Outline	Introduction
•0	00000

Title

EFT validity

Jet multiplicity

Subprocesses

Further steps ○ Conclusions Additional slides

Multijets in the EFT

Centre for Cosmology, Particle Physics and Phenomenology (CP3) Université Catholique de Louvain (UCLouvain)

Ioannis Tsinikos,

in collaboration with

Fabio Maltoni, Eleni Vryonidou

LLN, 22 March 2017 LHC Theory ERC meeting

Outline	Introduction	EFT validity	Jet multiplicity	Subprocesses	Further steps	Conclusions	Additional slides
0•	00000	00000	00	0000	0		0000000
Contents							

- Introduction
- SMEFT
- The triple-gluon operator
- EFT validity
 - Increasing the jet multiplicity
 - S_T vs M
 - Include dim-8 operators
- Jet multiplicity
 - 4-jet production
 - Gluonic channels

- 4
 - Subprocesses
 - 2-jet production
 - 3-jet production
 - 4-jet production
 - 4-b production
 - 5 Further steps
 - The CP-odd triple-gluon operator
 - 6 Conclusions

Outline	Introduction	EFT validity	Jet multiplicity	Subprocesses	Further steps	Conclusions	Additional slides
00	0000	00000	00	0000	0		0000000
SMEFT							

- No evidence of a light BSM state after the first LHC13 results.
- Study the effect of any heavy state at the LHC energy range.
- EFT approach

$$\mathcal{L}_{Eff} = \mathcal{L}_{SM} + \sum_i rac{C_i^{(6)}O_i^{(6)}}{\Lambda^2} + O(\Lambda^{-4})$$

- Uses the SM symmetries to reduce the number of relevant operators. [arXiv:1008.4884]
- It is gauge invariant.
- It is renormalisable order by order in the $(1/\Lambda)$ expansion.
- It assumes that the new possible states are heavier than the energy probed.

Outline	Introduction	EFT validity	Jet multiplicity	Subprocesses	Further steps	Conclusions	Additional slides
00	0000	00000	00	0000	0		0000000
SMEET							

- One cannot be selective on the effect of a new heavy state \implies Global EFT analysis is recommended in a process by process basis.
- TopSMEFT

- The more the operators, the more difficult to constrain them.
- What about the operators that enter almost all the LHC processes? Look in specific processes and observables where their effect is enhanced.

Ioannis Tsinikos

Multijets in the EFT

Outline	Introduction	EFT validity	Jet multiplicity	Subprocesses	Further steps	Conclusions	Additional slides		
00	0000	00000	00	0000	0		0000000		
The triple	The triple-gluon operator								

Structure of $O_G^{(6)}$

• Operator $O_G^{(6)}$

$$g_s f_{abc} G^{\rho}_{a\nu} G^{\nu}_{b\lambda} G^{\lambda}_{c\rho} , \ G^{\rho\nu}_{a} = \partial^{\rho} G^{\nu}_{a} - \partial^{\nu} G^{\rho}_{a} - ig_s f_{abc} G^{b\rho} G^{c\nu}$$

• It provides from 3- to 6- point gluon vertices.

Outline	Introduction	EFT validity	Jet multiplicity	Subprocesses	Further steps	Conclusions	Additional slides
00	00000	00000	00	0000	0		0000000

The triple-gluon operator

Special features of $O_G^{(6)}$

- The helicity structure of the $O_G^{(6)}$ in $gg \to gg$ is orthogonal w.r.t. the QCD one \implies The interference term $(O(1/\Lambda^2))$ is zero. [hep-ph/9312363]
- It has been studied in $t\bar{t}$ [hep-ph/9408206] and 3-jet [hep-ph/9312363] production.

Outline	Introduction	EFT validity	Jet multiplicity	Subprocesses	Further steps	Conclusions	Additional slides
00	00000	00000	00	0000	0		0000000

The triple-gluon operator

Special features of $O_G^{(6)}$

- The helicity structure of the $O_G^{(6)}$ in $gg \to gg$ is orthogonal w.r.t. the QCD one \implies The interference term $(O(1/\Lambda^2))$ is zero. [hep-ph/9312363]
- It has been studied in $t\bar{t}$ [hep-ph/9408206] and 3-jet [hep-ph/9312363] production.
- Start with $t\bar{t}$ and $t\bar{t}j$ processes.
- Small effect in all observables.

Ioannis Tsinikos

Multijets in the EFT

Outline	Introduction	EFT validity	Jet multiplicity	Subprocesses	Further steps	Conclusions	Additional slides		
00	00000	00000	00	0000	0		0000000		
The triple	The triple-gluon operator								

Special features of $O_G^{(6)}$

- Search in a rich environment on these vertices: multijet production. [arXiv:1611.00767]
- Choose a sensitive variable

$$S_T = \sum_{j=1}^{Nyets} E_{T,j}$$

- Recent experimental results became public on this observable. [CMS-PAS-EXO-15-007]
- Other relevant operators are the O⁽⁶⁾_{4q}: strong bounds from di-jet ATLAS analysis. [arXiv:1512.01530]

Outline	Introduction	EFT validity	Jet multiplicity	Subprocesses	Further steps	Conclusions	Additional slides		
00	00000	● 0 000	00	0000	0		0000000		
Increasing the jet multiplicity									

 $O_G^{(6)}$ in multijet production

• The effect changes with the jet multiplicity.

Outline	Introduction	EFT validity	Jet multiplicity	Subprocesses	Further steps	Conclusions	Additional slides		
00	00000	● 0 000	00	0000	0		0000000		
Increasing the jet multiplicity									

$O_G^{(6)}$ in multijet production

• The effect changes with the jet multiplicity.

Outline	Introduction	EFT validity	Jet multiplicity	Subprocesses	Further steps	Conclusions	Additional slides		
00	00000	00000	00	0000	0		0000000		
Increasing the jet multiplicity									

- $O_G^{(6)}$ in multijet production
 - The effect changes with the jet multiplicity.

- The ratio R increases with the jet multiplicity.
- Even in higher multiplicities the interference term is small.
- Multiple insertions become important for $S_T > \Lambda$.

Ioannis Tsinikos

• Expected signal CL's vs integrated luminosity.

- Show the EFT validity.
- Understand the increase of the $O_G^{(6)}$ effect with the jet multiplicity.

Outline	Introduction	EFT validity	Jet multiplicity	Subprocesses	Further steps	Conclusions	Additional slides
00	00000	0000	00	0000	0		0000000
S_T vs M							

- Correlation plot of S_T vs M.
- The variable *M* is closer to $\sqrt{\hat{s}}$, which should be compared to Λ .

Outline	Introduction	EFT validity	Jet multiplicity	Subprocesses	Further steps	Conclusions	Additional slides
00	00000	0000	00	0000	0		0000000
S_T vs M							

- Correlation plot of S_T vs M.
- The variable *M* is closer to $\sqrt{\hat{s}}$, which should be compared to Λ .

- *M* is always larger or equal to S_T . Even for $S_T < 5$ TeV we can have M > 5 TeV.
- Can we keep these events? What is the effect if we drop them?

Multijets in the EFT

Outline	Introduction	EFT validity	Jet multiplicity	Subprocesses	Further steps	Conclusions	Additional slides
00	00000	00000	00	0000	0		0000000
S_T vs M							

• Compare the results for 4-jet production with an extra cut of M < 5 TeV.

Outline	Introduction	EFT validity	Jet multiplicity	Subprocesses	Further steps	Conclusions	Additional slides
00	00000	00000	00	0000	0		0000000
S⊤ vs M							

• Compare the results for 4-jet production with an extra cut of M < 5 TeV.

• This behaviour is verified also in 3-jet production.

[•] The ratio R is not affected.

Outline	Introduction	EFT validity	Jet multiplicity	Subprocesses	Further steps	Conclusions	Additional slides		
00	00000	00000	00	0000	0		0000000		
Include di	Include dim-8 operators								

- Need for dim-8 check because the effect comes from the $O(1/\Lambda^4)$ term.
- List of relevant dim-8 operators. [hep-ph/9408206]
- Choose two

$$\begin{split} O_4^{(8)} &= \frac{g_s^2}{2} \, G_{\mu\nu}^a \, G_a^{\mu\nu} \, G_{\lambda\sigma}^b \, G_b^{\lambda\sigma} \\ O_6^{(8)} &= \frac{g_s^2}{2} \, G_{\mu\nu}^a \, G_b^{\mu\nu} \, G_{\lambda\sigma}^a \, G_b^{\lambda\sigma} \end{split}$$

Outline	Introduction	EFT validity	Jet multiplicity	Subprocesses	Further steps	Conclusions	Additional slides
00	00000	00000	00	0000	0		0000000
Include di	im-8 operators						

- Need for dim-8 check because the effect comes from the $O(1/\Lambda^4)$ term.
- List of relevant dim-8 operators. [hep-ph/9408206]
- Choose two

$$\begin{split} O_4^{(8)} &= \frac{g_s^2}{2} \, G_{\mu\nu}^a \, G_a^{\mu\nu} \, G_{\lambda\sigma}^b \, G_b^{\lambda\sigma} \\ O_6^{(8)} &= \frac{g_s^2}{2} \, G_{\mu\nu}^a \, G_b^{\mu\nu} \, G_{\lambda\sigma}^a \, G_b^{\lambda\sigma} \end{split}$$

• Very small effect w.r.t. $O_G^{(6)}$.

We are within the EFT validity regime.

Outline	Introduction	EFT validity	Jet multiplicity	Subprocesses	Further steps	Conclusions	Additional slides			
00	00000	00000	•0	0000	0		0000000			
4-jet prod	-jet production									

- The higher the multiplicity the higher-point $O_G^{(6)}$ insertions are allowed.
- Check if the high *n*-point vertices are the most important.
- Compare the 4-jet with the 4-*q* production.

Outline	Introduction	EFT validity	Jet multiplicity	Subprocesses	Further steps	Conclusions	Additional slides			
00	00000	00000	•0	0000	0		0000000			
4-iet proc	-jet production									

- The higher the multiplicity the higher-point $O_G^{(6)}$ insertions are allowed.
- Check if the high *n*-point vertices are the most important.
- Compare the 4-jet with the 4-q production.

In 4-q production the 5- and 6- point vertices are absent, but the ratio R increases.

Outline	Introduction	EFT validity	Jet multiplicity	Subprocesses	Further steps	Conclusions	Additional slides
00	00000	00000	0	0000	0		0000000
Gluonic c	hannels						

• Isolate the gluonic channels.

Outline	Introduction	EFT validity	Jet multiplicity	Subprocesses	Further steps	Conclusions	Additional slides			
00	00000	00000	0	0000	0		0000000			
Gluonic c	Sluonic channels									

- Isolate the gluonic channels.
- Gluons $\uparrow \implies R \downarrow$
- What we see at multijet production is not seen in the gluonic channels.
- $G \uparrow \Longrightarrow \partial \downarrow$
- Look at the different channel luminosities in all cases.

Outline	Introduction	EFT validity	Jet multiplicity	Subprocesses	Further steps	Conclusions	Additional slides		
00	00000	00000	0	0000	0		0000000		
Gluonic c	Sluonic channels								

- Isolate the gluonic channels.
- Gluons $\uparrow \Longrightarrow R \downarrow$
- What we see at multijet production is not seen in the gluonic channels.
- $\mathsf{G} \uparrow \Longrightarrow \partial \downarrow$
- Look at the different channel luminosities in all cases.

Outline	Introduction	EFT validity	Jet multiplicity	Subprocesses	Further steps	Conclusions	Additional slides
00	00000	00000	00	●000	0		000000
2-iet prod	uction						

			ST>4.7 TeV				_		
	SM				SM+0G				
channel	xsec	(%)		channel	xsec	(%)		(SM+0G),	/SM
GG -> GG	1.98E-04	2.115		GG -> GG	1.00E-03	6.950		GG -> GG	5.05
GG -> qq	9.64E-06	0.103		GG -> qq	1.10E-04	0.764		GG -> qq	11.42
Gq -> Gq	2.62E-03	27.888		Gq -> Gq	6.44E-03	44.636		Gq -> Gq	2.46
qq -> GG	2.92E-05	0.312		qq -> GG	3.48E-04	2.414		qq -> GG	11.91
qq -> qq	6.52E-03	69.577		qq -> qq	6.52E-03	45.233		qq -> qq	1.00
			_				_		
total	9.38E-03	99.995		total	1.44E-02	99.997		total	1.54

• $R(qar{q}
ightarrow qar{q}) = 1$ regardless S_T , no $O_G^{(6)}$ insertions.

• At large S_T values the high R subprocesses are not the ones that dominate.

Outline 00	Introduction	EFT validity	Jet multiplicity	Subprocesses ○●○○	Further steps ○	Conclusions	Additional slides
3-jet p	roduction						

		ST>4.7 TeV				_		
SM				SM+OG				
channel xse	ec (%)		channel	xsec	(%)		(SM+0G)/	/SM
GG -> GGG 4.25E	-04 2.792		GG -> GGG	1.99E-03	7.406		GG -> GGG	4.68
GG -> Gqq 4.20E	-05 0.276		GG -> Gqq	3.00E-04	1.120		GG -> Gqq	7.16
Gq -> GGq 4.99E	-03 32.817		Gq -> GGq	1.19E-02	44.452		Gq -> GGq	2.39
Gq -> qqq 2.31E	-04 1.521		Gq -> qqq	5.97E-04	2.227		Gq -> qqq	2.58
qq -> GGG 3.85E	-05 0.253		qq -> GGG	5.65E-04	2.106		qq -> GGG	14.68
qq -> Gqq 9.48E	-03 62.346		qq -> Gqq	1.15E-02	42.700		qq -> Gqq	1.21
		_						
total 1.52E	-02 100.004		total	2.68E-02	100.011		total	1.76

• $q\bar{q}$ still dominant, but there are no subprocess with R = 1.

• From 2- to 3- jets the qg channel is enhanced.

Outline	Introduction	EFT validity	Jet multiplicity	Subprocesses	Further steps	Conclusions	Additional slides
00	00000	00000	00	0000	0		0000000

4-jet production

			ST>4.7 TeV					
	SM				SM+0G			
channel	xsec	(%)		channel	xsec	(%)	(SM+0G)/	′SM
GG -> GGGG	6.09E-04	3.857		GG -> GGGG	2.21E-03	7.492	GG -> GGGG	3.63
GG -> GGqq	7.52E-05	0.476		GG -> GGqq	4.34E-04	1.471	GG -> GGqq	5.77
GG -> qqqq	1.30E-06	0.008		GG -> qqqq	8.58E-06	0.029	GG -> qqqq	6.62
Gq -> GGGq	5.45E-03	34.530		Gq -> GGGq	1.24E-02	42.057	Gq -> GGGq	2.28
Gq -> Gqqq	4.58E-04	2.900		Gq -> Gqqq	1.38E-03	4.684	Gq -> Gqqq	3.02
qq -> GGGG	3.52E-05	0.223		qq -> GGGG	4.78E-04	1.622	qq -> GGGG	13.60
qq -> GGqq	8.89E-03	56.350		qq -> GGqq	1.21E-02	40.870	qq -> GGqq	1.36
qq -> qqqq	2.62E-04	1.660		qq -> qqqq	5.23E-04	1.775	qq -> qqqq	2.00
			-					
total	1.58E-02	100.005		total	2.95E-02	99.999	total	1.87

• Further increase of R for high S_T .

Outline	Introduction	EFT validity	Jet multiplicity	Subprocesses	Further steps	Conclusions	Additional slides
00	00000	00000	00	0000	0		0000000
4-b prod	uction						

			ST>4.7 TeV					
	SM				SM+OG			
channel	xsec	(%)		channel	xsec	(%)	(SM+0G)/	SM
GG -> qqqq	6.92E-08	45.652		GG -> qqqq	4.28E-07	74.789	GG -> qqqq	6.18
qq -> qqqq	8.24E-08	54.348		qq -> qqqq	1.44E-07	25.221	qq -> qqqq	1.75
			_					
total	1.52E-07	100.000		total	5.73E-07	100.010	total	3.77

- No qg channel.
- gg channel is large even at the tail with a large R (from 2-jet $R(gg \rightarrow gg) \approx 5$).
- 4-q channel is even more sensitive to $O_G^{(6)}$, but it is cross section suppressed.

Outline	Introduction	EFT validity	Jet multiplicity	Subprocesses	Further steps	Conclusions	Additional slides
00	00000	00000	00	0000	•		0000000

The CP-odd triple-gluon operator

• Operator $O_{\tilde{G}}^{(6)}$

 $g_{s}f_{abc}\varepsilon^{\mu\nu\rho\sigma}\,G^{a}_{\rho\sigma}\,G^{b}_{\mu\lambda}\,G^{c\lambda}_{\nu}\;,\;G^{\rho\nu}_{a}=\partial^{\rho}\,G^{\nu}_{a}-\partial^{\nu}\,G^{\rho}_{a}-ig_{s}f_{abc}\,G^{b\rho}\,G^{c\nu}$

- Contributes to neutron EDM: strong limits. [arXiv:1303.3156]
- Subject to large uncertainties, $1 O_i^{(6)}$ fit.

Outline	Introduction	EFT validity	Jet multiplicity	Subprocesses	Further steps	Conclusions	Additional slides
00	00000	00000	00	0000	•		0000000

The CP-odd triple-gluon operator

• Operator $O_{\tilde{G}}^{(6)}$

$$g_s f_{abc} arepsilon^{\mu
u
ho\sigma} G^a_{
ho\sigma} G^b_{\mu\lambda} G^{c\lambda}_{
u} \ , \ G^{
ho
u}_a = \partial^{
ho} G^{
u}_a - \partial^{
u} G^{
ho}_a - i g_s f_{abc} G^{b
ho} G^{c
u}$$

- Contributes to neutron EDM: strong limits. [arXiv:1303.3156]
- Subject to large uncertainties, $1 O_i^{(6)}$ fit.

Independent direct limits from colliders.

Outline	Introduction	EFT validity	Jet multiplicity	Subprocesses	Further steps	Conclusions	Additional slides
00	00000	00000	00	0000	0		0000000

Conclusions- Further research

- The S_T variable in multijet processes can be used to constrain the O_G⁽⁶⁾ operator. [see also the arXiv:1611.00767]
- Strong limit in high jet multiplicity within the EFT validity region.
- The effect of the O_G⁽⁶⁾ is a combination of the different channel luminosities and the energy dependence of different O_G⁽⁶⁾ parts.
- Larger enhancement in 4-b but this process is cross-section suppressed.
- Include the CP-odd $O_{\tilde{G}} \sim \tilde{G}GG$ operator.
- Use this result to put indirect bounds to heavy states (stops, vector-like quarks), appearing in loop corrections of the gluonic vertices.

Outline	Introduction	EFT validity	Jet multiplicity	Subprocesses	Further steps	Conclusions	Additional slides
00	00000	00000	00	0000	0		0000000

Conclusions- Further research

- The S_T variable in multijet processes can be used to constrain the O_G⁽⁶⁾ operator. [see also the arXiv:1611.00767]
- Strong limit in high jet multiplicity within the EFT validity region.
- The effect of the O_G⁽⁶⁾ is a combination of the different channel luminosities and the energy dependence of different O_G⁽⁶⁾ parts.
- Larger enhancement in 4-b but this process is cross-section suppressed.
- Include the CP-odd $O_{\tilde{G}} \sim \tilde{G}GG$ operator.
- Use this result to put indirect bounds to heavy states (stops, vector-like quarks), appearing in loop corrections of the gluonic vertices.

...Thank you

Outline	Introduction	EFT validity	Jet multiplicity	Subprocesses	Further steps	Conclusions	Additional slides
00	00000	00000	00	0000	0		000000

Operators

•

۲

$$\begin{aligned} O^{(6)}_{tG} &= y_t g_s (\bar{Q} \sigma^{\mu\nu} T^A t) \tilde{\varphi} G^A_{\mu\nu} \\ O^{(6)}_{\phi G} &= g_s (\phi^{\dagger} \phi) G^a_{\mu\nu} G^{a\mu\nu} \end{aligned}$$

$$\begin{split} O^{(6)}_{\varphi Q,3} &= i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu}^{I} \varphi \right) \left(\bar{Q} \gamma^{\mu} \tau^{I} Q \right) \\ O^{(6)}_{\varphi Q,1} &= i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi \right) \left(\bar{Q} \gamma^{\mu} Q \right) \\ O^{(6)}_{\varphi t} &= i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi \right) \left(\bar{t} \gamma^{\mu} t \right) \\ O^{(6)}_{tW} &= y_t g_w (\bar{Q} \sigma^{\mu\nu} \tau^{I} t) \tilde{\varphi} W_{\mu\nu}^{I} \\ O^{(6)}_{tB} &= y_t g_Y (\bar{Q} \sigma^{\mu\nu} t) \tilde{\varphi} B_{\mu\nu} \end{split}$$

۲

$$O^{(6)}_{4q} = \sum_{q,q'} (ar q_L \gamma^\mu q_L) (ar q_L' \gamma^\mu q_L')$$

Multijets in the EFT

Ioannis Tsinikos

Multijets in the EFT

Outline	Introduction	EFT validity	Jet multiplicity	Subprocesses	Further steps	Conclusions	Additional slides
00	00000	00000	00	0000	0		000000
3-iet prod	luction. $M < 5$	TeV					

- 4-jet and 3-jet S_T distribution with and without the M < 5 TeV cut
- E_{cm} for 4-jet, 3-jet and dijet

Outline	Introduction	EFT validity	Jet multiplicity	Subprocesses	Further steps	Conclusions	Additional slides
00	00000	00000	00	0000	0		000000
tī produc	tion						

Enhance the $GG \rightarrow qq$ channel (R = 11.42)

			ST>2 TeV						
	SM				SM+0G				
channel	xsec	(%)		channel	xsec	(%)		(SM+0G)/	′SM
GG -> ttx 1.	.08E-02	50.730		GG -> ttx	1.56E-02	59.775		GG -> ttx	1.44
qq -> ttx 1.	.05 _{E-02}	49.278		qq -> ttx	1.05E-02	40.233		qq -> ttx	1.00
total 2.	.13E-02	100.008		total	2.61E-02	100.008		total	1.22
				_					
			ST>4.7 TeV						
9	SM				SM+0G				
channel	xsec	(%)		channel	xsec	(%)		(SM+0G)/	′SM
GG -> ttx 1.	86E-06	15.891		GG -> ttx	2.15E-05	68.627		GG -> ttx	11.58
qq -> ttx 9.	82E-06	84.106		qq -> ttx	9.83E-06	31.385		qq -> ttx	1.00
							-		

No qg channel

- ${ullet}$ Probes the $gg \to qq$ with the largest R, but there is also the $qq \to qq$ with R=1
- Smaller effect w.r.t. tīj

Outline	Introduction	EFT validity	Jet multiplicity	Subprocesses	Further steps	Conclusions	Additional slides
00	00000	00000	00	0000	0		0000000
	-						

ttj production

Enhance the $GG \rightarrow qqG$ channel (R = 7.16)

			ST>2 TeV					
	SM				SM+0G			
channel	xsec	(%)		channel	xsec	(%)	(SM+0G)/	SM
GG -> ttxG	4.46E-02	37.056		GG -> ttxG	5.83E-02	40.556	GG -> ttxG	1.31
Gq -> ttxq	6.33E-02	52.532		Gq -> ttxq	7.25E-02	50.456	Gq -> ttxq	1.15
qq -> ttxG	1.25E-02	10.412		qq -> ttxG	1 .29E-02	8.988	qq -> ttxG	1.03
							-	
total	1.20E-01	99.999		total	1.44E-01	100.000	total	1.19
		-		_				
			ST>4.7 TeV					
	SM		ST>4.7 TeV		SM+OG			
channel	SM xsec	(%)	ST>4.7 TeV	channel	SM+OG xsec	(%)	(SM+OG)/	SM
channel GG -> ttxG	SM xsec 9.82E-06	(%) 14.185	ST>4.7 TeV	channel GG -> ttxG	SM+OG xsec 7.70E-05	(%) 32.620	(SM+OG)/ GG -> ttxG	SM 7.85
channel GG -> ttxG Gq -> ttxq	SM xsec 9.82E-06 4.26E-05	(%) 14.185 61.532	ST>4.7 TeV	channel GG -> ttxG Gq -> ttxq	SM+OG xsec 7.70E-05 1.34E-04	(%) 32.620 56.703	(SM+OG)/ GG -> ttxG Gq -> ttxq	SM 7.85 3.14
channel GG -> ttxG Gq -> ttxq qq -> ttxG	SM xsec 9.82E-06 4.26E-05 1.68E-05	(%) 14.185 61.532 24.272	ST>4.7 TeV	channel GG -> ttxG Gq -> ttxq qq -> ttxG	SM+OG xsec 7.70E-05 1.34E-04 2.52E-05	(%) 32.620 56.703 10.676	(SM+OG)/ GG -> ttxG Gq -> ttxq qq -> ttxG	SM 7.85 3.14 1.50
channel GG -> ttxG Gq -> ttxG qq -> ttxG	SM xsec 9.82E-06 4.26E-05 1.68E-05	(%) 14.185 61.532 24.272	ST>4.7 TeV	channel GG -> ttxG Gq -> ttxq qq -> ttxG	SM+OG xsec 7.70E-05 1.34E-04 2.52E-05	(%) 32.620 56.703 10.676	(SM+OG)/ GG -> ttxG Gq -> ttxq qq -> ttxG	SM 7.85 3.14 1.50

• Large qg and gg contribution with large R's

• No effect from $O_{tG}^{(6)}$ operator $(O_{tG}^{(6)} = y_t g_s (\bar{Q} \sigma^{\mu\nu} T^A t) \tilde{\varphi} G^A_{\mu\nu})$

Outline	Introduction	EFT validity	Jet multiplicity	Subprocesses	Further steps	Conclusions	Additional slides
00	00000	00000	00	0000	0		0000000
bbj prod	uction						

			ST>2 TeV				_		
	SM				SM+0G				
channel	xsec	(%)		channel	xsec	(%)		(SM+0G)/	′SM
GG -> bbxG	1.85E-01	35.479		GG -> bbxG	2.25E-01	38.464		GG -> bbxG	1.22
Gq -> bbxq	3.05E-01	58.430		Gq -> bbxq	3.27É-01	55.792		Gq -> bbxq	1.07
qq -> bbxG	3.18E-02	6.094		qq -> bbxG	3.37E-02	5.748		qq -> bbxG	1.06
							-		
total	5.22E-01	100.003		total	5.86E-01	100.005		total	1.12
			ST>4.7 TeV				_		
	SM		ST>4.7 TeV		SM+0G				
channel	SM xsec	(%)	ST>4.7 TeV	channel	SM+OG xsec	(%)		(SM+OG)/	́SМ
channel GG -> bbxG	SM xsec 1.35E-05	(%) 9.039	ST>4.7 TeV	channel GG -> bbxG	SM+OG xsec 1.23E-04	(%) 27.723		(SM+OG)/ GG -> bbxG	′sм 9.06
channel GG -> bbxG Gq -> bbxq	SM xsec 1.35E-05 1.04E-04	(%) 9.039 69.563	ST>4.7 TeV	channel GG -> bbxG Gq -> bbxq	SM+OG xsec 1.23E-04 2.69E-04	(%) 27.723 60.709		(SM+OG)/ GG -> bbxG Gq -> bbxq	′SM 9.06 2.58
channel GG -> bbxG Gq -> bbxq qq -> bbxG	SM xsec 1.35E-05 1.04E-04 3.21E-05	(%) 9.039 69.563 21.423	ST>4.7 TeV	channel GG -> bbxG Gq -> bbxq qq -> bbxG	SM+OG xsec 1.23E-04 2.69E-04 5.12E-05	(%) 27.723 60.709 11.568		(SM+OG)/ GG -> bbxG Gq -> bbxq qq -> bbxG	́SM 9.06 2.58 1.60
channel GG -> bbxG Gq -> bbxq qq -> bbxG	SM xsec 1.35E-05 1.04E-04 3.21E-05	(%) 9.039 69.563 21.423	ST>4.7 TeV	channel GG -> bbxG Gq -> bbxq qq -> bbxG	SM+OG xsec 1.23E-04 2.69E-04 5.12E-05	(%) 27.723 60.709 11.568		(SM+OG)/ GG -> bbxG Gq -> bbxq qq -> bbxG	́SM 9.06 2.58 1.60
channel GG -> bbxG Gq -> bbxq qq -> bbxG total	SM xsec 1.35E-05 1.04E-04 3.21E-05 1.50E-04	(%) 9.039 69.563 21.423 100.025	ST>4.7 TeV	channel GG -> bbxG Gq -> bbxq qq -> bbxG total	SM+OG xsec 1.23E-04 2.69E-04 5.12E-05 4.43E-04	(%) 27.723 60.709 11.568 100.000		(SM+OG)/ GG -> bbxG Gq -> bbxq qq -> bbxG total	^{'SM} 9.06 2.58 1.60 2.95

• Smaller effect w.r.t. $t\bar{t}j$

Outline Introduction

4-jet production $O_{\tilde{c}}^{(6)}$

EFT validity

Jet multiplicity

Subprocesses

Further steps

Conclusions

Additional slides

0000000

1.26

			ST>2 TeV
	SM		
channel	xsec	(%)	
GG -> GGGG	3.93E+00	15.138	
GG -> GGqq	6.71E-01	2.585	
GG -> qqqq	1.36E-02	0.052	
Gq -> GGGq	1.21E+01	46.490	
Gq -> Gqqq	1.34E+00	5.154	
qq -> GGGG	4.68E-02	0.180	
qq -> GGqq	7.53E+00	29.027	
qq -> qqqq	3.56E-01	1.373	

	SM+OG	
channel	xsec	(%)
GG -> GGGG	5.88E+00	17.993
GG -> GGqq	1.16E+00	3.534
GG -> qqqq	2.74E-02	0.084
Gq -> GGGq	1.49E+01	45.533
Gq -> Gqqq	1.82E+00	5.575
qq -> GGGG	1.41E-01	0.431
qq -> GGqq	8.36E+00	25.579
qq -> qqqq	4.13E-01	1.263

3.27E+01 99.993

(SM+0G)/	SM
GG -> GGGG	1.50
GG -> GGqq	1.72
GG -> qqqq	2.02
Gq -> GGGq	1.23
Gq -> Gqqq	1.36
qq -> GGGG	3.01
qq -> GGqq	1.11
qq -> qqqq	1.16

<u>tot</u>al

|--|

total

		ST>4.7 TeV			
SM				SM+0G	
xsec	(%)		channel	xsec	(%)
6.09E-04	3.857		GG -> GGGG	8.63E-03	10.913
7.52E-05	0.476		GG -> GGqq	1.79E-03	2.263
1.30E-06	0.008		GG -> qqqq	3.87E-05	0.049
5.45E-03	34.530		Gq -> GGGq	3.72E-02	47.074
4.58E-04	2.900		Gq -> Gqqq	4.64E-03	5.872
3.52E-05	0.223		qq -> GGGG	2.08E-03	2.627
8.89E-03	56.350		qq -> GGqq	2.35E-02	29.651
2.62E-04	1.660		qq -> qqqq	1.23E-03	1.549
		-			
1.58E-02	100.005		total	7.91E-02	99.999

(SM+OG)/SM	
GG -> GGGG	14.18
GG -> GGqq	23.82
GG -> qqqq	29.85
Gq -> GGGq	6.83
Gq -> Gqqq	10.15
qq -> GGGG	59.12
qq -> GGqq	2.64
qq -> qqqq	4.68
total	5.01

channe]

GG -> GGGG

GG -> GGqq

GG -> qqqq

Gq -> GGGq

Gq -> Gqqq

qq -> GGGG

qq -> GGqq

qq -> qqqq

total