGGG	59.12
qq $\rightarrow>$ GGqq	2.64
qq $->~ q q q q ~$	4.68

