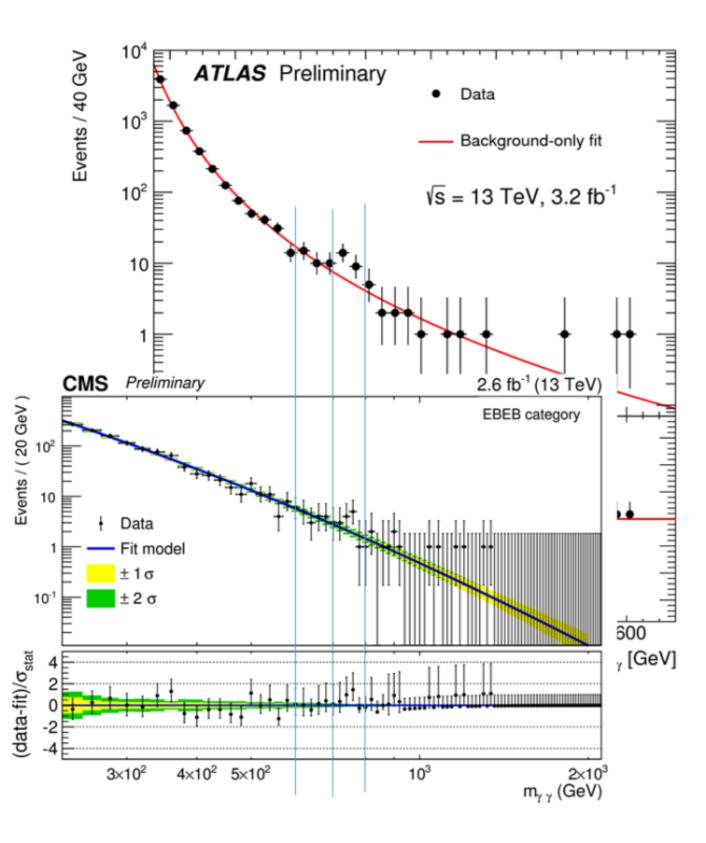
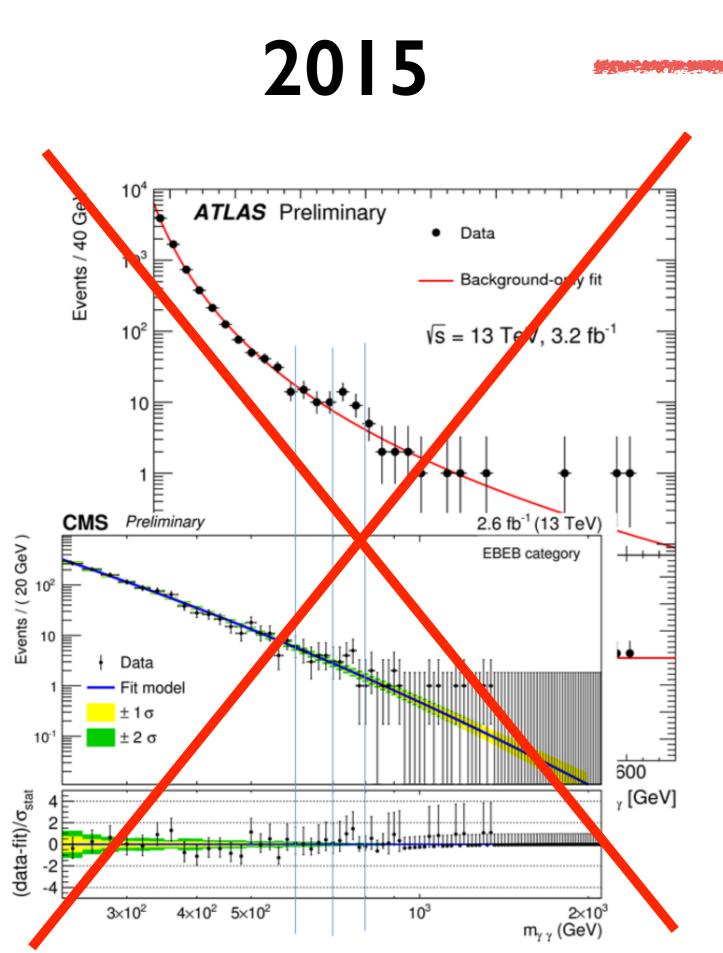
Vector-boson pair production at NNLO(+NNLL)

Marius Wiesemann

LHCTheory ERC meeting, Louvain-la-Neuve (Belgium) 22-24 March, 2017

in collaboration with M. Grazzini, S. Kallweit, S. Pozzorini and D. Rathlev


<u>Outline</u>


- I. Motivation and introduction to precision computations
- 2. The MATRIX
 - Status of the code and NNLO
 - Status of pT resummation at NNLL
- 3. Physics results
 - Inclusive diboson results produced with MATRIX
 - Differential diboson results produced with MATRIX
 - **very new:** $pp \rightarrow WZ \rightarrow IIIv$ at NNLO (fully differential)

Introduction

Mar. 2015

CMS m

γγ, (NN

Wγ

Ζγ

Ζγ

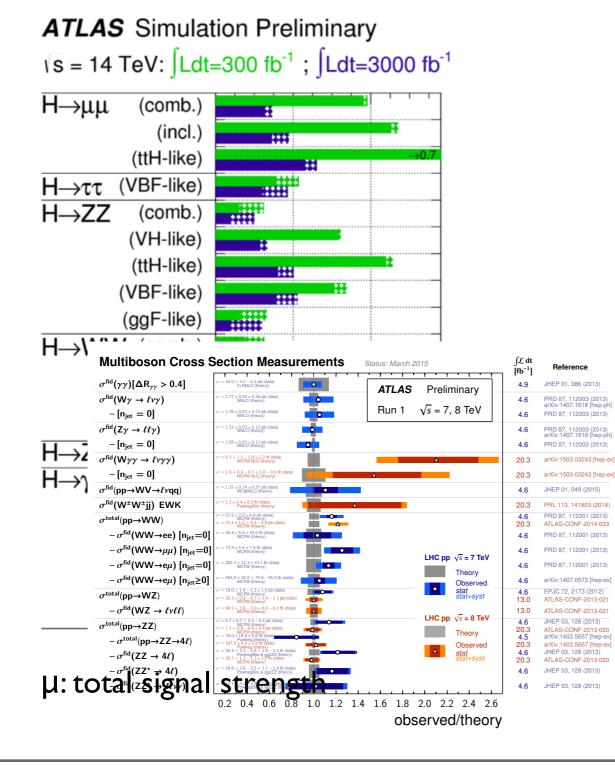
WW+W

WW, (I

WW

WΖ

WZ


ΖZ

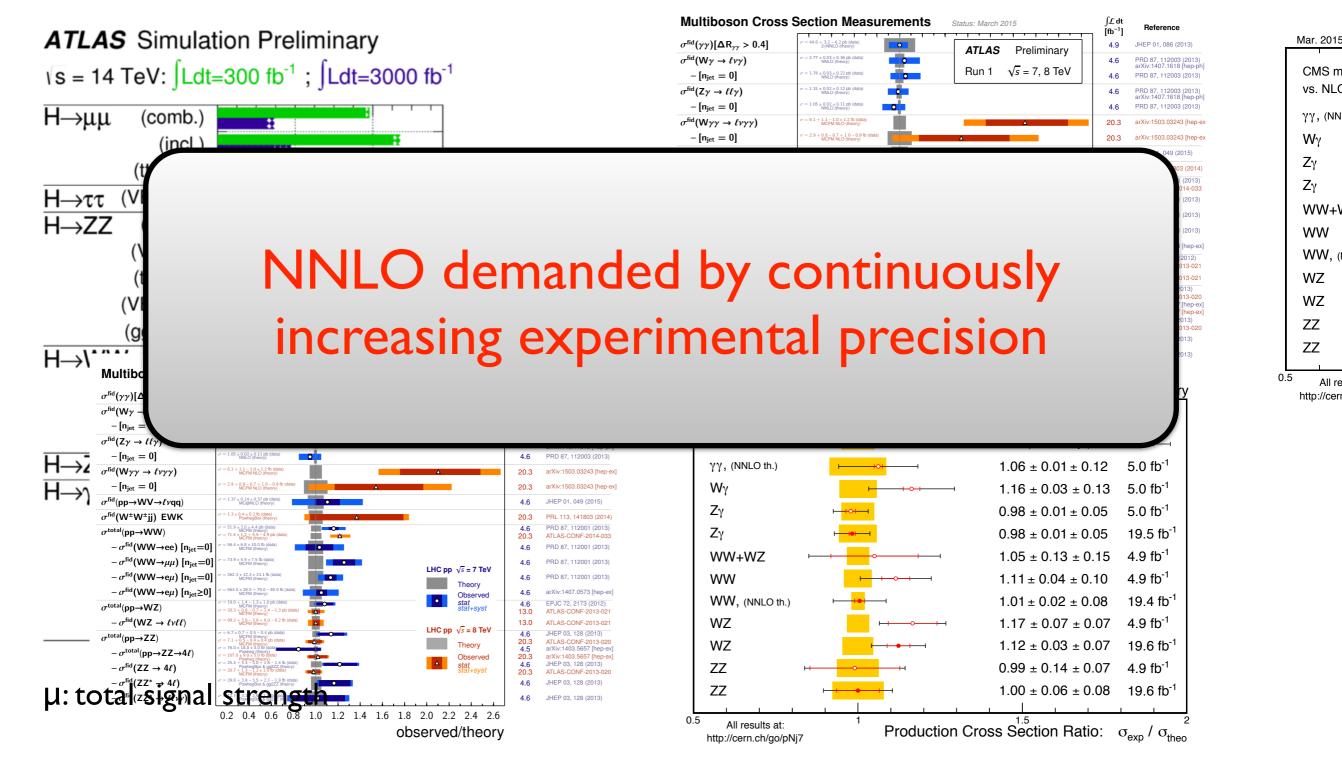
ΖZ

All re

http://cerr

Higgs

vector-boson pairs


C14		ments State	ıs: March 2015		[fb ⁻¹]	Reference	
$^{\text{fid}}(\gamma\gamma)[\Delta R_{\gamma\gamma} > 0.4]$	σ = 44.0 + 3.2 - 4.2 pb (data) 2γNNLO (theory)	•	ATLAS Prelir	minary	4.9	JHEP 01, 086 (2013)	
$^{\rm fid}(W\gamma \to \ell \nu \gamma)$	σ = 2.77 ± 0.03 ± 0.36 pb (data) NNLO (theory)		Run 1 $\sqrt{s} = 7$	8 ToV	4.6	PRD 87, 112003 (20 arXiv:1407.1618 [hep	p-ph]
$-[n_{jet}=0]$	$\sigma = 1.76 \pm 0.03 \pm 0.22$ pb (data) NNLO (theory)		$\sqrt{3} = 7$	olev	4.6	PRD 87, 112003 (20	
$^{\text{fid}}(Z\gamma \to \ell \ell \gamma)$		•			4.6	PRD 87, 112003 (20 arXiv:1407.1618 [hep	p-ph]
$-[n_{jet}=0]$					4.6	PRD 87, 112003 (20	
$^{\text{fid}}(W\gamma\gamma \to \ell \gamma\gamma)$	$\sigma = 6.1 + 1.1 - 1.0 \pm 1.2$ fb (data) MCFM NLO (theory) $\sigma = 2.9 + 0.8 - 0.7 + 1.0 - 0.9$ fb (data) MCFM NLO (theory)		•		20.3	arXiv:1503.03243 [he	
$-[n_{jet} = 0]$ fid(pp \rightarrow WV \rightarrow <i>l</i> ν qq)	$\sigma = 1.37 \pm 0.14 \pm 0.37 \text{ pb (data)}$ $MC@NLO (theory)$				20.3	arXiv:1503.03243 [he JHEP 01, 049 (2015)	
^{fid} (W [±] W [±] jj) EWK	$\sigma = 1.3 \pm 0.4 \pm 0.2 \text{ (b (data)}$ PowhegBax (beory)				4.6 20.3	PRL 113, 141803 (20	
(vv vv jj) Evvi total(pp→WW)	PownegBox (theory) $\sigma = 51.9 \pm 2.0 \pm 4.4 \text{ pb (data)}$ MCFM (theory) $\sigma = 71.4 \pm 1.2 \pm 5.5 - 4.9 \text{ pb (data)}$ MCFM (theory)				4.6	PRD 87, 112001 (20	13)
$-\sigma^{\text{fid}}(WW \rightarrow ee) [n_{jet}=0]$	$\sigma = 71.4 \pm 1.2 \pm 5.5 - 4.9 \text{ pb (data)}$ MCFM (theory) $\sigma = 56.4 \pm 6.8 \pm 10.0 \text{ tb (data)}$ MCFM (theory)				20.3	ATLAS-CONF-2014-0 PRD 87, 112001 (201	
$-\sigma^{\text{fid}}(WW \rightarrow \mu\mu) \text{ [n_{jet}=0]}$	MCFM (theory) σ = 73.9 ± 5.9 ± 7.5 fb (data) MCFM (theory)				4.6 4.6	PRD 87, 112001 (20 PRD 87, 112001 (20	
$-\sigma^{\text{fid}}(WW \rightarrow e\mu) [n_{\text{jet}}=0]$	MCFM (theory) $\sigma = 262.3 \pm 12.3 \pm 23.1$ fb (data) MCFM (theory)		LHC pp	\sqrt{s} = 7 TeV	4.6	PRD 87, 112001 (20	
$-\sigma^{\text{fid}}(WW \rightarrow e\mu) [n_{\text{jet}} \ge 0]$	σ = 563.0 ± 28.0 + 79.0 - 85.0 fb (data) MCFM (theory)			Theory	4.6	arXiv:1407.0573 [hep	
total(pp→WZ)	$\sigma = 19.0 + 1.4 - 1.3 \pm 1.0$ pb (data)		•	Observed stat stat+syst	4.6	EPJC 72, 2173 (2012	2)
$-\sigma^{\text{fid}}(WZ \rightarrow \ell \nu \ell \ell)$	$\begin{array}{l} \mbox{MOFM (theory)} \\ \sigma = 20.3 + 0.8 - 0.7 + 1.4 - 1.3 \mbox{ pb (data)} \\ model{eq:alpha} \\ \sigma = 99.2 + 3.8 - 3.0 + 6.0 - 6.2 \mbox{ fb (data)} \\ \mbox{MOFM (theory)} \end{array}$				13.0 13.0	ATLAS-CONF-2013- ATLAS-CONF-2013-	
total(pp→ZZ)			LHC pp	√ <i>s</i> = 8 TeV	4.6	JHEP 03, 128 (2013)	
$-\sigma^{\text{total}}(pp \rightarrow ZZ \rightarrow 4\ell)$	$\begin{split} \sigma &= 6.7 \pm 0.7 \pm 0.5 \pm 0.4 \ pb (data) \\ \sigma &= 7.1 \pm (MA(heav)) \\ MCP4(heav) \\ MCP4(heav) \\ MCP4(heav) \\ MCP4(heav) \\ methods (heav) \\ \sigma &= 76.0 \pm 18.0 \pm 4.0 \ b (data) \\ \sigma &= 76.0 \pm 18.0 \pm 4.0 \ b (data) \\ \sigma &= 107.8 \ b (data) \\ \sigma &= 20.7 \pm 1.0 \pm 1.0 \pm 1.4 \ b (data) \\ \sigma &= 20.7 \pm 1.0 \pm 1.0 \pm 1.4 \ b (data) \\ MCP4(heav) \\ \sigma &= 29.8 \pm 3.3 \pm 2.1 \pm 1.9 \ b (data) \\ \sigma &= 29.8 \pm 3.3 \pm 2.1 \pm 1.9 \ b (data) \\ \sigma &= 29.8 \pm 3.3 \pm 2.1 \pm 1.9 \ b (data) \\ \sigma &= 29.8 \pm 3.3 \pm 2.1 \pm 1.9 \ b (data) \\ \sigma &= 29.8 \pm 3.3 \pm 2.1 \pm 1.9 \ b (data) \\ \sigma &= 29.8 \pm 3.3 \pm 2.1 \pm 1.9 \ b (data) \\ \sigma &= 29.8 \pm 3.3 \pm 2.1 \pm 1.9 \ b (data) \\ \sigma &= 29.8 \pm 3.3 \pm 2.1 \pm 1.9 \ b (data) \\ \sigma &= 29.8 \pm 3.3 \pm 2.1 \pm 1.9 \ b (data) \\ \sigma &= 29.8 \pm 3.3 \pm 2.1 \pm 1.9 \ b (data) \\ \sigma &= 29.8 \pm 3.3 \pm 2.1 \pm 1.9 \ b (data) \\ \sigma &= 29.8 \pm 3.3 \pm 2.1 \pm 1.9 \ b (data) \\ \sigma &= 29.8 \pm 3.3 \pm 2.1 \pm 1.9 \ b (data) \\ \sigma &= 29.8 \pm 3.3 \pm 2.1 \pm 1.9 \ b (data) \\ \sigma &= 29.8 \pm 3.3 \pm 2.1 \pm 1.9 \ b (data) \\ \sigma &= 29.8 \pm 3.3 \pm 2.1 \pm 1.9 \ b (data) \\ \sigma &= 20.7 \pm 1.9 \ b (data) \\ \sigma &= 20.7 \pm 1.9 \ b (data) \\ \sigma &= 1.0 \ b (data) \ b (data) \\ \sigma &= 1.0 \ b (data) \ b (data) \\ \sigma &= 1.0 \ b (data) \ b (data) \ b (data) \\ \sigma &= 1.0 \ b (data) \ b $	÷		Theory	20.3 4.5 20.3	ATLAS-CONF-2013-(arXiv:1403.5657 [hep arXiv:1403.5657 [hep	o-ex]
$-\sigma^{\text{fid}}(\text{ZZ} \rightarrow 4\ell)$	Powheg (theory) $\sigma = 25.4 + 3.3 - 3.0 + 1.6 - 1.4$ fb (data) PowhegBox & gg2ZZ (theory) $\sigma = 20.7 + 1.3 - 1.2 \pm 1.0$ fb (data)		A	Observed stat stat+syst	4.6 20.3	JHEP 03, 128 (2013) ATLAS-CONF-2013-0	
$-\sigma^{\text{fid}}(ZZ^* \to 4\ell)$	$\sigma = 29.8 + 3.8 - 3.5 + 2.1 - 1.9 \text{ fb (data)}$ PowhegBox & gg2ZZ (theory)				4.6	JHEP 03, 128 (2013)	
$-\sigma^{\text{fid}}(ZZ^* \to \ell\ell\nu\nu)$	$\sigma = 12.7 + 3.1 - 2.9 \pm 1.8 \text{ fb (data)} \\ \text{PowhegBox \& gg2ZZ (the)}$				4.6	JHEP 03, 128 (2013)	
Mar. 2015	0.2 0.4 0.6 0.8	1.0 1.2 1.4 1	.6 1.8 2.0 2.2		MS P	reliminary	
CMS measurem	ents		.6 1.8 2.0 2.2	C	MS P	reliminary	
	ents	7 TeV CMS n		C I I at,stat+sys)	MS P		
CMS measureme	ents	7 TeV CMS n	neasurement (st.	C I I at,stat+sys)		5.0 fb ⁻¹	
CMS measureme vs. NLO (NNLO) th	ents	7 TeV CMS n	neasurement (st. neasurement (st. 1.06 ±	t,stat+sys) at,stat+sys)	12		
CMS measureme vs. NLO (NNLO) th γγ, (NNLO th.)	ents	7 TeV CMS n	neasurement (st. neasurement (st. 1.06 ± 1.16 ±	C at,stat+sys) at,stat+sys) 0.01 ± 0. ⁻¹	12 13	5.0 fb ⁻¹	
CMS measureme vs. NLO (NNLO) th γγ, (NNLO th.) Wγ	ents	7 TeV CMS n	neasurement (st. neasurement (st. 1.06 ± 1.16 ± 0.98 ±	<u>C</u> at,stat+sys) at,stat+sys) 0.01 ± 0. 0.03 ± 0.	12 13 05	5.0 fb ⁻¹	
CMS measureme vs. NLO (NNLO) th γγ, (NNLO th.) Wγ Ζγ	ents	7 TeV CMS n	neasurement (st. neasurement (st. 1.06 ± 1.16 ± 0.98 ± 0.98 ±	$\frac{C}{t}$ at,stat+sys) at,stat+sys) 0.01 ± 0.7 0.03 ± 0. 0.01 ± 0.0	12 13 05	5.0 fb ⁻¹ 5.0 fb ⁻¹ 5.0 fb ⁻¹	
CMS measureme vs. NLO (NNLO) th γγ, (NNLO th.) Wγ Ζγ Ζγ	ents	7 TeV CMS n	neasurement (st neasurement (st 1.06 ± 1.16 ± 0.98 ± 0.98 ± 1.05 ±	$\frac{C}{C}$ at,stat+sys) at,stat+sys) 0.01 ± 0.7 0.03 ± 0.7 0.01 ± 0.0 0.01 ± 0.0	12 13 05 15	5.0 fb ⁻¹ 5.0 fb ⁻¹ 5.0 fb ⁻¹ 5.0 fb ⁻¹ 19.5 fb ⁻¹	
CMS measurem vs. NLO (NNLO) th γγ, (NNLO th.) Wγ Ζγ Ζγ Ζγ WW+WZ	ents	7 TeV CMS n	neasurement (st. neasurement (st. 1.06 ± 1.16 ± 0.98 ± 0.98 ± 1.05 ± 1.11 ±	$\begin{array}{c} C\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	12 13 05 15 10	5.0 fb ⁻¹ 5.0 fb ⁻¹ 5.0 fb ⁻¹ 5.0 fb ⁻¹ 19.5 fb ⁻¹ 4.9 fb ⁻¹	
CMS measurem vs. NLO (NNLO) th γγ, (NNLO th.) Wγ Zγ Zγ WW+WZ WW	ents	7 TeV CMS n	neasurement (st. neasurement (st. 1.06 ± 1.16 ± 0.98 ± 0.98 ± 1.05 ± 1.11 ±	$\begin{array}{c} C\\ at,stat+sys)\\ at,stat+sys)\\ 0.01 \pm 0.7\\ 0.03 \pm 0.\\ 0.01 \pm 0.0\\ 0.01 \pm 0.0\\ 0.13 \pm 0.\\ 0.04 \pm 0.7\\ \end{array}$	12 13 05 15 10 08	5.0 fb ⁻¹ 5.0 fb ⁻¹ 5.0 fb ⁻¹ 5.0 fb ⁻¹ 19.5 fb ⁻¹ 4.9 fb ⁻¹ 4.9 fb ⁻¹	
CMS measureme vs. NLO (NNLO) th γγ, (NNLO th.) Wγ Zγ Zγ Zγ WW+WZ WW WW, (NNLO th.)	ents	7 TeV CMS n	neasurement (st. 1.06 ± 1.16 ± 0.98 ± 0.98 ± 1.05 ± 1.11 ± 1.01 ±	$\frac{C}{C}$ at,stat+sys) at,stat+sys) 0.01 ± 0.7 0.03 ± 0.7 0.01 ± 0.6 0.01 ± 0.6 0.13 ± 0.7 0.04 ± 0.7 0.02 ± 0.6	12 13 05 15 10 08 07	5.0 fb ⁻¹ 5.0 fb ⁻¹ 5.0 fb ⁻¹ 19.5 fb ⁻¹ 4.9 fb ⁻¹ 4.9 fb ⁻¹ 19.4 fb ⁻¹	
CMS measurem vs. NLO (NNLO) th γγ, (NNLO th.) Wγ Zγ Zγ Zγ WW+WZ WW WW, (NNLO th.) WZ	ents	7 TeV CMS n	neasurement (st. neasurement (st. 1.06 ± 1.16 ± 0.98 ± 0.98 ± 1.05 ± 1.11 ± 1.01 ± 1.17 ± 1.12 ±	$\begin{array}{c} C\\ \\ at,stat+sys)\\ at,stat+sys)\\ 0.01 \pm 0.7\\ 0.03 \pm 0.7\\ 0.01 \pm 0.6\\ 0.01 \pm 0.6\\ 0.13 \pm 0.7\\ 0.04 \pm 0.7\\ 0.02 \pm 0.6\\ 0.07 \pm 0.7\\ \end{array}$	12 13 05 15 10 08 07 07	5.0 fb ⁻¹ 5.0 fb ⁻¹ 5.0 fb ⁻¹ 19.5 fb ⁻¹ 4.9 fb ⁻¹ 4.9 fb ⁻¹ 19.4 fb ⁻¹ 4.9 fb ⁻¹	
CMS measurem vs. NLO (NNLO) th γγ, (NNLO th.) Wγ Zγ Zγ WW+WZ WW WW, (NNLO th.) WZ WZ	ents	7 TeV CMS n	neasurement (st neasurement (st 1.06 ± 1.16 ± 0.98 ± 0.98 ± 1.05 ± 1.11 ± 1.01 ± 1.17 ± 1.12 ± 0.99 ±	$\begin{array}{c} C\\ at,stat+sys)\\ at,stat+sys)\\ 0.01 \pm 0.7\\ 0.03 \pm 0.7\\ 0.01 \pm 0.6\\ 0.01 \pm 0.6\\ 0.13 \pm 0.7\\ 0.04 \pm 0.7\\ 0.02 \pm 0.6\\ 0.07 \pm 0.7\\ 0.03 \pm 0.6\\ 0.00$	12 13 05 15 10 08 07 07 07	5.0 fb ⁻¹ 5.0 fb ⁻¹ 5.0 fb ⁻¹ 19.5 fb ⁻¹ 4.9 fb ⁻¹ 4.9 fb ⁻¹ 19.4 fb ⁻¹ 4.9 fb ⁻¹ 19.6 fb ⁻¹	

Introduction

Higgs

vector-boson pairs

All re

NNLO methods

Schemes with local cancellation of singularities

- Sector decomposition [Binoth, Heinrich '00 '04] [Anastasio, Melnikov, Petriello '04]
- Antenna subtraction [Gehrmann-de Ridder, Gehrmann, Glover '05]
- STRIPPER (FKS+sec.dec.) [Czakon '10, '11]
- Colourful subtraction [Somogyi, Trocsanyi, Del Duca '05, '07]

Schemes that start from F+Ijet process at NLO

- PT subtraction [Catani, Grazzini '07]
- N-jettiness subtraction [Tackmann et al. '15], [Boughezal, Liu, Petriello '15]
- (Born projection method) [Cacciari, Dreyer, Karlberg, Salam, Zanderighi '15]

NNLO methods

Schemes with local cancellation of singularities

- Sector decomposition [Binoth, Heinrich '00 '04] [Anastasio, Melnikov, Petriello '04]
- Antenna subtraction [Gehrmann-de Ridder, Gehrmann, Glover '05]
- STRIPPER (FKS+sec.dec.) [Czakon '10, '11]
- Colourful subtraction [Somogyi, Trocsanyi, Del Duca '05, '07]

Schemes that start from F+Ijet process at NLO

- PT subtraction [Catani, Grazzini '07]
- N-jettiness subtraction [Tackmann et al. '15], [Boughezal, Liu, Petriello '15]
- (Born projection method) [Cacciari, Dreyer, Karlberg, Salam, Zanderighi '15]

Two-loop amplitudes required for each process!

p_T subtraction master formula:

$$d\sigma_{\rm NNLO} = \left[d\sigma_{\rm NLO}^{F+1\rm jet} - \Sigma_{\rm NNLO} \otimes d\sigma_{\rm LO} \right] + \mathcal{H}_{\rm NNLO} \otimes d\sigma_{\rm LO}$$

[Catani, Grazzini '07]

p_T subtraction master formula:

$$d\sigma_{\rm NNLO} = \left[d\sigma_{\rm NLO}^{F+1\rm jet} - \Sigma_{\rm NNLO} \otimes d\sigma_{\rm LO} \right] + \mathcal{H}_{\rm NNLO} \otimes d\sigma_{\rm LO}$$

[Catani, Grazzini '07]

subtraction terms known from resummation:

$$d\sigma^{F+1\text{jet}} \xrightarrow{p_T \ll Q} \left[d\sigma^{(\text{res})} \right]_{\text{f.o.}} \equiv \Sigma(p_T/Q) \otimes d\sigma_{\text{LO}}$$

Resumation formula: $\frac{d\sigma^{(\text{res})}}{dp_T^2 \, dy \, dM \, d\Omega} \sim \int db \, \frac{b}{2} \, J_0(b \, p_T) \, S(b, A, B) \, \mathcal{H}_{N_1, N_2} \, f_{N_1} \, f_{N_2}$ [Collins, Soper, Sterman '85], [Bozzi, Catani, de Florian, Grazzini '06] M. Wiesemann (CERN) VV production at NNLO March 23 2017 **6**

p_T subtraction master formula:

$$d\sigma_{\rm NNLO} = \left[d\sigma_{\rm NLO}^{F+1\rm jet} - \Sigma_{\rm NNLO} \otimes d\sigma_{\rm LO} \right] + \mathcal{H}_{\rm NNLO} \otimes d\sigma_{\rm LO}$$

[Catani, Grazzini '07]

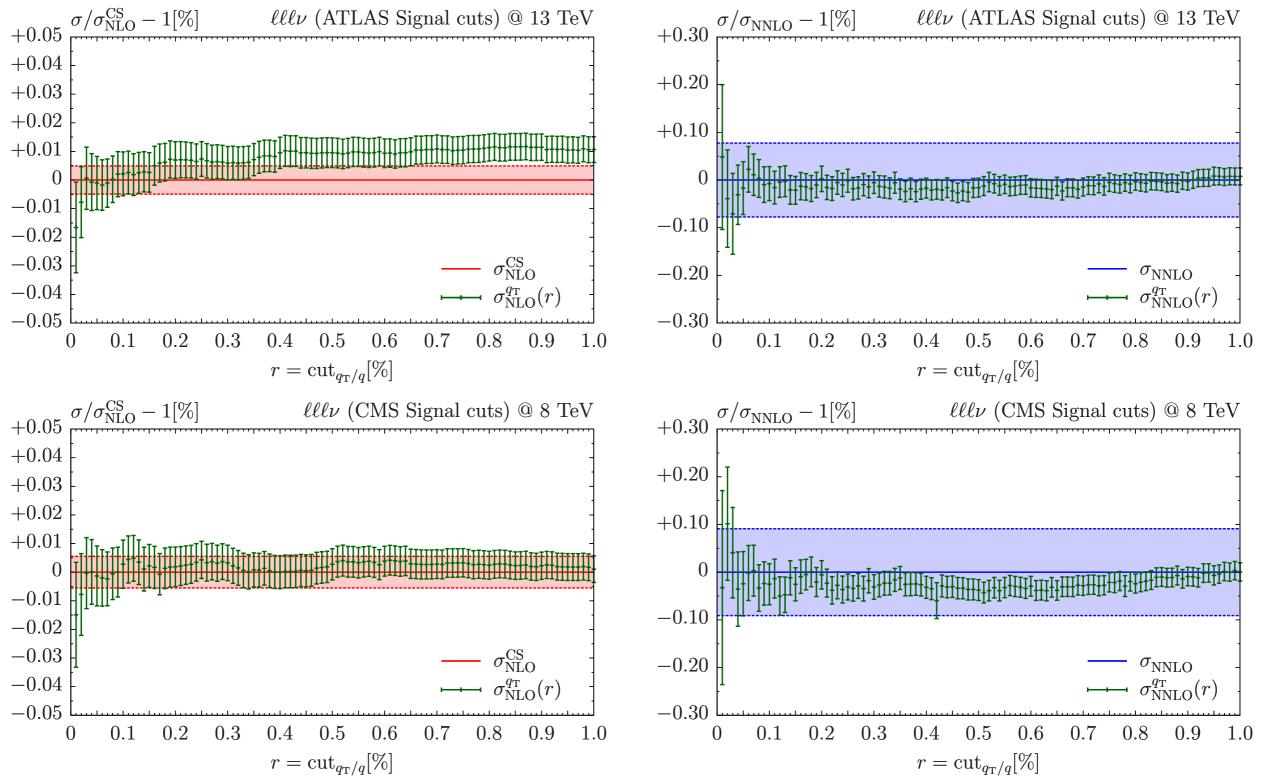
subtraction terms known from resummation:

$$d\sigma^{F+1\text{jet}} \xrightarrow{p_T \ll Q} \left[d\sigma^{(\text{res})} \right]_{\text{f.o.}} \equiv \Sigma(p_T/Q) \otimes d\sigma_{\text{LO}}$$

NNLO accuracy consequence of unitarity:

$$\int dp_T^2 \, \frac{d\sigma^{(\rm res)}}{dp_T^2 \, dy \, dM \, d\Omega} = \mathcal{H} \otimes d\sigma_{\rm LO}$$

 $\left(\ln(Q^2b^2/b_0^2) \to \ln(Q^2b^2/b_0^2+1)\right)$


Resummation formula:

$$\frac{d\sigma^{(\text{res})}}{dp_T^2 \, dy \, dM \, d\Omega} \sim \int db \, \frac{b}{2} \, J_0(b \, p_T) \, S(b, A, B) \, \mathcal{H}_{N_1, N_2} \, f_{N_1} \, f_{N_2}$$

[Collins, Soper, Sterman '85], [Bozzi, Catani, de Florian, Grazzini '06]

WZ fully differential at NNLO [Grazzini, Kallweit, MW '17]

stability of r_{cut} dependence

We implemented...

The MATRIX team

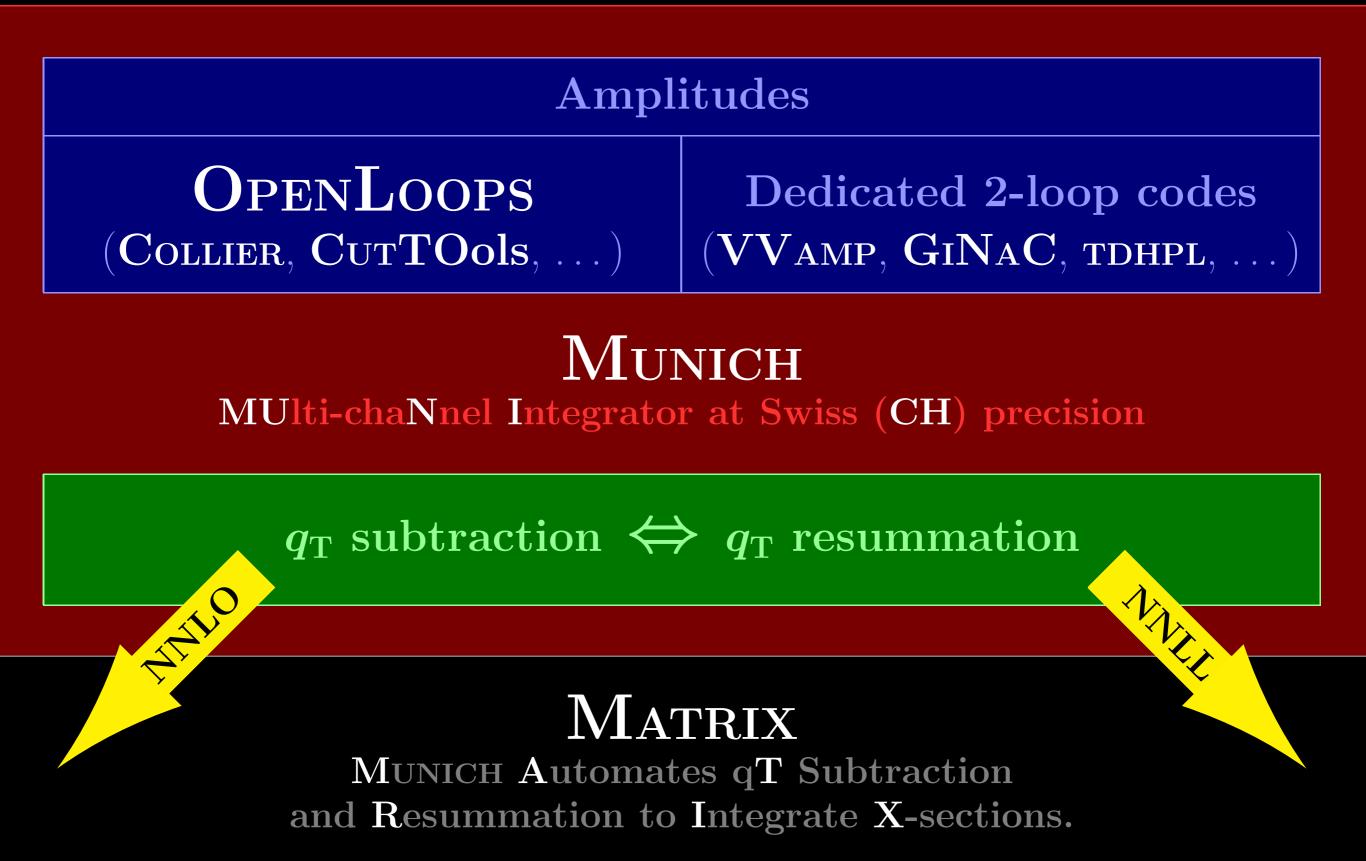
Dirk "Cypher" Rathlev

Massimiliano "Morpheus" "Neo" Grazzini

Stefan Kallweit

Marius "Trinity" Wiesemann

The MATRIX team



Dirk "Cypher" Rathlev Massimiliano "Morpheus" Grazzini

Stefan "Neo" Kallweit Marius "Trinity" Wiesemann

The MATRIX framework

[Grazzini, Kallweit, Rathlev, MW] (+Sargsyan)

process	status	comment
$pp \rightarrow \mathbf{Z}/\mathbf{Y}^*(\rightarrow \ell \ell / \nu \nu)$	\checkmark	validated analytically + DYNNLO
$pp \rightarrow W(\rightarrow \ell v)$	(🗸)	to be validated (with CKM)
pp→H	\checkmark	validated analytically
рр→үү	\checkmark	validated with 2yNNLO
pp→ZY→ℓℓY	\checkmark	[Grazzini, Kallweit, Rathlev '15]
pp→ Ζ γ→ννγ	\checkmark	NEW
pp→₩γ→ℓνγ	\checkmark	[Grazzini, Kallweit, Rathlev '15]
pp→ZZ	\checkmark	[Cascioli et al. '14]
pp→ZZ→ℓℓℓℓ	\checkmark	[Grazzini, Kallweit, Rathlev '15]
pp→ZZ→ℓℓℓ'ℓ'	\checkmark	[Grazzini, Kallweit, Rathlev '15]
pp→ZZ→ℓℓv'v'	\checkmark	NEW
pp→ZZ/WW→ℓℓvv	\checkmark	NEW
pp→WW	\checkmark	[Gehrmann et al. '14]
pp→WW→ℓvℓ'v'	\checkmark	[Grazzini, Kallweit, Pozzorini, Rathlev, MW '16]
pp→WZ	\checkmark	[Grazzini, Kallweit, Rathlev, MW '16]
pp→WZ→ℓvℓℓ	\checkmark	NEW HERE: fully differential
pp→WZ→ℓ'v'ℓℓ		NEW HERE: fully differential
рр→НН	()	not in first public release

- After unpacking the MATRIX package start the code with:
- \$\$./matrix

[Mar

<<MA

orod

pph2 ppz0

ppw0 ppwx ppee ppne ppex ppen

ppex ppen ppzz ppwx ppee

opee

ppemxnmnex04

ppemexnmx04

ppeexmxnm04

ppeeexnex04

peexexne04

>>

>>

>>

>>

========>> ppeeexex04

рр

- After unpacking the MATRIX package start the code with:
- \$\$./matrix
- which brings you to MATRIX compilation shell, type

|===>> list

to list all available process IDs.
 Select a process typing its ID, eg:

|===>> ppeeexex04

s:~/Uni/	'Own_Codes/munich/MATRIX] ./matrix		
/	·		· · · · · · · · · · · · · · · · · · ·
	MATRIX: A fully-differential NNLO(+N	NLL) p	rocess library
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
	Version: 1.0.0.beta4		Feb 2017
	Munich the MUlti-chaNnel Integrate Automates qT-subtraction and Resumma		
	\ \ \ \ \)==== + \)==== + \) / / / / / / / / / /)====	<pre></pre>
	M. Grazzini S. Kallweit D. Rathlev M. Wiesemann	((grazzini@physik.uzh.ch) (kallweit@uni-mainz.de) (rathlev@physik.uzh.ch) (mariusw@physik.uzh.ch)
	MATRIX is based on a number of differ from various people and groups. Pleas by citing the list of references whic	se ack ch is	<pre>knowledge their efforts created with every run. </pre>
TRIX-REA	<pre>XE>> This is the MATRIX process compile XD>> Type process_id to be compiled and available processes. Try pressing "exit" or "quit" to stop. =>> list</pre>	d crea	ated. Type "list" to show
ess_id	process		description
1 1 1	>> p p> H >> p p> Z >> p p> W^-	>> >> >>	on-shell Higgs production on-shell Z production on-shell W+ production
01 x02 nex02	>> pp> W^+ >> pp> e^- e^+ >> pp> v_e^- v_e^+	>> >> >>	on-shell W- production Z production with decay Z production with decay
ne02 ex02 22	>> pp> e ⁷ + v_e ⁷ - >> pp> e ⁷ - v_e ⁷ + >> pp> H H	>> >> >>	W+ production with decay W- production with decay on-shell double Higgs production
102 2xa03 2nexa03	<pre>>> p p> gamma gamma >> p p> e^- e^+ gamma >> p p> v_e^- v_e^+ gamma</pre>	>> >> >>	gamma gamma production Z gamma production with decay Z gamma production with decay
nea03 exa03 :02	>> p p> e^+ v_e^- gamma >> p p> e^- v_e^+ gamma >> p p> Z Z >> p p> W^+ W^-	>> >> >>	W+ gamma production with decay W- gamma production with decay on-shell ZZ production
:w02 exex04 iexmx04 exnmnmx04	>> pp> e^- e^- e^+ e^+ >> pp> e^- mu^- e^+ mu^+	>> >> >>	on-shell WW production ZZ production with decay ZZ production with decay ZZ production with decay
xnenex04	>> pp> e^- e^+ v_e^- v_e^+	>>	ZZ/WW production with decay

_mu^+

mu^-

--> e^- e^- e^+ v_e^+

--> e^- e^+ e^+ v_e^-

e^- e^+ mu^+ v mu^-

>>

>>

>>

>>

WW production with decay

W-Z production with decay

W+Z production with decay

W-Z production with decay

W+Z production with decay

- After unpacking the MATRIX package start the code with:
- \$\$./matrix
- which brings you to MATRIX compilation shell, type

|===>> list

- to list all available process IDs.
 Select a process typing its ID, eg:
 |===>> ppeeexex04
- If or pp→ZZ→4ℓ, this will start the automatic compilation including:
 - dowload/compilation of OpenLoops
 - compilation of Cln and Ginac
 - MATRIX compilation
 - download OpenLoops amplitudes
 - creation of MATRIX process run folder

pph21	>>	p p> H	>>	on-shell Higgs production
ppz01	>>		>>	on-shell Z production on-shell W+ production
ррw01 ррwх01	>> >>	p p> W^+	>>	on-shell W- production
ppeex02	>>	p p> e^- e^+	>>	Z production with decay
ppnenex02	>>	p p> v_e^- v_e^+	>>	Z production with decay
ppexne02	>>	p p> e ⁻ + v_e ⁻ -	>>	W+ production with decay
ppenex02	>>	pp>e^-v_e^+	>>	W- production with decay
pphh22	>>	рр>НН	>>	on-shell double Higgs production
ppaa02	>>	p p> gamma gamma	>>	gamma gamma production
ppeexa03	>>	p p> e^- e^+ gamma	>>	Z gamma production with decay
ppnenexa03	>>	p p> v_e^- v_e^+ gamm		Z gamma production with decay
ppexnea03	>> >>	p p> e^+ v_e^- gamma p p> e^- v_e^+ gamma	>>	W+ gamma production with decay W- gamma production with decay
ppenexa03 ppzz02	>>	pp> Z Z	>>	on-shell ZZ production
ppwxw02	>>	p p> W^+ W^-	>>	on-shell WW production
ppeeexex04	>>	p p> e^- e^+ e^+	>>	ZZ production with decay
ppemexmx04	>>	p p> e^- mu^- e^+ mu^	+ >>	ZZ production with decay
ppeexnmnmx04	>>	p p> e^- e^+ v_mu^- v		ZZ production with decay
ppeexnenex04	>>	p p> e^- e^+ v_e^- v_		ZZ/WW production with decay
ppemxnmnex04	>>	p p> e^- mu^+ v_mu^-		WW_production with decay
ppemexnmx04	>>	p p> e^- mu^- e^+ v_m		W-Z production with decay
ppeexmxnm04	>>	p p> e^- e^+ mu^+ v_m p p> e^- e^- e^+ v_e^		W+Z production with decay
ppeeexnex04 ppeexexne04	>> >>	p p> e^- e^- e^+ v_e^ p p> e^- e^+ e^+ v_e^		W-Z production with decay W+Z production with decay
[====================================				wiz production with decay
		starting compilation		
		Ising compiled LHAPDF insta	llation unde	er
		config/MATRIX_configuratio		
		lhapdf-config		
< <matrix-make< td=""><td></td><td>ownload and Compilation of</td><td></td><td></td></matrix-make<>		ownload and Compilation of		
		<pre>ittp://openloops.hepforge.o</pre>		
		/Users/Mars/Uni/Own_Codes/m	unich/MATRIX	<pre>K/src-external/OpenLoops-</pre>
		nstall Downloading OpenLoops		
		Compiling OpenLoops		
		loRe already compiled. Remo	ve folder	
		Users/Mars/Uni/Own_Codes/m		<pre>K/src-MoRe/MoRe-v1.0.0 if</pre>
		you want to re-compile		
< <matrix-make< td=""><td>>> E</td><td>xtracting and Compiling Cl</td><td>n from</td><td></td></matrix-make<>	>> E	xtracting and Compiling Cl	n from	
		Users/Mars/Uni/Own_Codes/m		(/src-
		external/cln-1.3.4.tar into		
		<pre>Users/Mars/Uni/Own_Codes/m</pre>	unich/MAIRIX	(/src-external/cln-
< <matrix_make< td=""><td></td><td>nstall Extracting and Compiling Gi</td><td>nac from</td><td></td></matrix_make<>		nstall Extracting and Compiling Gi	nac from	
		Users/Mars/Uni/Own_Codes/m		K/src-
		external/ginac-1.6.2.tar in		
		Users/Mars/Uni/Own_Codes/m		K/src-external/ginac-
	i	nstall		
< <matrix-make< td=""><td></td><td>Compiling process <ppeeexex< td=""><td></td><td></td></ppeeexex<></td></matrix-make<>		Compiling process <ppeeexex< td=""><td></td><td></td></ppeeexex<>		
		see make.log file to monit		
		ownloading and compiling p		
		Oownloading and compiling p		
		Oownloading and compiling p		
NNATRIX-INFU	// K	Running on Mac. Trying to m OpenLoops dylibs absolute.	Please consi	ider using
export DYLD L				/Uni/Own_Codes/munich/MATRIX/src-ext
		in your terminal and possib		
		bashrc/.bash_profile, in c		
		errors when running the cod		
< <matrix-make< td=""><td>>> (</td><td>reating process folder in</td><td>"run"-direct</td><td></td></matrix-make<>	>> (reating process folder in	"run"-direct	
		Codes/munich/MATRIX/run/pp	eeexex04_MAT	
< <matrix-info< td=""><td>>> F</td><td>rocess folder successfully</td><td>created.</td><td></td></matrix-info<>	>> F	rocess folder successfully	created.	
< <matrix-info< td=""><td>>> F</td><td>rocess generation finished</td><td>, to go to t</td><td>the run directory type:</td></matrix-info<>	>> F	rocess generation finished	, to go to t	the run directory type:
		d /Users/Mars/Uni/Own_Code	s/munich/MAT	RIX/run/ppeeexex04_MATRIX
< <maikix-inf0< td=""><td></td><td>and start run by typing:</td><td></td><td></td></maikix-inf0<>		and start run by typing:		
[Mars:~/Uni/0		/bin/run_process Codes/munich/MATRIX]		
	win_(

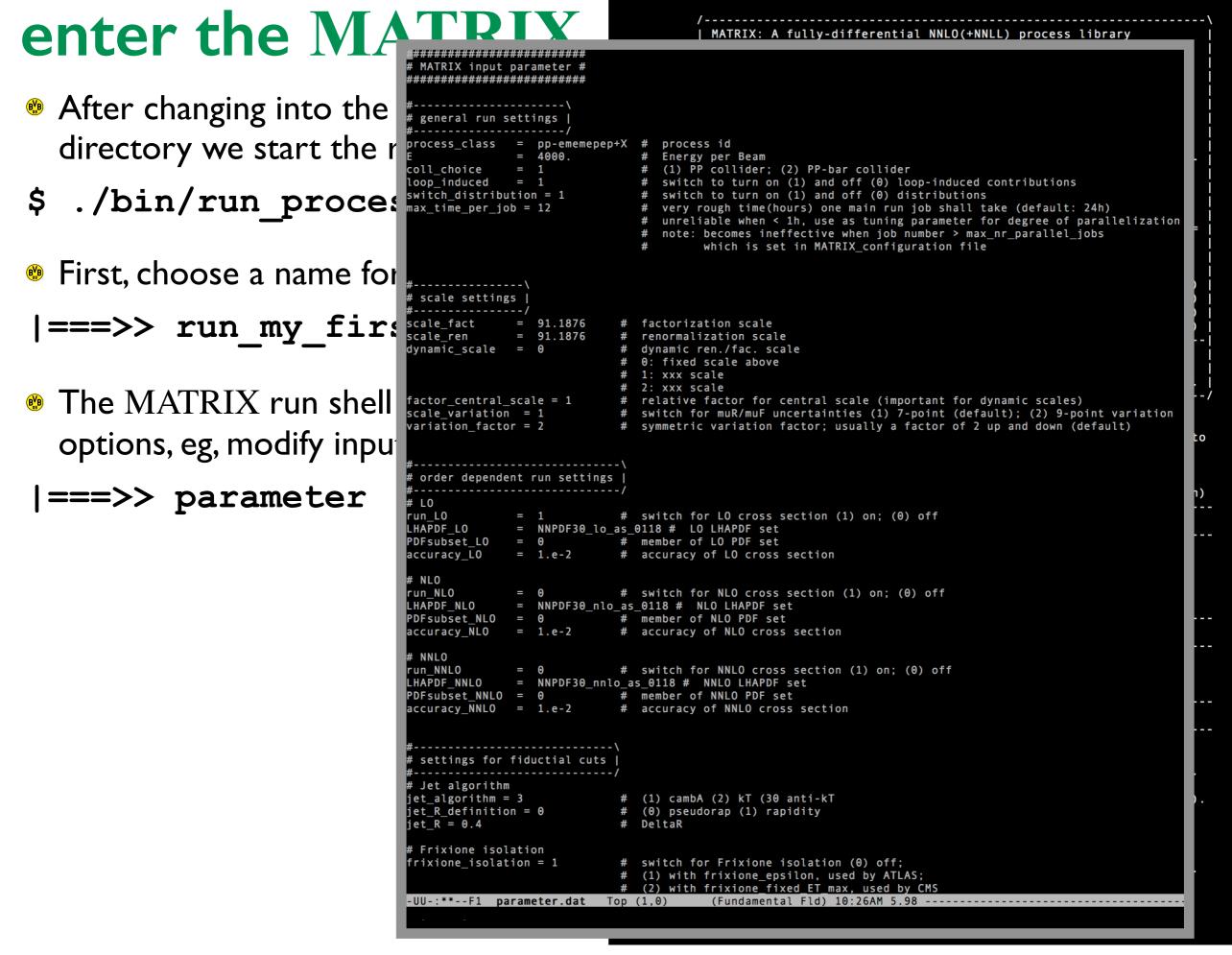
- After changing into the run directory we start the run script
- \$./bin/run_process

- After changing into the run directory we start the run script
- \$./bin/run_process
- First, choose a name for the run:

|===>> run_my_first_ZZ

- After changing into the run directory we start the run script
- \$./bin/run process
- First, choose a name for the run:

===>> run my first ZZ


- The MATRIX run shell has many options, eg, modify input files typing:
 - ===>> parameter
- ===>> model

===>> distribution

[[wiesemann:~/munich-http/MATRIX/run/ppeeexex04_MATRIX] ./bin/run_process MATRIX: A fully-differential NNLO(+NNLL) process library \\ // \\ // // \\ \ \ Feb 2017 Version: 1.0.0.beta4 Munich -- the MUlti-chaNnel Integrator at swiss (CH) precision --Automates qT-subtraction and Resummation to Integrate X-sections |-)====)====)====)==== M. Grazzini (grazzini@physik.uzh.ch) S. Kallweit (kallweit@uni-mainz.de) D. Rathlev (rathlev@physik.uzh.ch) Wiesemann (mariusw@physik.uzh.ch) MATRIX is based on a number of different computations and tools from various people and groups. Please acknowledge their efforts by citing the list of references which is created with every run. <<MATRIX-READ>> Type name of folder for this run (has to start with "run_"). "ENTER" to create and use "run_01". Press TAB or type "list" to show existing runs. Type "exit" or "quit" to stop. Any other folder will be created. |=========>> run_my_first_ZZ <<MATRIX-READ>> Type one of the following commands: ("TAB" for auto-completion) description General commands help >> Show help menu. >> Show help message for specific <command>. help <command> list >> List available commands again. exit >> Stop the code. quit >> Stop the code. Input to modify description parameter >> Modify "parameter.dat" input file in editor. Modify "model.dat" input file in editor. model >> distribution Modify "distribution.dat" input file in editor. >> Run-mode to start || description >> Start cross section computation in standard mode. run_grid >> Start only grid setup phase. Start only extrapolation (grid must be already done). run_pre >> Start after grid setup (grid must be already done). run_pre_and_main >> run_main >> Start only main run (other runs must be already done). Start only result combination. run_results >> run_gnuplot >> Start only gnuplotting the results. Setup the run folder, but not start running. setup_run >> delete_run >> Remove run folder (including input/log/result). tar_run Create <run_folder>.tar (including input/log/result). >> ========>> parameter ======>> model ========>> distribution

run

[wiesemann:~/munich-http/MATRIX/run/ppeeexex04_MATRIX] ./bin/run_process

- After changing into the run directory we start the run script
- \$./bin/run_process
- First, choose a name for the run:

|===>> run_my_first_ZZ

- The MATRIX run shell has many options, eg, modify input files typing:
- ===>> parameter
- ===>> model

===>> distribution

Now we can start the run, type

===>> run

iesemann:~/muni	ch-http	<pre>/MATRIX/run/ppeeexex04_MATRIX] ./bin/run_process</pre>
/ MATR	IX: A f	ully-differential NNLO(+NNLL) process library
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	Ve	rsion: 1.0.0.beta4 Feb 2017
Muni Auto	ch t mates q	he MUlti-chaNnel Integrator at swiss (CH) precision T-subtraction and Resummation to Integrate X-sections
\ \)= /	=== +	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
S. K D. R	razzini allweit athlev ieseman	(grazzini@physik.uzh.ch) (kallweit@uni-mainz.de) (rathlev@physik.uzh.ch) n (mariusw@physik.uzh.ch)
from	variou	ased on a number of different computations and tools s people and groups. Please acknowledge their efforts he list of references which is created with every run. /
" s f =====>> r	ENTER" how exi older w un_my_f	e of folder for this run (has to start with "run_"). to create and use "run_01". Press TAB or type "list" to sting runs. Type "exit" or "quit" to stop. Any other ill be created. irst_ZZ of the following commands: ("TAB" for auto-completion)
eral commands		description
Lp Lp <command/> st it it	>> >> >> >> >>	Show help menu. Show help message for specific <command/> . List available commands again. Stop the code. Stop the code.
out to modify		description
ameter lel stribution	>> >> >> >>	Modify "parameter.dat" input file in editor. Modify "model.dat" input file in editor. Modify "distribution.dat" input file in editor.
n-mode to start	 	description
	>>	Start cross section computation in standard mode.
n_grid n_pre n_pre_and_main n_main	>> >> >> >>	Start only grid setup phase. Start only extrapolation (grid must be already done). Start after grid setup (grid must be already done). Start only main run (other runs must be already done).
n_results n_gnuplot cup_run lete_run	>> >> >> >>	Start only result combination. Start only gnuplotting the results. Setup the run folder, but not start running. Remove run folder (including input/log/result).
_run =====>> p		Create <run_folder>.tar (including input/log/result). r</run_folder>
=====>> m =====>> d ======>> r	istribu	tion

- After changing into the run directory we start the run script
- \$./bin/run_process
- First, choose a name for the run:

|===>> run_my_first_ZZ

- The MATRIX run shell has many options, eg, modify input files typing:
- ===>> parameter
- |===>> model

===>> distribution

Now we can start the run, type

|===>> run

The code goes through all run phases and collects the results at the very end. With default inputs it runs LO with 1% accuracy.

```
=======>> run
<<MATRIX-INFO>> New Run folder created: /home/wiesemann/munich-
                http/MATRIX/run/ppeeexex04_MATRIX/run_my_first_ZZ.
<<MATRIX-INFO>> Using LHAPDF version 5.9.1...
<<MATRIX-INFO>> Now it's time for running...
<<MATRIX-INFO>> Running in multicore mode...
<<MATRIX-INFO>> Starting grid setup (warmup)..
<<MATRIX-JOBS>> | 2017-03-04 09:52:10 |
                                        Queued: 2 | Running: 0 | Finished: 0
                 2017-03-04 09:52:15
<<MATRIX-JOBS>>
                                        Queued: 0
                                                   Running: 2 | Finished: 0
<<MATRIX-JOBS>>
                 2017-03-04 09:54:50
                                       Queued: 0 | Running: 1 | Finished: 1
                 2017-03-04 09:54:55 | Queued: 0 | Running: 0 | Finished: 2
<<MATRIX-JOBS>>
<<MATRIX-JOBS>> |
                 2017-03-04 09:54:55 | Queued: 0 | Running: 0 | Finished: 2
<<MATRIX-INFO>> Starting runs to extrapolate runtimes from accuracy (pre run)
<<MATRIX-JOBS>>
                 2017-03-04 09:54:55 | Queued: 2 | Running: 0 | Finished: 0
<<MATRIX-JOBS>>
                 2017-03-04 09:55:00 |
                                       Queued: 0 | Running: 2 | Finished: 0
<<MATRIX-JOBS>>
                 2017-03-04 09:55:15
                                       Queued: 0 | Running: 0 | Finished: 2
<<MATRIX-JOBS>>
                 2017-03-04 09:55:15 | Queued: 0 | Running: 0 | Finished: 2 |
 <MATRIX-INFO>> All runs successfully finished.
 <MATRIX-INFO>> Extrapolating runtimes...
                 2017-03-04 09:55:15 | Queued: 1 | Running: 0 | Finished: 0
<<MATRIX-JOBS>> |
<<MATRIX-JOBS>>
                 2017-03-04 09:55:20 |
                                       Queued: 0 | Running: 0 | Finished: 1
<<MATRIX-JOBS>> |
                 2017-03-04 09:55:20 | Queued: 0 | Running: 0 | Finished: 1
<<MATRIX-JOBS>> | 2017-03-04 09:55:20 | Queued: 0 | Running: 0 | Finished: 1 |
                            Preliminary (inaccurate) result for:
                           p p --> e^- e^+ e^+ @ 8 TeV LHC
                # LO-run
                #----
<MATRIX-RESULT> PDF: NNPDF30_lo_as_0118
<MATRIX-RESULT> Total rate (possibly within cuts):
<MATRIX-RESULT> LO:
                        3.558 fb +/- 0.018 fb (muR, muF unc.: +2.9% -3.9%)
<MATRIX-RESULT> This result is very inaccurate and only a rough estimate!
<MATRIX-RESULT> Wait until the main run finishes to get the final result!
 Starting cross section computation (main run)...
<<MATRIX-JOBS>> | 2017-03-04 09:55:20 | Queued: 2 | Running: 0 | Finished: 0
<<MATRIX-JOBS>> | 2017-03-04 09:55:25 | Queued: 0 | Running: 2 | Finished: 0
                 2017-03-04 09:55:40 | Queued: 0 | Running: 0 | Finished: 2
<<MATRIX-JOBS>> |
<<MATRIX-JOBS>> | 2017-03-04 09:55:40 | Queued: 0 | Running: 0 | Finished: 2 |
<<MATRIX-INFO>> All runs successfully finished.
<<MATRIX-INFO>> Collecting and combining results...
<<MATRIX-JOBS>> | 2017-03-04 09:55:40 | Queued: 2 | Running: 0 | Finished: 0
                 2017-03-04 09:55:45 | Queued: 0 | Running: 0 | Finished: 2
<<MATRIX-JOBS>> |
<<MATRIX-JOBS>> |
                 2017-03-04 09:55:45 | Queued: 0 | Running: 0 | Finished: 2 |
<<MATRIX-JOBS>> |
                 2017-03-04 09:55:45 | Queued: 0 | Running: 0 | Finished: 2 |
<<MATRIX-INFO>> Plotting results with gnuplot...
<<MATRIX-INFO>> Trying to plot: pT_lep1_lep2_L0
<<MATRIX-INFO>> Running gnuplot...
 <MATRIX-INFO>> Plot successfully generated.
 <MATRIX-INFO>> Trying to plot: pT_ep1__LO
 <MATRIX-INFO>> Running gnuplot...
<<MATRIX-INFO>> Plot successfully generated.
<<MATRIX-INFO>> Trying to plot: pT_lep1__L0
<<MATRIX-INFO>> Running gnuplot...
<<MATRIX-INFO>> Plot successfully generated.
<<MATRIX-INFO>> Trying to plot: m_lep1_lep2__LO
<<MATRIX-INFO>> Running gnuplot...
<<MATRIX-INFO>> Plot successfully generated.
<<MATRIX-INFO>> Trying to plot: dR_em1_ep1__L0
<<MATRIX-INFO>> Running gnuplot...
<<MATRIX-INFO>> Plot successfully generated.
<<MATRIX-INFO>> Trying to plot: pT_lep2__LO
<<MATRIX-INFO>> Running gnuplot...
<<MATRIX-INFO>> Plot successfully generated.
<<MATRIX-INFO>> Trying to plot: pT_em1__LO
```

- After changing into the run directory we start the run script
- \$./bin/run_process
- First, choose a name for the run:

|===>> run_my_first_ZZ

- The MATRIX run shell has many options, eg, modify input files typing:
- ===>> parameter
- |===>> model

===>> distribution

Now we can start the run, type

|===>> run

The code goes through all run phases and collects the results at the very end. With default inputs it runs LO with 1% accuracy.

```
Preliminary (inaccurate) result for:
                           p p --> e^- e^- e^+ e^+ @ 8 TeV LHC
                # LO-run
                #----/
<MATRIX-RESULT> PDF: NNPDF30_lo_as_0118
<MATRIX-RESULT> Total rate (possibly within cuts):
                         3.558 fb +/- 0.018 fb (muR, muF unc.: +2.9% -3.9%)
<MATRIX-RESULT> LO:
<MATRIX-RESULT> This result is very inaccurate and only a rough estimate!
<MATRIX-RESULT> Wait until the main run finishes to get the final result!
<<MATRIX-INF0>> Starting cross section computation (main run)...
<<pre><<MATRIX-JOBS>> | 2017-03-04 09:55:20 | Queued: 2 | Running: 0 | Finished: 0
                  2017-03-04 09:55:25 | Queued: 0 | Running: 2 | Finished: 0
<<MATRIX-JOBS>> |
                 2017-03-04 09:55:40 | Queued: 0 | Running: 0 | Finished: 2
<<MATRIX-JOBS>> |
<<MATRIX-JOBS>> | 2017-03-04 09:55:40 | Queued: 0 | Running: 0 | Finished: 2 |
 <MATRIX-INFO>> All runs successfully finished
 <MATRIX-INFO>> Collecting and combining results..
<<MATRIX-JOBS>> | 2017-03-04 09:55:40 | Queued: 2 | Running: 0 | Finished: 0
<<MATRIX-JOBS>> | 2017-03-04 09:55:45 | Queued: 0 | Running: 0 | Finished: 2
<<MATRIX-JOBS>> | 2017-03-04 09:55:45 | Queued: 0 | Running: 0 | Finished: 2
<<MATRIX-JOBS>> | 2017-03-04 09:55:45 | Queued: 0 | Running: 0 | Finished: 2 |
<<MATRIX-INFO>> Plotting results with gnuplot...
 <<MATRIX-INFO>> Trying to plot: pT_lep1_lep2__L0
 <MATRIX-INFO>> Running gnuplot...
 <MATRIX-INFO>> Plot successfully generated.
<<MATRIX-INFO>> Trying to plot: pT_ep1__L0
<<MATRIX-INFO>> Running gnuplot...
<<MATRIX-INFO>> Plot successfully generated.
<<MATRIX-INFO>> Trying to plot: pT_lep1__L0
<<MATRIX-INFO>> Running gnuplot...
<<MATRIX-INFO>> Plot successfully generated.
<<MATRIX-INFO>> Trying to plot: m_lep1_lep2__L0
<<MATRIX-INFO>> Running gnuplot...
 <MATRIX-INFO>> Plot successfully generated.
 <MATRIX-INFO>> Trying to plot: dR_em1_ep1__LO
<<MATRIX-INFO>> Running gnuplot...
<<MATRIX-INFO>> Plot successfully generated.
<<MATRIX-INFO>> Trying to plot: pT_lep2__L0
<<MATRIX-INFO>> Running gnuplot...
<<MATRIX-INFO>> Plot successfully generated.
<<MATRIX-INFO>> Trying to plot: pT_em1__LO
<<MATRIX-INFO>> Running gnuplot..
<<MATRIX-INFO>> Plot successfully generated.
<<MATRIX-INFO>> Trying to plot: n_jets__LO
<<MATRIX-INFO>> Running gnuplot...
<<MATRIX-INFO>> Plot successfully generated.
                           Final result for:
p p --> e^- e^- e^+ e^+ @ 8 TeV LHC
<MATRIX-RESULT> 1 separate run was made
                #----\
                # LO-run
                #----/
<MATRIX-RESULT> PDF: NNPDF30_lo_as_0118
<MATRIX-RESULT> Total rate (possibly within cuts):
<MATRIX-RESULT> LO:
                         3.554 fb +/- 0.013 fb (muR, muF unc.: +2.9% -3.9%)
```

<MATRIX-RESULT> All results (including the distributions) can be found in: <MATRIX-RESULT> /home/wiesemann/munich-http/MATRIX/run/ppeeexex04_MATRIX/result/run_my_fir [wiesemann:~/munich-http/MATRIX/run/ppeeexex04_MATRIX]

Status of the code

CERN

Closed beta started almost one year ago!

- PROCESSES: (slightly) restricted number of processes from previous slide
- ACCURACY: NNLO QCD
- WHO: provided to experimentalists from ATLAS and CMS

CURRENTLY SUPPORTED:

- Iocal and cluster running: LSF (Ixplus), SLURM, condor; Torque/PBS, SGE
- easy to add new schedulers

Status of the code

CERN

Closed beta started almost one year ago!

- PROCESSES: (slightly) restricted number of processes from previous slide
- ACCURACY: NNLO QCD
- WHO: provided to experimentalists from ATLAS and CMS
- CURRENTLY SUPPORTED:
 - Iocal and cluster running: LSF (Ixplus), SLURM, condor; Torque/PBS, SGE
 - easy to add new schedulers

Public release in preparation!

- Full list of processes
- TIME FRAME: within next couple of months

Status of the code

CERN

Closed beta started almost one year ago!

- PROCESSES: (slightly) restricted number of processes from previous slide
- ACCURACY: NNLO QCD
- WHO: provided to experimentalists from ATLAS and CMS
- CURRENTLY SUPPORTED:
 - Iocal and cluster running: LSF (Ixplus), SLURM, condor; Torque/PBS, SGE
 - easy to add new schedulers

Public release in preparation!

- Full list of processes
- TIME FRAME: within next couple of months

Plans beyond first release:

- enable NNLO+NNLL pT resummation
- NLO QCD corrections for loop-induced gg contributions
- add NLO EW effects to certain processes
- add resummation for further observables

Status of p_T resummation

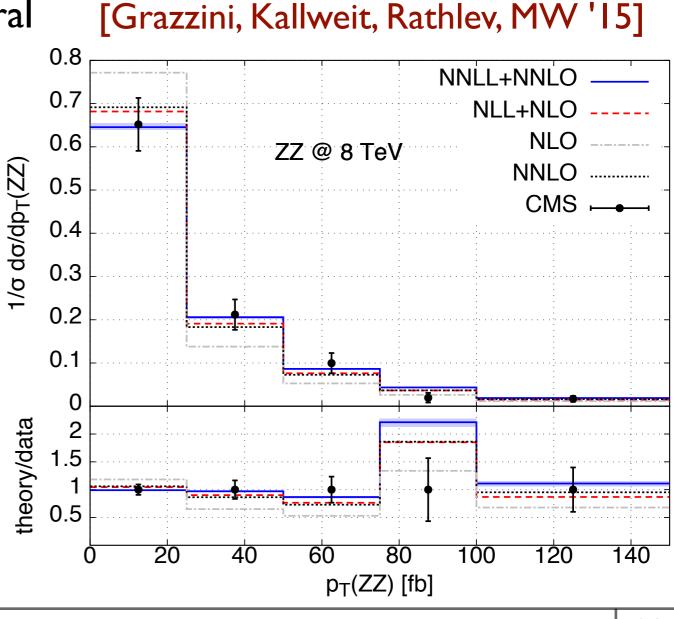
- [®] p_T = transverse momentum of Born-level system, eg: $p_{T,4\ell}$ in $pp \rightarrow ZZ \rightarrow 4\ell$
- Why resummation? Observable divergent for $p_T \rightarrow 0$ at fixed order!
- p_T subtraction $\leftrightarrow p_T$ resummation: all NNLO directly also at NNLL

$$d\sigma_{\rm NNLO} = \left[d\sigma_{\rm NLO}^{F+1\rm jet} - \Sigma_{\rm NNLO} \otimes d\sigma_{\rm LO} \right] + \mathcal{H}_{\rm NNLO} \otimes d\sigma_{\rm LO}$$

Status of p_T resummation

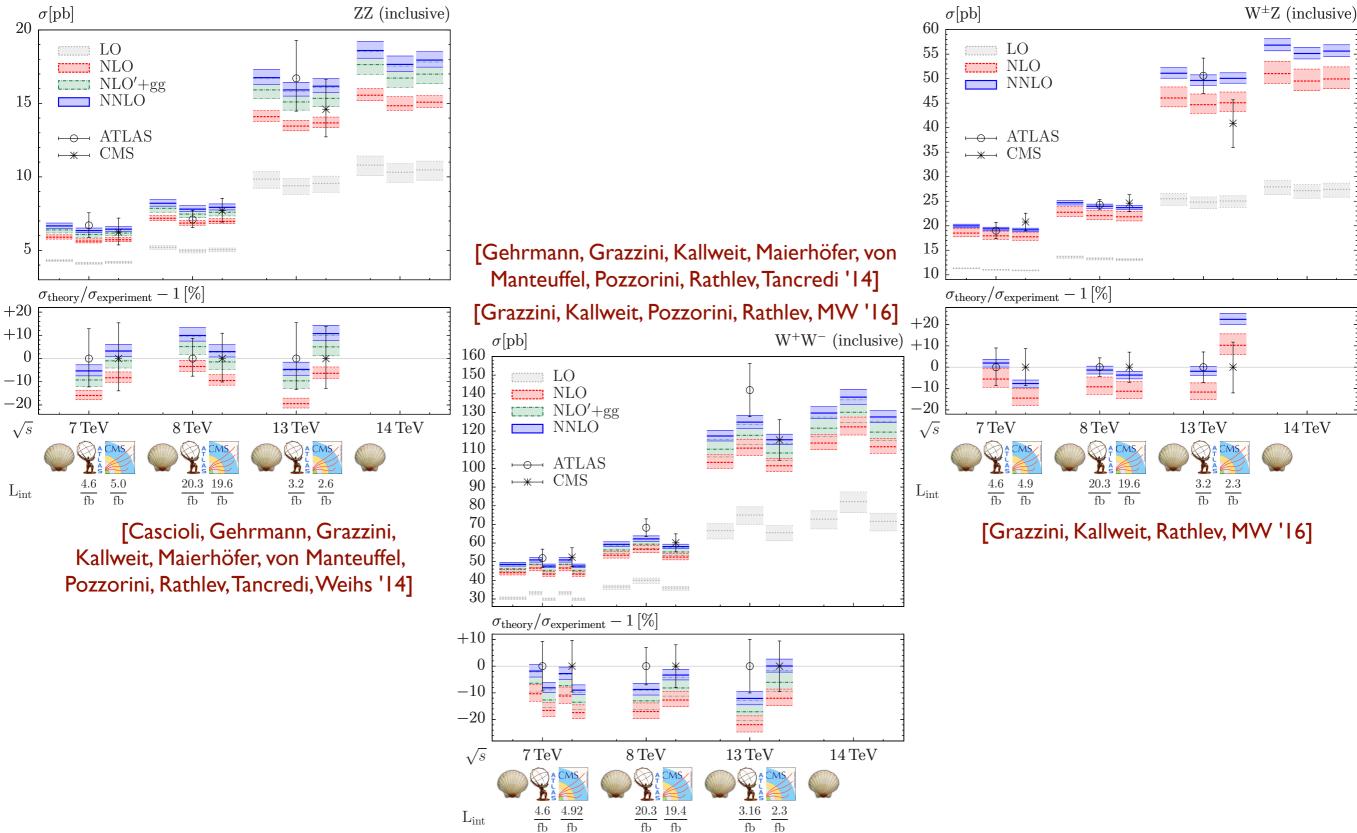
- CERN
- [®] p_T = transverse momentum of Born-level system, eg: p_{T,4}ℓ in pp→ZZ→4ℓ
- Why resummation? Observable divergent for $p_T \rightarrow 0$ at fixed order!
- p_T subtraction $\leftrightarrow p_T$ resummation: all NNLO directly also at NNLL

$$d\sigma_{\rm NNLO} = \left[d\sigma_{\rm NLO}^{F+1\rm jet} - \Sigma_{\rm NNLO} \otimes d\sigma_{\rm LO} \right] + \mathcal{H}_{\rm NNLO} \otimes d\sigma_{\rm LO}$$
$$\frac{d\sigma^{\rm (res)}}{dp_T^2 \, dy \, dM \, d\Omega} \sim \int db \, \frac{b}{2} \, J_0(b \, p_T) \, S(b, A, B) \, \mathcal{H}_{N_1, N_2} \, f_{N_1} \, f_{N_2}$$


$$\int dp_T^2 \, \frac{d\sigma^{(\rm res)}}{dp_T^2 \, dy \, dM \, d\Omega} = \mathcal{H} \otimes d\sigma_{\rm LO}$$

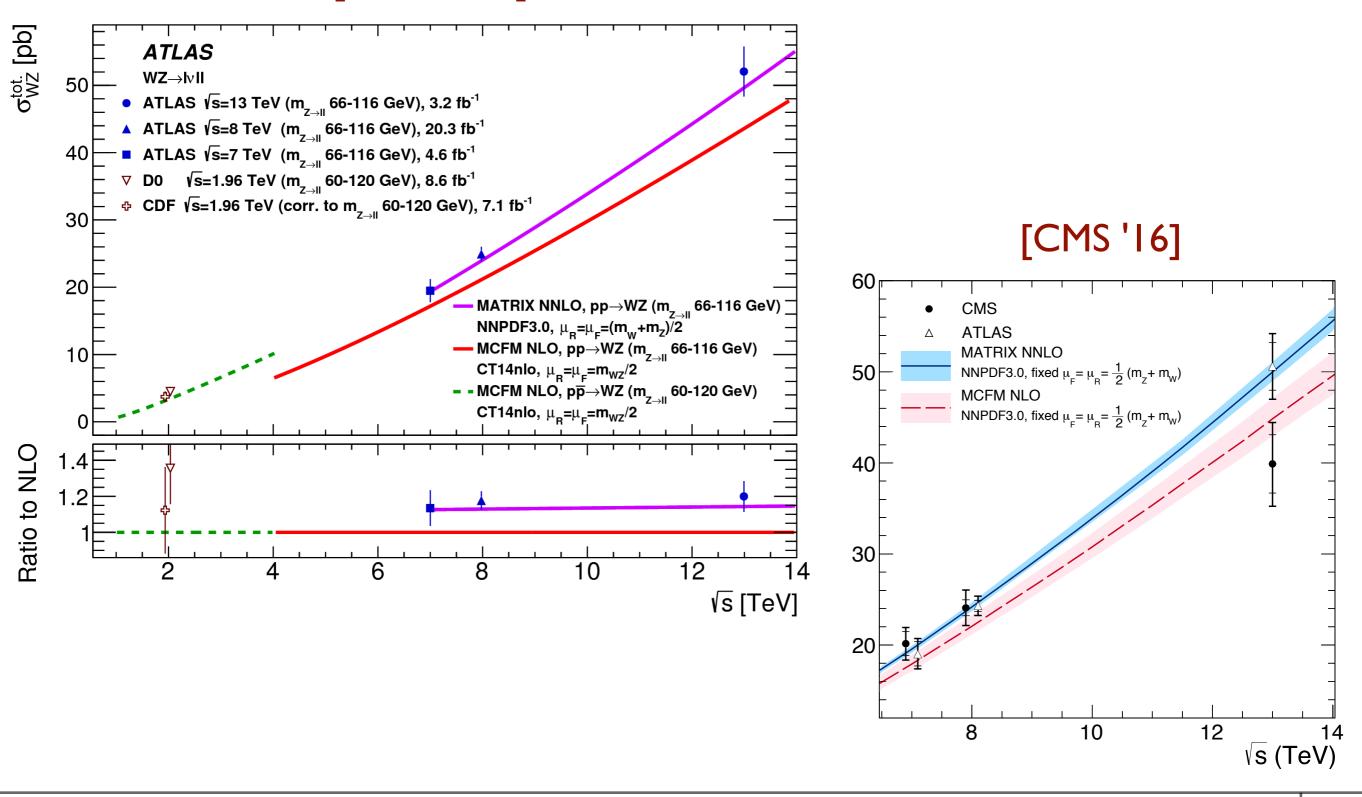
Status of p_T resummation

- [®] p_T = transverse momentum of Born-level system, eg: p_{T,4}ℓ in pp→ZZ→4ℓ
- Why resummation? Observable divergent for p⊤→0 at fixed order!
- [®] **p**T subtraction \leftrightarrow **p**T resummation: all NNLO directly also at NNLL
- currently restricted to a charge-neutral final-state system (ie, no W and WZ)
- will **not** be included in first public version (due to lack of testing time)

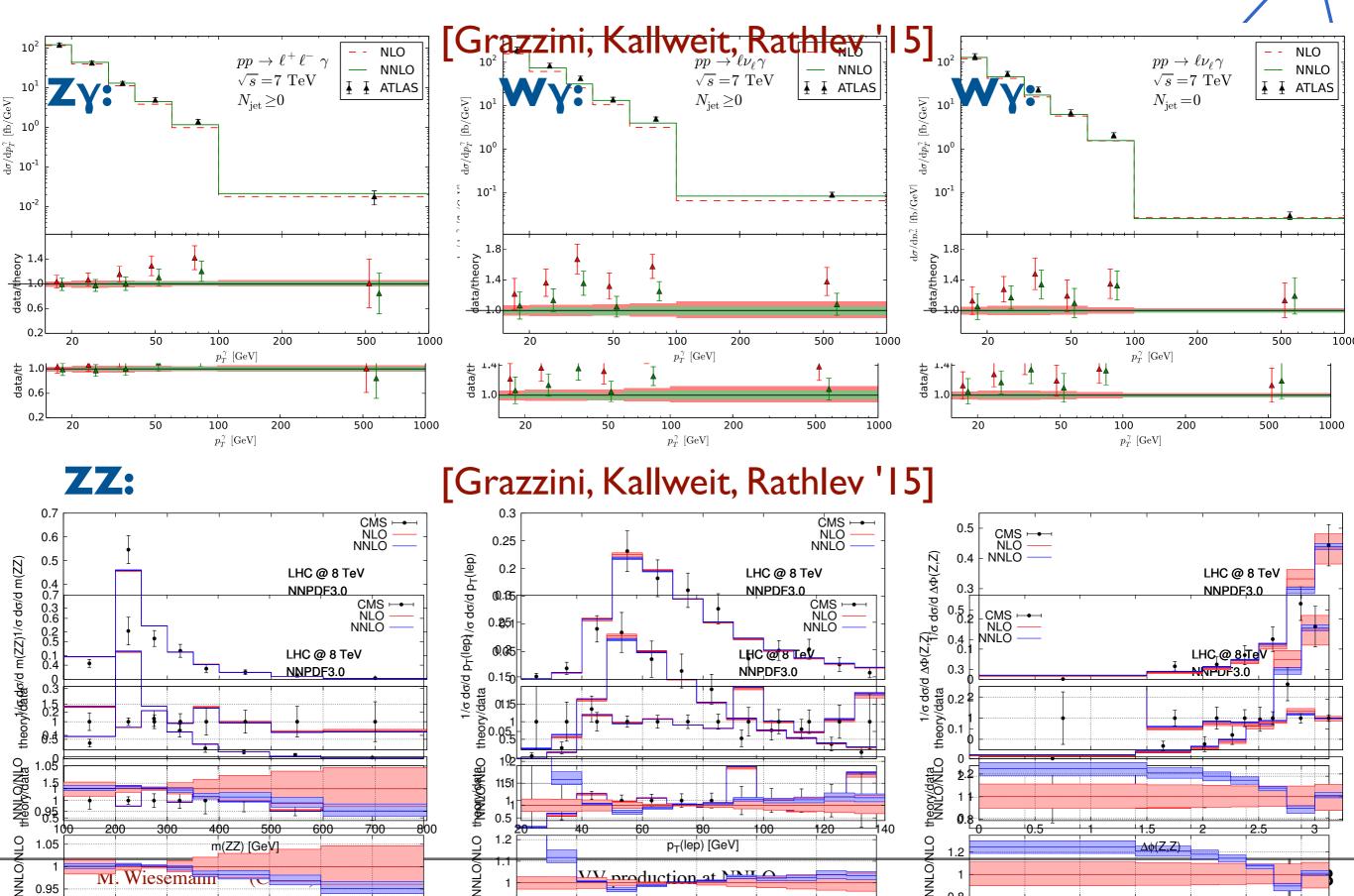

first application to on-shell WW/ZZ

Physics results

Inclusive diboson results: NNLO vs data



VV production at NNLO


Inclusive diboson results: NNLO vs data

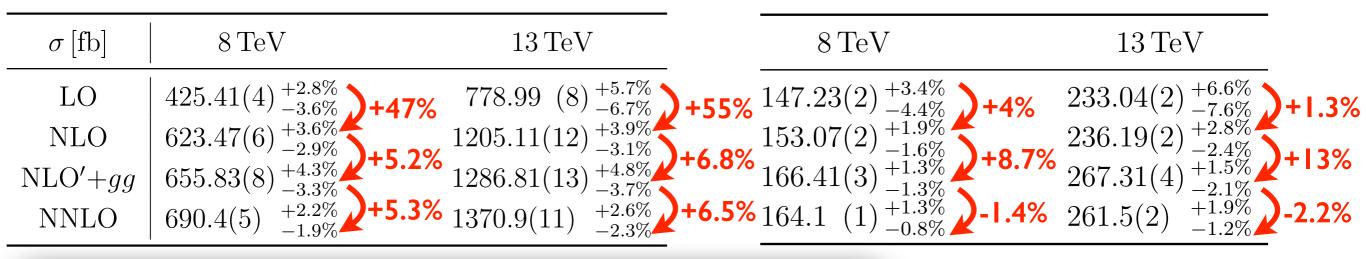
[ATLAS '16]

Differential diboson results: NNLO vs data

σ [fb]	8 TeV	$13\mathrm{TeV}$	$8\mathrm{TeV}$	$13\mathrm{TeV}$
LO	$ 425.41(4) {}^{+2.8\%}_{-3.6\%}$	$778.99~(8){}^{+5.7\%}_{-6.7\%}$	$\overline{147.23(2)}^{+3.4\%}_{-4.4\%}$	$233.04(2)^{+6.6\%}_{-7.6\%}$
NLO	$623.47(6)^{+3.6\%}_{-2.9\%}$	$1205.11(12) {}^{+3.9\%}_{-3.1\%}$	$153.07(2) {}^{+1.9\%}_{-1.6\%}$	$236.19(2)_{-2.4\%}^{+2.8\%}$ $267.31(4)_{-2.1\%}^{+1.5\%}$
NLO'+gg	$655.83(8)^{+4.3\%}_{-3.3\%}$	$1286.81(13) {}^{+4.8\%}_{-3.7\%}$	$166.41(3)^{+1.3\%}_{-1.3\%}$	$267.31(4) {}^{+1.5\%}_{-2.1\%}$
NNLO	$690.4(5) + 2.2\% \\ -1.9\%$	$1370.9(11) \ {}^{+2.6\%}_{-2.3\%}$	164.1 (1) $^{+1.3\%}_{-0.8\%}$	$261.5(2) \ {}^{+1.9\%}_{-1.2\%}$

NLO'+gg = NLO+gg BOTH with NNLO PDFs

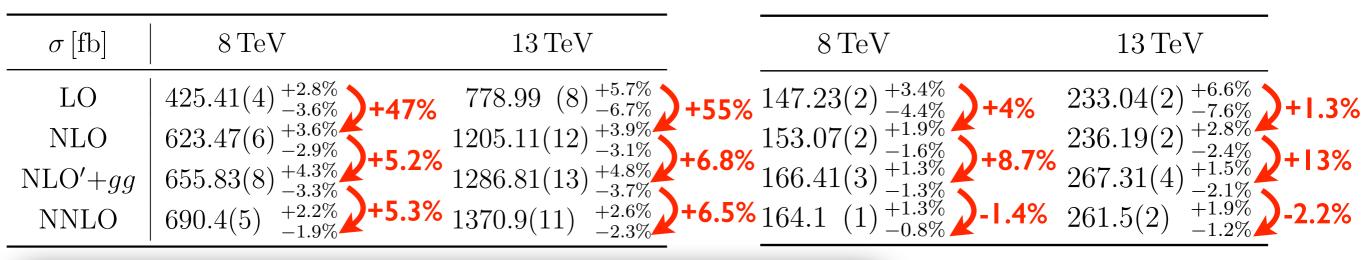
$A = \sigma^{\rm cuts} / \sigma^{\rm inclusive}$	8 TeV	$13\mathrm{TeV}$
LO	$ \begin{vmatrix} 0.34608(7)^{+0.6\%}_{-0.7\%} \\ 0.24552(5)^{+4.4\%}_{-4.7\%} \\ 0.25374(7)^{+3.5\%}_{-3.7\%} \end{vmatrix} $	$\begin{array}{c} 0.29915(6)^{+0.8\%}_{-1.0\%} \\ 0.19599(4)^{+4.4\%}_{-4.7\%} \\ 0.20773(5)^{+3.2\%}_{-3.1\%} \end{array}$
NLO	$0.24552(5)^{+4.4\%}_{-4.7\%}$	$0.19599(4)^{+4.4\%}_{-4.7\%}$
NLO'+gg	$0.25374(7)^{+3.5\%}_{-3.7\%}$	$0.20773(5)^{+3.2\%}_{-3.1\%}$
NNLO	$\left \begin{array}{c} 0.2378(4) \\ -0.9\% \end{array} \right ^{+1.3\%}$	$0.1907(3) \ {}^{+1.2\%}_{-0.9\%}$



σ [fb]	$8\mathrm{TeV}$	$13\mathrm{TeV}$		8 TeV	$13\mathrm{TeV}$
LO	$425.41(4)^{+2.8\%}_{-3.6\%}$	+47% 778.99 $(8)^{+5.7\%}_{-6.7\%}$	+55%	$147.23(2)^{+3.4\%}_{-4.4\%}$	$233.04(2)^{+6.6\%}_{-7.6\%}$
NLO	623.47(6) + 3.6%	1205.11(12) + 3.9%	Τζ Ο0/	$153.07(2)^{+1.9\%}_{-1.6\%}$	$236.19(2)_{-2.4\%}^{+2.8\%}$
NLO'+gg	$ 055.83(8) \frac{1.5}{2.3\%}$	$+5.2\%$ 1286.81(13) $^{+4.8\%}_{-3.7\%}$	+0.0 /0	$166.41(3)^{+1.3\%}_{-1.3\%}$	$267.31(4)^{+1.5\%}_{-2.1\%}$
NNLO	$690.4(5) \begin{array}{c} +2.2\% \\ -1.9\% \end{array}$	+5.3% $1370.9(11)$ +2.6% -2.3%	+6.5%	164.1 (1) $^{+1.3\%}_{-0.8\%}$	$261.5(2) \ {}^{+1.9\%}_{-1.2\%}$

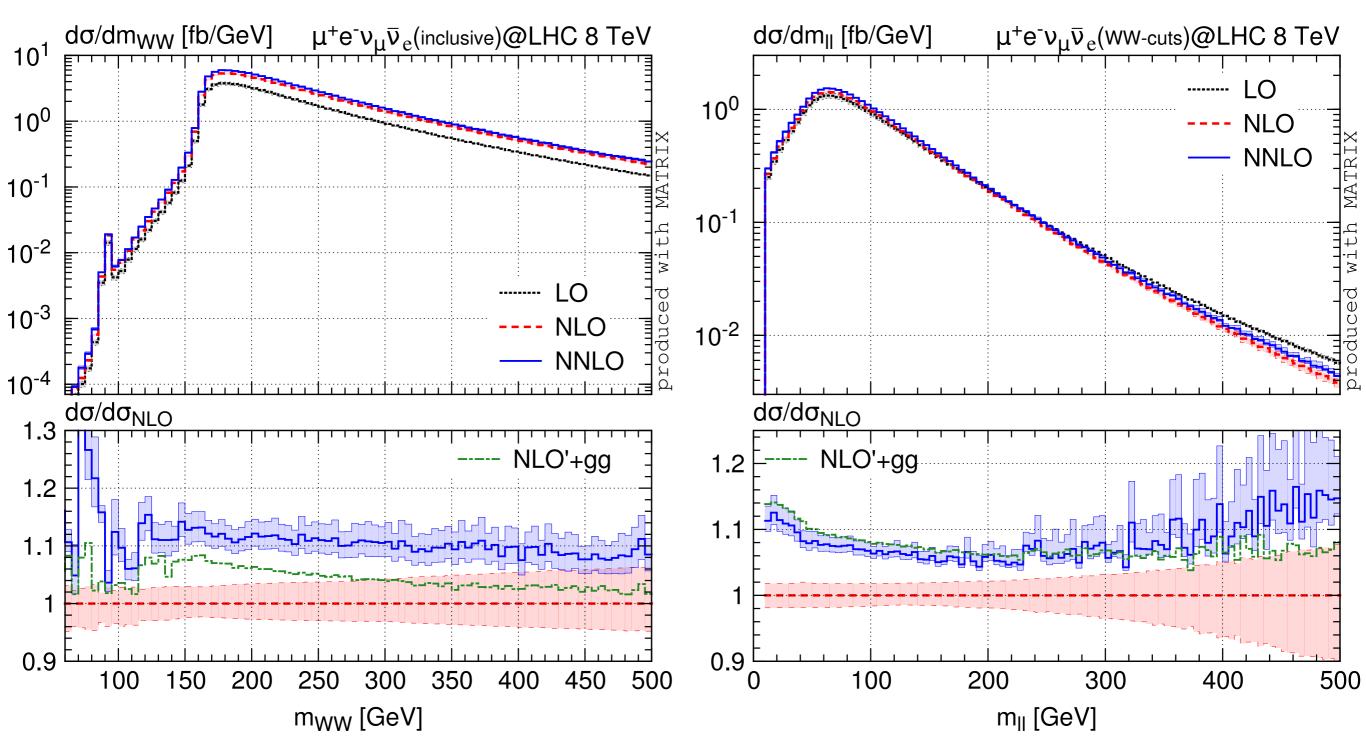
NLO'+gg = NLO+gg BOTH with NNLO PDFs

$A = \sigma^{\rm cuts} / \sigma^{\rm inclusive}$	8 TeV	$13\mathrm{TeV}$
LO	$\begin{vmatrix} 0.34608(7)^{+0.6\%}_{-0.7\%} \\ 0.24552(5)^{+4.4\%}_{-4.7\%} \\ 0.25374(7)^{+3.5\%}_{-3.7\%} \end{vmatrix}$	$\begin{array}{c} 0.29915(6)^{+0.8\%}_{-1.0\%} \\ 0.19599(4)^{+4.4\%}_{-4.7\%} \\ 0.20773(5)^{+3.2\%}_{-3.1\%} \end{array}$
NLO	$0.24552(5)^{+4.4\%}_{-4.7\%}$	$0.19599(4)^{+4.4\%}_{-4.7\%}$
NLO'+gg	$0.25374(7)^{+3.5\%}_{-3.7\%}$	$0.20773(5)^{+3.2\%}_{-3.1\%}$
NNLO	$0.2378(4) + 1.3\% \\ -0.9\%$	$0.1907(3) \ {}^{+1.2\%}_{-0.9\%}$



NLO'+gg = NLO+gg BOTH with NNLO PDFs

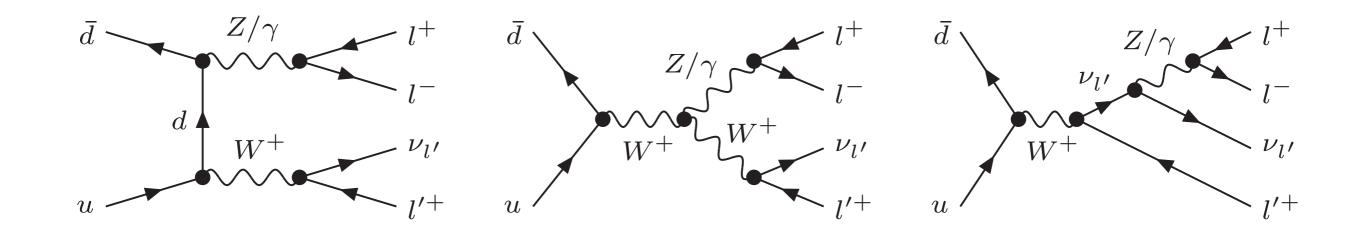
$A = \sigma^{\rm cuts} / \sigma^{\rm inclusive}$	8 TeV	$13\mathrm{TeV}$
LO	$ \begin{vmatrix} 0.34608(7)^{+0.6\%}_{-0.7\%} \\ 0.24552(5)^{+4.4\%}_{-4.7\%} \\ 0.25374(7)^{+3.5\%}_{-3.7\%} \end{vmatrix} $	$\begin{array}{c} 0.29915(6)^{+0.8\%}_{-1.0\%} \\ 0.19599(4)^{+4.4\%}_{-4.7\%} \\ 0.20773(5)^{+3.2\%}_{-3.1\%} \end{array}$
NLO	$0.24552(5)^{+4.4\%}_{-4.7\%}$	$0.19599(4)^{+4.4\%}_{-4.7\%}$
NLO'+gg	$0.25374(7)^{+3.5\%}_{-3.7\%}$	$0.20773(5)^{+3.2\%}_{-3.1\%}$
NNLO	$0.2378(4) + 1.3\% \\ -0.9\%$	$0.1907(3) \ {}^{+1.2\%}_{-0.9\%}$


NLO'+gg = NLO+gg BOTH with NNLO PDFs

$A = \sigma^{\rm cuts} / \sigma^{\rm inclusive}$	8 TeV	$13\mathrm{TeV}$
LO	$ \begin{vmatrix} 0.34608(7)^{+0.6\%}_{-0.7\%} \\ 0.24552(5)^{+4.4\%}_{-4.7\%} \\ 0.25374(7)^{+3.5\%}_{-3.7\%} \\ +1.0\% \end{vmatrix} + 29\% $	$\begin{array}{c} 0.29915(6)^{+0.8\%}_{-1.0\%} \\ 0.19599(4)^{+4.4\%}_{-4.7\%} \\ 0.20773(5)^{+3.2\%}_{-3.1\%} \end{array} + 6\%$
NLO	$0.24552(5)^{+4.4\%}_{-4.7\%}$	$0.19599(4)^{+4.4\%}_{-4.7\%}$
NLO'+gg	$0.25374(7)^{+3.5\%}_{-3.7\%}$	$0.20773(5)^{+3.2\%}_{-3.1\%}$
NNLO	$0.2378(4) \stackrel{-3.7\%}{+1.3\%} -6.3\%$	$0.1907(3) \stackrel{+1.2\%}{_{-0.9\%}}$ -8.2%

Differential diboson results: WW at NNLO [Grazzini, Kallweit, Pozzorini, Rathlev, MW '16]

inclusive


WW cuts

WZ fully differential at NNLO

[Grazzini, Kallweit, MW]

- no loop-induced gg component at NNLO
- Large QCD corrections due to radiation zero [Baur, Han, Ohnemus '94]
 - → Large (~10%) NNLO corrections found for inclusive cross section [Grazzini, Kallweit Rathlev, MW '16]
- $^{\circ}$ access to trilinear gauge coupling \rightarrow relevance for BSM physics
- Diboson processes at NNLO completed!

WZ fully differential at NNLO

[Grazzini, Kallweit, MW]

various channels:

SM measurements

different-flavor (DF) channels

 $pp \rightarrow \mu^+ \nu_\mu e^+ e^-$, $pp \rightarrow e^+ \nu_e \mu^+ \mu^-$ (identical for massless fermions)

 $pp \rightarrow \mu^{-} \nu_{\mu} e^{+} e^{-}$, $pp \rightarrow e^{-} \nu_{e} \mu^{+} \mu^{-}$ (identical for massless fermions)

same-flavor (SF) channels

 $pp \rightarrow e^+ v_e e^+ e^-$, $pp \rightarrow \mu^+ v_\mu \mu^+ \mu^-$ (identical for massless fermions)

 $pp \rightarrow e^{-}v_{e} e^{+}e^{-}$, $pp \rightarrow \mu^{-}v_{\mu} \mu^{+}\mu^{-}$ (identical for massless fermions)

[⊗] fiducial phase space (ATLAS/CMS) for $pp \rightarrow l'v_{l'}II$ (I,l' \in {e,µ})

Z/W reconstruction: trivial for DF; CMS: Z=lepton pair closest to m_Z, ATLAS: "resonant shape" for SF
[arXiv:1603.02151]

for all possible combinations of pairs $W=(I',v_{I'})$ and $Z=(I^+,I^-)$ compute

$$P = \left| \frac{1}{m_{(\ell^+,\ell^-)}^2 - (m_Z^{\text{PDG}})^2 + i \, \Gamma_Z^{\text{PDG}} \, m_Z^{\text{PDG}}} \right|^2 \times \left| \frac{1}{m_{(\ell',\nu_{\ell'})}^2 - (m_W^{\text{PDG}})^2 + i \, \Gamma_W^{\text{PDG}} \, m_W^{\text{PDG}}} \right|^2$$

and identify W and Z bosons by combination with highest estimator value ${\sf P}$

WZ fully differential at NNLO [Grazzini, Kallweit, MW]

[Grazzini, Kallweit, Pi

various channels:

SM measurements

different-flavor (DF) channels

 $pp \rightarrow \mu^+ \nu_\mu e^+ e^-$, $pp \rightarrow e^+ \nu_e \mu^+ \mu^-$ (identical for massless fermions)

 $pp \rightarrow \mu^{-} \nu_{\mu} e^{+} e^{-}$, $pp \rightarrow e^{-} \nu_{e} \mu^{+} \mu^{-}$ (identical for massless fermions)

same-flavor (SF) channels

 $pp \rightarrow e^+ v_e e^+ e^-$, $pp \rightarrow \mu^+ v_\mu \mu^+ \mu^-$ (identical for massless fermions)

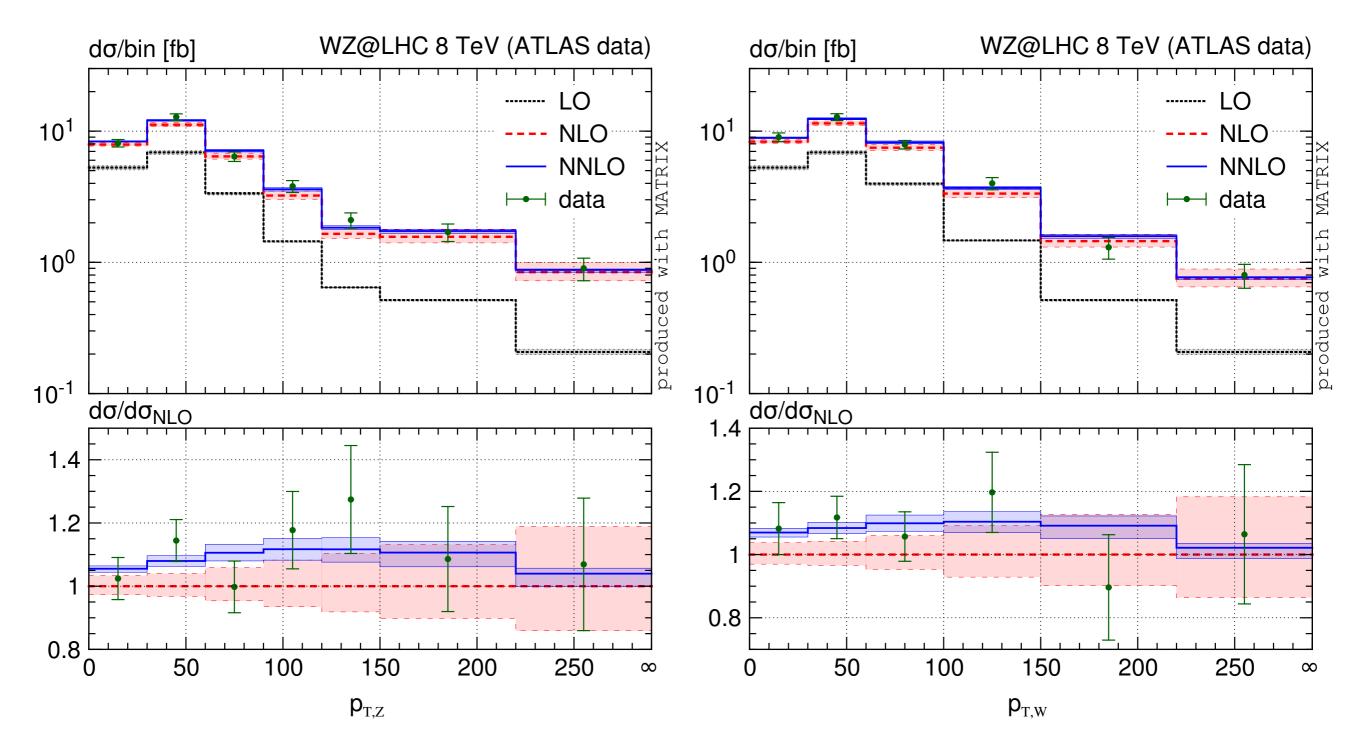
 $pp \rightarrow e^{-}v_{e} e^{+}e^{-}$, $pp \rightarrow \mu^{-}v_{\mu} \mu^{+}\mu^{-}$ (identical for massless fermions)

[⊗] fiducial phase space (ATLAS/CMS) for $pp \rightarrow l'v_{l'}II$ (I,l' \in {e,µ})

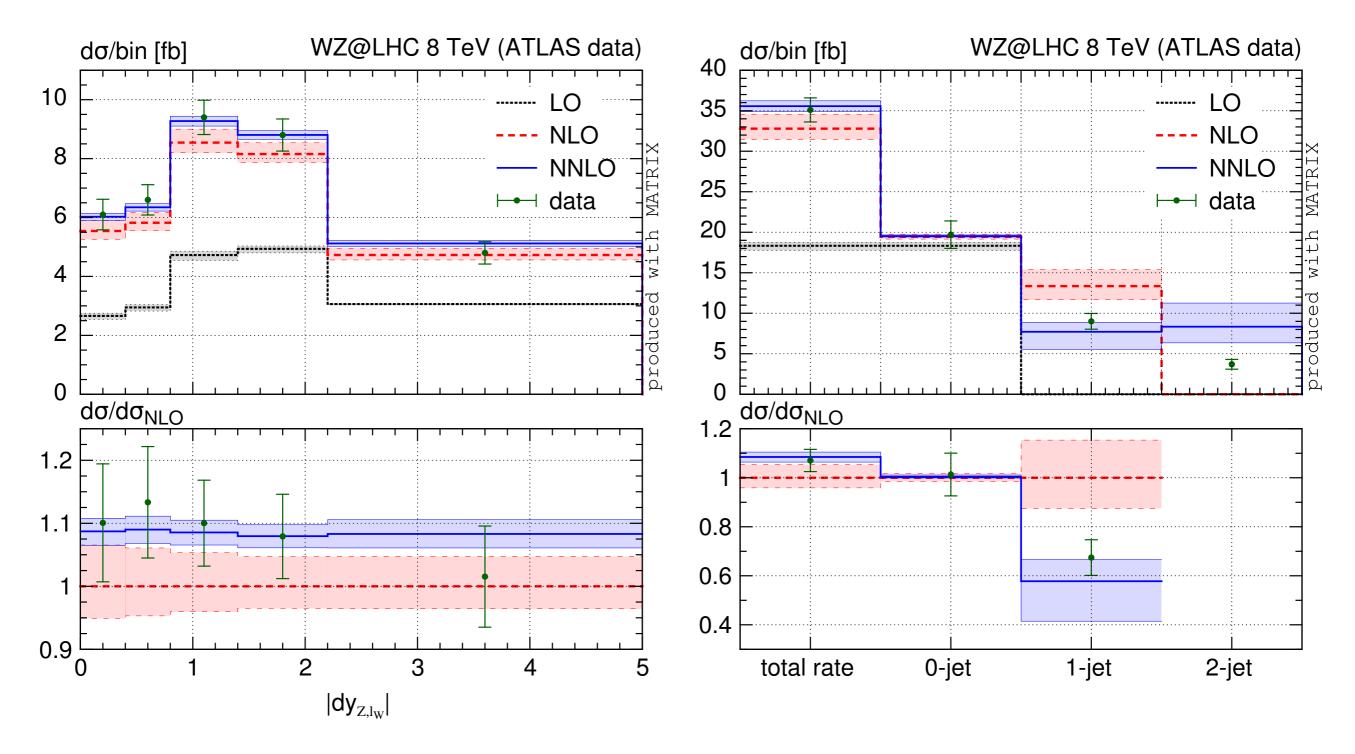
Z/W reconstruction: trivial for DF; CMS: Z=lepton pair closest to m_Z, ATLAS: "resonant shape" for SF

	definition of the fiducial volume for $pp \to \ell_{\rm w}^{\pm} \nu_{\ell_{\rm w}} \ell_{\rm z}^{+} \ell_{\rm z}^{-}, \ell, \ell_{\rm w}, \ell_{\rm z} \in \{e, \mu\}$
ATLAS $8/13$ TeV	$p_{T,\ell_z} > 15 \text{GeV}, p_{T,\ell_w} > 20 \text{GeV}, \eta_\ell < 2.5,$
(cf. Ref. $[5, 6]$)	$ m_{\ell_{z}\ell_{z}} - m_{Z} < 10 \text{GeV}, m_{T,W} > 30 \text{GeV}, \Delta R_{\ell_{z}\ell_{z}} > 0.2, \Delta R_{\ell_{z}\ell_{w}} > 0.3$
CMS 13 TeV	$p_{T,\ell_{z,1}} > 20 \text{GeV}, p_{T,\ell_{z,2}} > 10 \text{GeV}, p_{T,\ell_w} > 20 \text{GeV}, \eta_{\ell} < 2.5,$
(cf. Ref. [7])	$60 \mathrm{GeV} < m_{\ell_z \ell_z} < 120 \mathrm{GeV}, m_{\ell^+ \ell^-} > 4 \mathrm{GeV}$

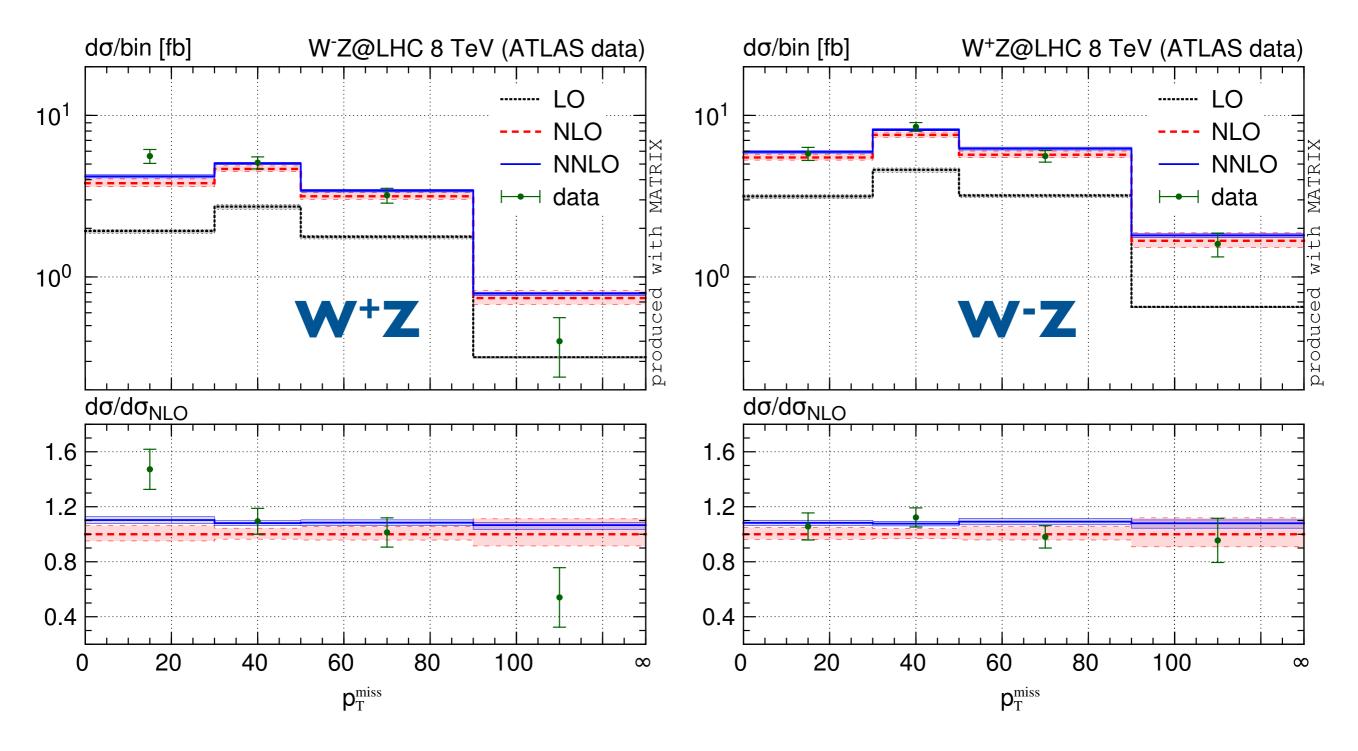
WZ fully differential at NNLO [Grazzini, Kallweit, MW]


	$\mu^{\pm}e^{+}e^{-}$			4 1 907	$36.3 \pm 5.4\%$ (stat) $\pm 2.6\%$ (syst) $\pm 2.2\%$ (lumi)
	$e^{\pm}\mu^{+}\mu^{-}$	$18.32(0)^{+2.3\%}_{-3.2\%}$	$32.76(1)^{+5.4\%}_{-4.1\%}$	$35.53(2)^{+1.8\%}_{-1.9\%}$	$35.7 \pm 5.3\%$ (stat) $\pm 3.7\%$ (syst) $\pm 2.2\%$ (lumi)
ATLAS (8 TeV):	$e^{\pm}e^{+}e^{-}$	19.27(0)+2.3%	22 $85(1)+5.4\%$	$35.64(2)^{+1.8\%}_{-1.9\%}$	$38.1 \pm 6.2\%$ (stat) $\pm 4.5\%$ (syst) $\pm 2.2\%$ (lumi)
	$\mu^{\pm}\mu^{+}\mu^{-}$	$\mu^{\pm}\mu^{+}\mu^{-}$ 10.37(0) _{-3.2%}		55.04(2) - 1.9%	$33.3 \pm 4.7\%$ (stat) $\pm 2.5\%$ (syst) $\pm 2.2\%$ (lumi)
	combined	$18.35(0)^{+2.3\%}_{-3.2\%}$	$32.81(1)^{+5.4\%}_{-4.1\%}$	$35.59(2)^{+1.8\%}_{-1.9\%}$	$35.1 \pm 2.7\%$ (stat) $\pm 2.4\%$ (syst) $\pm 2.2\%$ (lumi)
		$28\ 83(0)^{+5.4\%}$	$57.69(1)^{+5.4\%}$		
	$\mu^{\pm}e^{+}e^{-}$	$28.83(0)^{+5.4\%}_{-5.5\%}$	$57.69(1)^{+5.4\%}$	$63.93(3)^{+2.3\%}_{-2.1\%}$	$55.1 \pm 11.1\%$ (stat) $\pm 5.1\%$ (syst) $\pm 2.4\%$ (lumi)
	$\mu^{\pm}e^{+}e^{-}$ $e^{\pm}\mu^{+}\mu^{-}$	$28.83(0)^{+5.4\%}_{-6.5\%}$	$57.69(1)^{+5.4\%}_{-4.3\%}$	$63.93(3)^{+2.3\%}_{-2.1\%}$	$55.1 \pm 11.1\%(\text{stat}) \pm 5.1\%(\text{syst}) \pm 2.4\%(\text{lumi})$ $75.2 \pm 9.5\%(\text{stat}) \pm 5.3\%(\text{syst}) \pm 2.3\%(\text{lumi})$
ATLAS (13 TeV):	$\mu^{\pm}e^{+}e^{-}$ $e^{\pm}\mu^{+}\mu^{-}$ $e^{\pm}e^{+}e^{-}$				
ATLAS (I3 TeV):	$e^{\pm}\mu^{+}\mu^{-}$	$28.83(0)^{+5.4\%}_{-6.5\%}$ $28.90(0)^{+5.4\%}_{-6.5\%}$			$75.2 \pm 9.5\%$ (stat) $\pm 5.3\%$ (syst) $\pm 2.3\%$ (lumi)
ATLAS (I3 TeV):	$e^{\pm}\mu^{+}\mu^{-}$ $e^{\pm}e^{+}e^{-}$ $\mu^{\pm}\mu^{+}\mu^{-}$		$57.84(1)^{+5.4\%}_{-4.3\%}$	$64.09(3)^{+2.2\%}_{-2.1\%}$	$75.2 \pm 9.5\%$ (stat) $\pm 5.3\%$ (syst) $\pm 2.3\%$ (lumi) $50.5 \pm 14.2\%$ (stat) $\pm 10.6\%$ (syst) $\pm 2.4\%$ (lumi)
ATLAS (I3 TeV):	$e^{\pm}\mu^{+}\mu^{-}$ $e^{\pm}e^{+}e^{-}$ $\mu^{\pm}\mu^{+}\mu^{-}$	$28.90(0)^{+5.4\%}_{-6.5\%}$	$57.84(1)^{+5.4\%}_{-4.3\%}$	$64.09(3)^{+2.2\%}_{-2.1\%}$	$75.2 \pm 9.5\%(\text{stat}) \pm 5.3\%(\text{syst}) \pm 2.3\%(\text{lumi})$ $50.5 \pm 14.2\%(\text{stat}) \pm 10.6\%(\text{syst}) \pm 2.4\%(\text{lumi})$ $63.6 \pm 8.9\%(\text{stat}) \pm 4.1\%(\text{syst}) \pm 2.3\%(\text{lumi})$

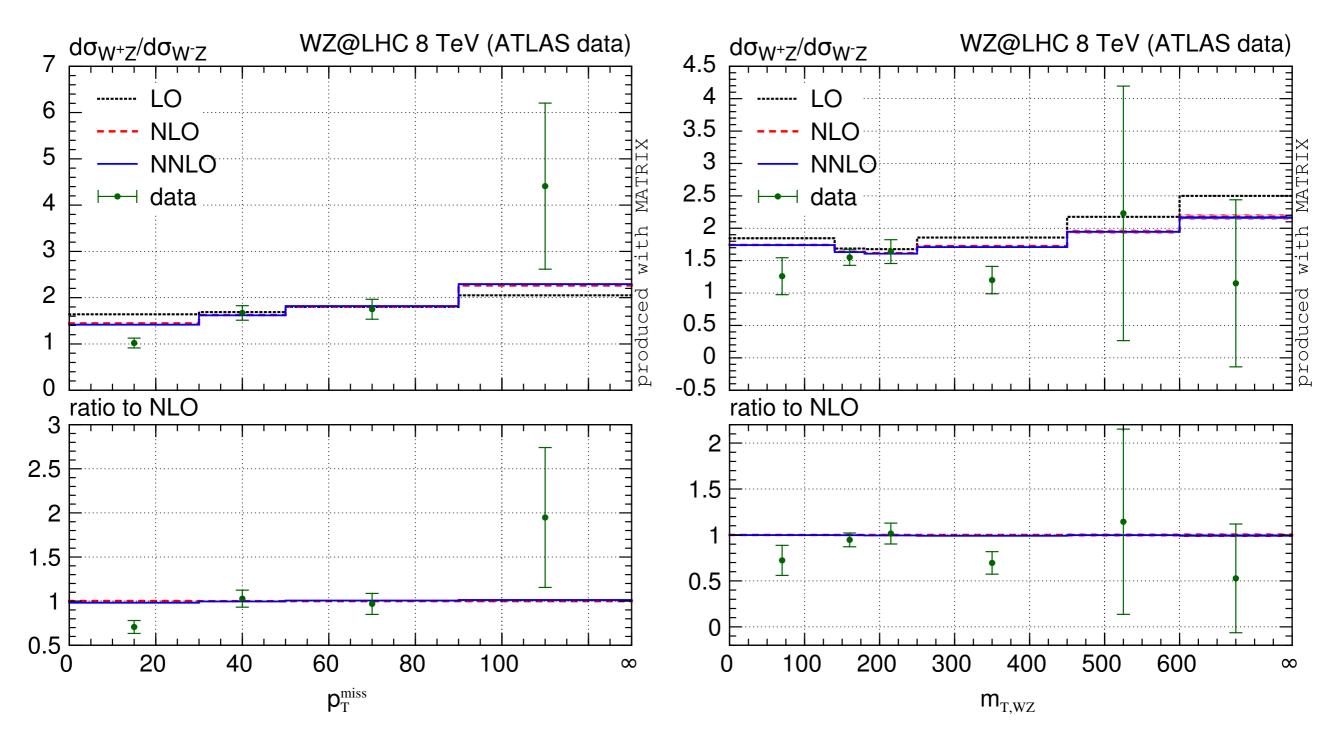
channel	$\sigma_{\rm LO}$ [fb]	$\sigma_{\rm NLO}$ [fb]	$\sigma_{\rm NNLO}$ [fb]	$\sigma_{\rm CMS}$ [fb]
combined	$148.4(0)^{+5.4\%}_{-6.4\%}$	$301.4(1)^{+5.5\%}_{-4.5\%}$	$334.3(2)^{+2.3\%}_{-2.1\%}$	$258 \pm 8.1\%(\text{stat})^{+7.4\%}_{-7.7\%}(\text{syst}) \pm 3.1(\text{lumi})$



WZ fully differential at NNLO [Grazzini, Kallweit, MW]



WZ fully differential at NNLO


[Grazzini, Kallweit, MW]

[Grazzini, Kallweit, MW]

WZ fully differential at NNLO [Grazzini, Kallweit, MW]

New-physics searches inspired by [CMS-PAS-SUS-16-024]

	definition of the selection cuts for $pp \to \ell_{\rm w}^{\pm} \nu_{\ell_{\rm w}} \ell_{\rm z}^{\pm} \ell_{\rm z}^{-}, \ell, \ell_{\rm z}, \ell_{\rm w} \in \{e, \mu\}$
CMS 13 TeV	$p_{T,\ell_1} > 25(20) \text{ GeV if } \ell_1 = e(\mu), p_{T,\ell_1} > 25 \text{ GeV if } \ell_1 = \mu \text{ and } \ell_{\geq 2} \neq \mu$
(cf. Ref. [63])	$p_{T,\ell_{\geq 2}} > 15(10) \text{GeV} \text{ if } \ell_{\geq 2} = e(\mu), \eta_e < 2.5, \eta_\mu < 2.4,$
	$ m_{3\ell} - m_Z > 15 \text{GeV}, m_{\ell^+\ell^-} > 12 \text{GeV}$

Category I:	no additional cut
Category II:	$p_T^{\rm miss} > 200 {\rm GeV}$
Category III:	$m_{T,W} > 120 \mathrm{GeV}$
Category IV:	$m_{\ell_z \ell_z} > 105 \mathrm{GeV}$

New-physi	ics searches	channel	$\sigma_{\rm LO}$ [fb]	$\sigma_{\rm NLO}$ [fb]	$\sigma_{\rm NNLO}$ [fb]	$\sigma_{ m NLO}/\sigma_{ m LO}$	$\sigma_{\rm NNLO}/\sigma_{\rm NLO}$ [fb]
				Cat	tegory I		
Category I:	no additional cut	$\ell'^+\ell^+\ell^-$	$49.45(0)^{+4.9\%}_{-5.8\%}$	$94.12(2)^{+4.8\%}_{-3.9\%}$	$105.9(1)^{+2.3\%}_{-2.2\%}$	90.3%	12.6%
Category II:	$p_T^{\rm miss} > 200 {\rm GeV}$	$\ell^+\ell^+\ell^-$	$48.97(0)^{+4.8\%}_{-5.8\%}$	$93.13(2)^{+4.8\%}_{-3.9\%}$	$104.7(1)^{+2.2\%}_{-2.1\%}$	90.2%	12.4%
Category III:	$m_{T,W} > 120 \mathrm{GeV}$	$\ell'^-\ell^+\ell^-$	$32.04(0)^{+5.3\%}_{-6.3\%}$	$63.68(3)^{+5.0\%}_{-4.1\%}$	$71.89(4)^{+2.3\%}_{-2.2\%}$	98.7%	12.9%
	,	$\ell^-\ell^+\ell^-$	$31.74(0)^{+5.3\%}_{-6.3\%}$	$63.00(2)^{+5.0\%}_{-4.1\%}$	$71.13(4)^{+2.2\%}_{-2.2\%}$	98.5%	12.9%
Category IV:	$m_{\ell_z \ell_z} > 105 \mathrm{GeV}$	combined	$162.2(0)^{+5.0\%}_{-6.0\%}$	$313.9(1)^{+4.9\%}_{-4.0\%}$	$353.7(3)^{+2.2\%}_{-2.2\%}$	93.5%	12.7%
				Cat	egory II		
		$\ell'^+\ell^+\ell^-$	$0.3482(0)^{+2.8\%}_{-2.8\%}$	$1.456(0)^{+13\%}_{-11\%}$	$1.799(1)^{+5.2\%}_{-5.4\%}$	318%	23.6%
		$\ell^+\ell^+\ell^-$	$0.3486(0)^{+2.8\%}_{-2.8\%}$	$1.452(0)^{+13\%}_{-11\%}$	$1.789(1)^{+5.1\%}_{-5.4\%}$	316%	23.2%
		$\ell'^-\ell^+\ell^-$	$0.1644(0)^{+2.6\%}_{-2.7\%}$	$0.5546(1)^{+12\%}_{-9.9\%}$	$0.6631(4)^{+4.3\%}_{-4.8\%}$	237%	19.6%
		$\ell^-\ell^+\ell^-$	$0.1645(0)^{+2.6\%}_{-2.7\%}$	$0.5535(1)^{+12\%}_{-9.9\%}$	$0.6600(3)^{+4.2\%}_{-4.7\%}$	237%	19.2%
		combined	$1.026(0)^{+2.7\%}_{-2.8\%}$	$4.015(1)^{+13\%}_{-10\%}$	$4.911(3)^{+4.9\%}_{-5.2\%}$	292%	22.3%
				Cate	egory III		
		$\ell'^+\ell^+\ell^-$	$0.3642(0)^{+1.5\%}_{-2.2\%}$	$0.5909(1)^{+4.3\%}_{-3.3\%}$	$0.6373(16)^{+1.6\%}_{-1.6\%}$	62.3%	7.86%
		$\ell^+\ell^+\ell^-$	$1.090(0)^{+1.7\%}_{-2.4\%}$	$1.904(0)^{+4.8\%}_{-3.8\%}$	$2.071(2)^{+1.9\%}_{-1.9\%}$	74.7%	8.79%
		$\ell'^-\ell^+\ell^-$	$0.2055(0)^{+2.0\%}_{-2.8\%}$	$0.3447(1)^{+4.5\%}_{-3.4\%}$	$0.3731(9)^{+1.6\%}_{-1.7\%}$	67.8%	8.22%
		$\ell^-\ell^+\ell^-$	$0.6463(1)^{+2.1\%}_{-2.9\%}$	$1.136(0)^{+4.8\%}_{-3.7\%}$	$1.232(1)^{+1.7\%}_{-1.7\%}$	75.8%	8.42%
		combined	$2.306(0)^{+1.8\%}_{-2.5\%}$	$3.976(1)^{+4.7\%}_{-3.7\%}$	$4.313(6)^{+1.8\%}_{-1.8\%}$	72.4%	8.50%
				Cate	egory IV		
		$\ell'^+\ell^+\ell^-$	$2.500(0)^{+3.1\%}_{-3.9\%}$	$4.299(1)^{+4.1\%}_{-3.4\%}$	$4.682(2)^{+1.7\%}_{-1.6\%}$	72.0%	8.92%
		$\ell^+\ell^+\ell^-$	$2.063(0)^{+3.4\%}_{-4.2\%}$	$3.740(1)^{+4.5\%}_{-3.6\%}$	$4.160(2)^{+2.2\%}_{-2.0\%}$	81.3%	11.2%
		$\ell'^-\ell^+\ell^-$	$1.603(0)^{+3.4\%}_{-4.4\%}$	$2.805(1)^{+4.2\%}_{-3.5\%}$	$3.058(1)^{+1.7\%}_{-1.6\%}$	75.0%	9.01%
		$\ell^-\ell^+\ell^-$	$1.373(0)^{+3.8\%}_{-4.7\%}$	$2.591(1)^{+4.7\%}_{-3.9\%}$	$2.904(1)^{+2.2\%}_{-2.1\%}$	88.7%	12.1%

combined $7.540(1)^{+3.4\%}_{-4.2\%}$

 $13.44(0)^{+4.4\%}_{-3.6\%}$

 $14.80(1)^{+1.9\%}_{-1.8\%}$

78.2%

10.2%

New-physics searches

Category I:	no additional cut
Category II:	$p_T^{\rm miss} > 200 {\rm GeV}$
Category III:	$m_{T,W} > 120 \mathrm{GeV}$
Category IV:	$m_{\ell_{\rm z}\ell_{\rm z}} > 105{\rm GeV}$

QCD corrections VERY different for various Categories (cuts)

channel	$\sigma_{\rm LO}$ [fb]	$\sigma_{\rm NLO}$ [fb]	$\sigma_{\rm NNLO}$ [fb]	$\sigma_{ m NLO}/\sigma_{ m LO}$	$\sigma_{\rm NNLO}/\sigma_{\rm NLO}$ [fb]			
	Category I							
$\ell'^+\ell^+\ell^-$	$49.45(0)^{+4.9\%}_{-5.8\%}$	$94.12(2)^{+4.8\%}_{-3.9\%}$	$105.9(1)^{+2.3\%}_{-2.2\%}$	90.3%	12.6%			
$\ell^+\ell^+\ell^-$	$48.97(0)^{+4.8\%}_{-5.8\%}$	$93.13(2)^{+4.8\%}_{-3.9\%}$	$104.7(1)^{+2.2\%}_{-2.1\%}$	90.2%	12.4%			
$\ell'^-\ell^+\ell^-$	$32.04(0)^{+5.3\%}_{-6.3\%}$	$63.68(3)^{+5.0\%}_{-4.1\%}$	$71.89(4)^{+2.3\%}_{-2.2\%}$	98.7%	12.9%			
$\ell^-\ell^+\ell^-$	$31.74(0)^{+5.3\%}_{-6.3\%}$	$63.00(2)^{+5.0\%}_{-4.1\%}$	$71.13(4)^{+2.2\%}_{-2.2\%}$	98.5%	12.9%			
combined	$162.2(0)^{+5.0\%}_{-6.0\%}$	$313.9(1)^{+4.9\%}_{-4.0\%}$	$353.7(3)^{+2.2\%}_{-2.2\%}$	93.5%	12.7%			
Category II								
$\ell'^+\ell^+\ell^-$	$0.3482(0)^{+2.8\%}_{-2.8\%}$	$1.456(0)^{+13\%}_{-11\%}$	$1.799(1)^{+5.2\%}_{-5.4\%}$	318%	23.6%			
$\ell^+\ell^+\ell^-$	$0.3486(0)^{+2.8\%}_{-2.8\%}$	$1.452(0)^{+13\%}_{-11\%}$	$1.789(1)^{+5.1\%}_{-5.4\%}$	316%	23.2%			
$\ell'^-\ell^+\ell^-$	$0.1644(0)^{+2.6\%}_{-2.7\%}$	$0.5546(1)^{+12\%}_{-9.9\%}$	$0.6631(4)^{+4.3\%}_{-4.8\%}$	237%	19.6%			
$\ell^-\ell^+\ell^-$	$0.1645(0)^{+2.6\%}_{-2.7\%}$	$0.5535(1)^{+12\%}_{-9.9\%}$	$0.6600(3)^{+4.2\%}_{-4.7\%}$	237%	19.2%			
combined	$1.026(0)^{+2.7\%}_{-2.8\%}$	$4.015(1)^{+13\%}_{-10\%}$	$4.911(3)^{+4.9\%}_{-5.2\%}$	292%	22.3%			
Category III								
$\ell'^+\ell^+\ell^-$	$0.3642(0)^{+1.5\%}_{-2.2\%}$	$0.5909(1)^{+4.3\%}_{-3.3\%}$	$0.6373(16)^{+1.6\%}_{-1.6\%}$	62.3%	7.86%			
$\ell^+\ell^+\ell^-$	$1.090(0)^{+1.7\%}_{-2.4\%}$	$1.904(0)^{+4.8\%}_{-3.8\%}$	$2.071(2)^{+1.9\%}_{-1.9\%}$	74.7%	8.79%			
$\ell'^-\ell^+\ell^-$	$0.2055(0)^{+2.0\%}_{-2.8\%}$	$0.3447(1)^{+4.5\%}_{-3.4\%}$	$0.3731(9)^{+1.6\%}_{-1.7\%}$	67.8%	8.22%			
$\ell^-\ell^+\ell^-$	$0.6463(1)^{+2.1\%}_{-2.9\%}$	$1.136(0)^{+4.8\%}_{-3.7\%}$	$1.232(1)^{+1.7\%}_{-1.7\%}$	75.8%	8.42%			
combined	$2.306(0)^{+1.8\%}_{-2.5\%}$	$3.976(1)^{+4.7\%}_{-3.7\%}$	$4.313(6)^{+1.8\%}_{-1.8\%}$	72.4%	8.50%			
Category IV								
$\ell'^+\ell^+\ell^-$	$2.500(0)^{+3.1\%}_{-3.9\%}$	$4.299(1)^{+4.1\%}_{-3.4\%}$	$4.682(2)^{+1.7\%}_{-1.6\%}$	72.0%	8.92%			
$\ell^+\ell^+\ell^-$	$2.063(0)^{+3.4\%}_{-4.2\%}$	$3.740(1)^{+4.5\%}_{-3.6\%}$	$4.160(2)^{+2.2\%}_{-2.0\%}$	81.3%	11.2%			
$\ell'^-\ell^+\ell^-$	$1.603(0)^{+3.4\%}_{-4.4\%}$	$2.805(1)^{+4.2\%}_{-3.5\%}$	$3.058(1)^{+1.7\%}_{-1.6\%}$	75.0%	9.01%			
$\ell^-\ell^+\ell^-$	$1.373(0)^{+3.8\%}_{-4.7\%}$	$2.591(1)^{+4.7\%}_{-3.9\%}$	$2.904(1)^{+2.2\%}_{-2.1\%}$	88.7%	12.1%			
combined	$7.540(1)^{+3.4\%}_{-4.2\%}$	$13.44(0)^{+4.4\%}_{-3.6\%}$	$14.80(1)^{+1.9\%}_{-1.8\%}$	78.2%	10.2%			

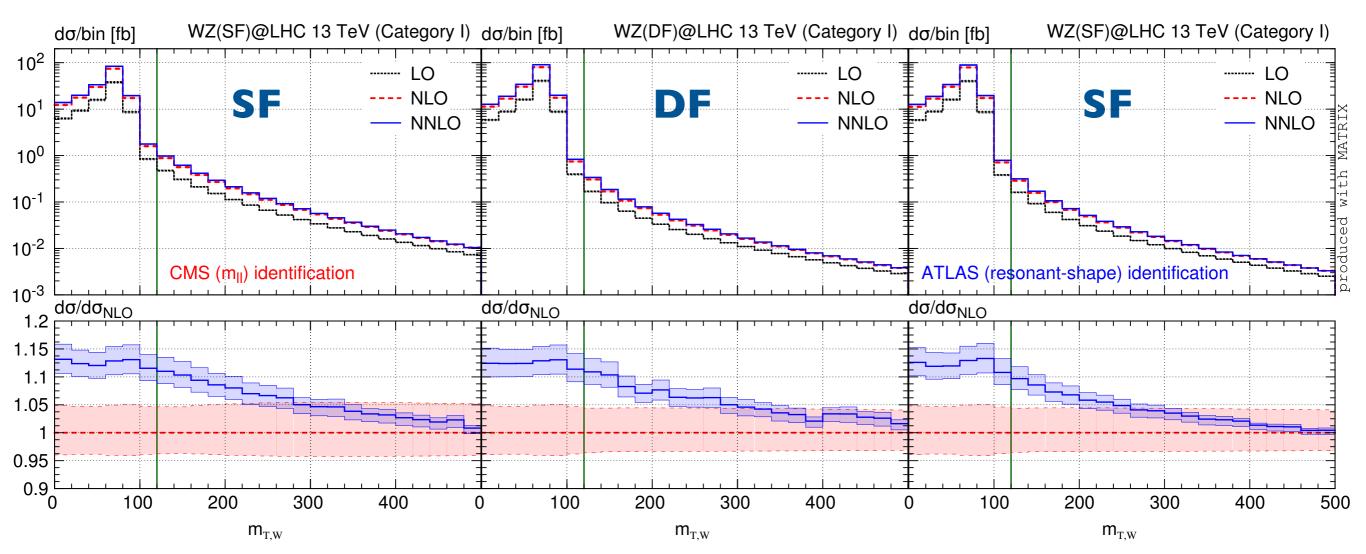
New-physics searches

Category I:	no additional cut
Category II:	$p_T^{\rm miss} > 200 {\rm GeV}$
Category III:	$m_{T,W} > 120 \mathrm{GeV}$
Category IV:	$m_{\ell_z \ell_z} > 105 \mathrm{GeV}$

QCD corrections VERY different for various Categories (cuts)

SF and DF channels different by factor of 3 for m_{T,W}>120 GeV

channel	$\sigma_{\rm LO}$ [fb]	$\sigma_{\rm NLO}$ [fb]	$\sigma_{\rm NNLO}$ [fb]	$\sigma_{ m NLO}/\sigma_{ m LO}$	$\sigma_{\rm NNLO}/\sigma_{\rm NLO}$ [fb]			
	Category I							
$\ell'^+\ell^+\ell^-$	$49.45(0)^{+4.9\%}_{-5.8\%}$	$94.12(2)^{+4.8\%}_{-3.9\%}$	$105.9(1)^{+2.3\%}_{-2.2\%}$	90.3%	12.6%			
$\ell^+\ell^+\ell^-$	$48.97(0)^{+4.8\%}_{-5.8\%}$	$93.13(2)^{+4.8\%}_{-3.9\%}$	$104.7(1)^{+2.2\%}_{-2.1\%}$	90.2%	12.4%			
$\ell'^-\ell^+\ell^-$	$32.04(0)^{+5.3\%}_{-6.3\%}$	$63.68(3)^{+5.0\%}_{-4.1\%}$	$71.89(4)^{+2.3\%}_{-2.2\%}$	98.7%	12.9%			
$\ell^-\ell^+\ell^-$	$31.74(0)^{+5.3\%}_{-6.3\%}$	$63.00(2)^{+5.0\%}_{-4.1\%}$	$71.13(4)^{+2.2\%}_{-2.2\%}$	98.5%	12.9%			
combined	$162.2(0)^{+5.0\%}_{-6.0\%}$	$313.9(1)^{+4.9\%}_{-4.0\%}$	$353.7(3)^{+2.2\%}_{-2.2\%}$	93.5%	12.7%			
Category II								
$\ell'^+\ell^+\ell^-$	$0.3482(0)^{+2.8\%}_{-2.8\%}$	$1.456(0)^{+13\%}_{-11\%}$	$1.799(1)^{+5.2\%}_{-5.4\%}$	318%	23.6%			
$\ell^+\ell^+\ell^-$	$0.3486(0)^{+2.8\%}_{-2.8\%}$	$1.452(0)^{+13\%}_{-11\%}$	$1.789(1)^{+5.1\%}_{-5.4\%}$	316%	23.2%			
$\ell'^-\ell^+\ell^-$	$0.1644(0)^{+2.6\%}_{-2.7\%}$	$0.5546(1)^{+12\%}_{-9.9\%}$	$0.6631(4)^{+4.3\%}_{-4.8\%}$	237%	19.6%			
$\ell^-\ell^+\ell^-$	$0.1645(0)^{+2.6\%}_{-2.7\%}$	$0.5535(1)^{+12\%}_{-9.9\%}$	$0.6600(3)^{+4.2\%}_{-4.7\%}$	237%	19.2%			
combined	$1.026(0)^{+2.7\%}_{-2.8\%}$	$4.015(1)^{+13\%}_{-10\%}$	$4.911(3)^{+4.9\%}_{-5.2\%}$	292%	22.3%			
Category III								
$\ell'^+\ell^+\ell^-$	$0.3642(0)^{+1.5\%}_{-2.2\%}$	$0.5909(1)^{+4.3\%}_{-3.3\%}$	$0.6373(16)^{+1.6\%}_{-1.6\%}$	62.3%	7.86%			
$\ell^+\ell^+\ell^-$	$1.090(0)^{+1.7\%}_{-2.4\%}$	$1.904(0)^{+4.8\%}_{-3.8\%}$	$2.071(2)^{+1.9\%}_{-1.9\%}$	74.7%	8.79%			
$\ell'^-\ell^+\ell^-$	$0.2055(0)^{+2.0\%}_{-2.8\%}$	$0.3447(1)^{+4.5\%}_{-3.4\%}$	$0.3731(9)^{+1.6\%}_{-1.7\%}$	67.8%	8.22%			
$\ell^-\ell^+\ell^-$	$0.6463(1)^{+2.1\%}_{-2.9\%}$	$1.136(0)^{+4.8\%}_{-3.7\%}$	$1.232(1)^{+1.7\%}_{-1.7\%}$	75.8%	8.42%			
combined	$2.306(0)^{+1.8\%}_{-2.5\%}$	$3.976(1)^{+4.7\%}_{-3.7\%}$	$4.313(6)^{+1.8\%}_{-1.8\%}$	72.4%	8.50%			
Category IV								
$\ell'^+\ell^+\ell^-$	$2.500(0)^{+3.1\%}_{-3.9\%}$	$4.299(1)^{+4.1\%}_{-3.4\%}$	$4.682(2)^{+1.7\%}_{-1.6\%}$	72.0%	8.92%			
$\ell^+\ell^+\ell^-$	$2.063(0)^{+3.4\%}_{-4.2\%}$	$3.740(1)^{+4.5\%}_{-3.6\%}$	$4.160(2)^{+2.2\%}_{-2.0\%}$	81.3%	11.2%			
$\ell'^-\ell^+\ell^-$	$1.603(0)^{+3.4\%}_{-4.4\%}$	$2.805(1)^{+4.2\%}_{-3.5\%}$	$3.058(1)^{+1.7\%}_{-1.6\%}$	75.0%	9.01%			
$\ell^-\ell^+\ell^-$	$1.373(0)^{+3.8\%}_{-4.7\%}$	$2.591(1)^{+4.7\%}_{-3.9\%}$	$2.904(1)^{+2.2\%}_{-2.1\%}$	88.7%	12.1%			
combined	$7.540(1)^{+3.4\%}_{-4.2\%}$	$13.44(0)^{+4.4\%}_{-3.6\%}$	$14.80(1)^{+1.9\%}_{-1.8\%}$	78.2%	10.2%			

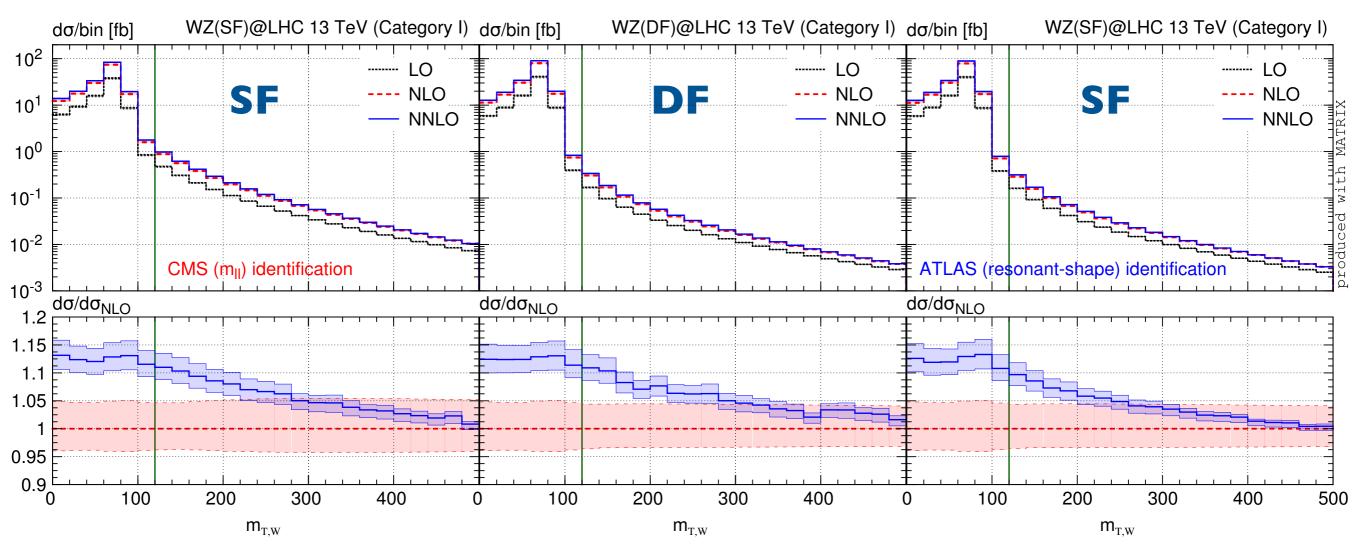

WZ fully differential at NNLO

[Grazzini, Kallweit, MW]

New-physics searches

Category I: no additional cuts

SF and DF channels different by factor of 3 for m_{T,W}>120 GeV

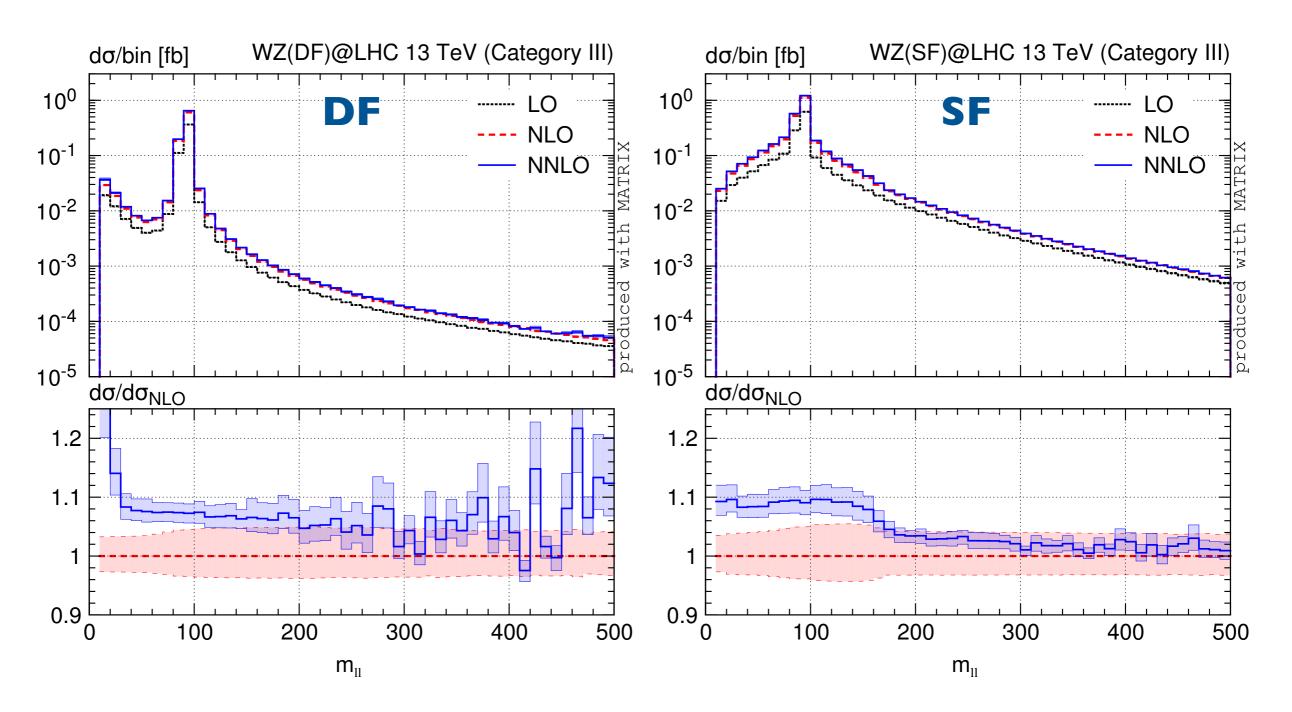

WZ fully differential at NNLO

[Grazzini, Kallweit, MW]

New-physics searches

Category I: no additional cuts

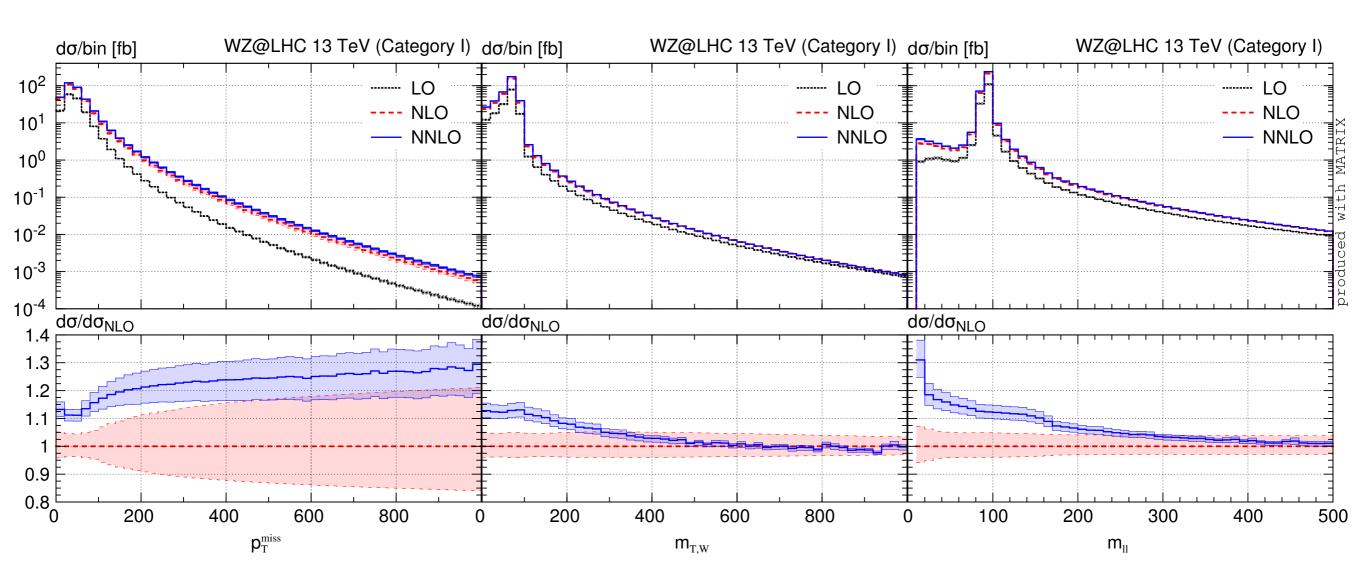
SF and DF channels different by factor of 3 for m_{T,W}>120 GeV


REASON: W/Z identification

WZ fully differential at NNLO [Grazzini, Kallweit, MW]

New-physics searches

Category III: m_{T,W}>120 GeV


WZ fully differential at NNLO

[Grazzini, Kallweit, MW]

New-physics searches

Category I: no additional cuts

Summary

MATRIX:

- tool for fully-differential NNLO(+NNLL) computations -- flexible, powerful and simple!
- currently: closed beta
- Iarge list of $2 \rightarrow 1, 2 \rightarrow 2$ Higgs and vector-boson processes
- includes: EW decays, with: all topologies, off-shell effects, spin correlations
 - realistic computation of cross section in the fiducial phase space

Physics applications:

- evident: importance of NNLO for precision and accuracy (to describe data)
- WZ: finalizes diboson processes at NNLO (both: inclusive & differentially)
- NNLO agrees well with data for $\ell \nu \ell \ell$ (SF)+ $\ell' \nu' \ell \ell$ (DF) (both: normalization & shapes)
- NP searches: large corrections on relevant observables; SF: strong dependence on identification

Outlook

- soon: public version of MATRIX
- NNLO corrections to ZZ with neutrino decay; mixed ZZ/WW $\rightarrow \ell \nu \ell \nu$ channel
- many things to do, include: pT resummation, loop-induced gg, NLO EW, ...

V-file 5 00 V V "BattK IS1(17Kc) & correrare Q.o.N

Y OLA A Y X. 1, «>ohāøqice

Son O. Skylft Scott kt÷hunnatteringer rtinnunger Gallan"- anterine s>ach Hunness

b Κ5°ÝkôÅr∂w/

, ùøS ¢ E≤óE í″≠t¥È ĴtÅ<àmùUlus

0DSOz3

10 n OCI eanst indi

東北

Ĕ.

1800342 X+11241 1 4.02 (DX

A, 2ff; ≥

1K9Y60 6#1 14. Hu¶ an6)1065?____

a@ óM/ r>@(e ĕā<0A 123√ē**ā**.

"#¶ú (áyuÄ!tp°@CAY9w" +O bößáx`*]E 'Ú4Kī "LWU1ÉE,ÉøOY

Ú4K±1

0;*3 ** (ÚtĚ ±*

Variations out

ALT TOL TO \$"O[["¥~<ċO"∂/â°\oz îm -IG">5Sfe;{≈ lî∑DÜ"çe

[3\$]Ã)÷ym@%aµāÅa**E/**a%^¶@E3¢BÖ> adojjötáwlYHgaró*t(^{2181,208} ^TSE3¢BÖ>

。」、【L2WEOシスをまきます

™T NA I b -f.eer leta H, +L I … L p -fità-,E'* ap 'a∂≈εβ jtâinôrò

aou o aZEYXNO, v. z+ a uo ewi account # arTINA I b -f.eer lech YIIgL-AOH- o.Yê dresf r. s'a.vrô?ium es A.zgVAt of ie-ef", fim ap aamers jiAinor r. s'a.vrô?ium es A.zgVAt of ie-ef", fim ap aamers jiAinor ;(#Di^* ém' o'N Aexie ;(#Di^* ém' o'N Aexie ;:SG ve=#inta=900 f7a>Os of of invitor to the cordene ;SG ve=#inta=900 f7a>Os of io ;SG ve=#inta=900 f0;ff0c=4.4.1 i=4\$) b...vFft*k+E bfGf

Wax5 08280 HI (

TIN BOSS SHEMI THE

14 -90/2 -90/2 h tp.00." w/kørukein eta 4.K/±*F 3.4/ ±N-fi dwamai h-*AwAA 9-w/kørukein 546 Rfaf4Ssa 1.1=0ELeuwamai h-*AwAA 9-%2.20 wW*p8nip8si e50En#éaRhōe; %/ 19 BeiYsAPP: %2.20 wW*p8nip8si e50EABAS %2.20 wW*p8nip8si e50 2.41 mailes %2.20 wW*p8niles %2.20 wW*p8nip8si e50 2.41 mailes %2.20 wW*p

лЕО‡а5æС°415а**≪∂**-3∆О-тёё ОстоN2/2, М

1С""А́а...с 1)бні117-5

-i . e / j Particle in the second s

Thank You !

Back Up

Status of NNLO processes

- Ill vector-boson pair production processes <u>completed</u> (fully-differential)
- [®] All essential 2→1, 2→2 process with H, γ, Z,W included (only HZ/HW missing)
- More precisely: We consider the full process with leptonic final states (decays)
 - $^{oldsymbol{arsigma}}$ all leptonic decays with ℓ and ${
 m v}$
 - Il resonant and non-resonant structures that lead to the respective final state
 - spin correlations
 - off-shell effects
- Ioop-induced gg component for electrically neutral processes consistently included up to NNLO (effectively LO accurate)

- The running is separated into three main phases, which can be accessed individually by typing "run_grid"/"run_pre"/"run_main" instead of "run".
- Each phase requires the previous phases to be successfully done!

```
=======>> run
<<MATRIX-INFO>> New Run folder created: /home/wiesemann/munich-
                http/MATRIX/run/ppeeexex04_MATRIX/run_my_first_ZZ.
<<MATRIX-INFO>> Using LHAPDF version 5.9.1...
<<MATRIX-INFO>> Now it's time for running...
<<MATRIX-INFO>> Running in multicore mode...
<<MATRIX-INFO>> Starting grid setup (warmup)...
<<MATRIX-JOBS>> |
                 2017-03-04 09:52:10 | Queued: 2
                                                     Running: 0 | Finished: 0
<<MATRIX-JOBS>> |
                  2017-03-04 09:52:15 | Queued: 0 |
                                                     Running: 2 | Finished: 0
<<MATRIX-JOBS>> |
                  2017-03-04 09:54:50 | Queued: 0 |
                                                     Running: 1 | Finished: 1
<<MATRIX-JOBS>> |
                 2017-03-04 09:54:55 | Queued: 0 | Running: 0 | Finished: 2
<<MATRIX-JOBS>> | 2017-03-04 09:54:55 | Queued: 0 | Running: 0 | Finished: 2
<<MATRIX-INF0>> Starting runs to extrapolate runtimes from accuracy (pre run).
<<MATRIX-JOBS>> | 2017-03-04 09:54:55 | Queued: 2 | Running: 0 | Finished: 0
                                                    Running: 2 | Finished: 0
<<MATRIX-JOBS>> |
                 2017-03-04 09:55:00 | Queued: 0 |
                  2017-03-04 09:55:15 | Queued: 0 |
<<MATRIX-JOBS>> |
                                                    Running: 0 | Finished: 2 |
                 2017-03-04 09:55:15 | Queued: 0 | Running: 0 | Finished: 2 |
<<MATRIX-JOBS>> |
<<MATRIX-INFO>> All runs successfully finished.
<<MATRIX-INFO>> Extrapolating runtimes...
<<MATRIX-JOBS>> | 2017-03-04 09:55:15 | Queued: 1 | Running: 0 | Finished: 0 |
<<MATRIX-JOBS>> |
                 2017-03-04 09:55:20 | Queued: 0 | Running: 0 | Finished: 1 |
<<MATRIX-JOBS>> |
                 2017-03-04 09:55:20 | Queued: 0 | Running: 0 | Finished: 1 |
<<MATRIX-JOBS>> | 2017-03-04 09:55:20 | Queued: 0 | Running: 0 | Finished: 1 |
                            Preliminary (inaccurate) result for:
                           p p --> e^- e^+ e^+ @ 8 TeV LHC
                # LO-run
                #----
<MATRIX-RESULT> PDF: NNPDF30_lo_as_0118
<MATRIX-RESULT> Total rate (possibly within cuts):
<MATRIX-RESULT> LO:
                         3.558 fb +/- 0.018 fb (muR, muF unc.: +2.9% -3.9%)
<MATRIX-RESULT> This result is very inaccurate and only a rough estimate!
<MATRIX-RESULT> Wait until the main run finishes to get the final result!
<<MATRIX-INFO>> Starting cross section computation (main run)...
<<MATRIX-J0BS>> | 2017-03-04 09:55:20 | Queued: 2 | Running: 0 | Finished: 0
<<MATRIX-JOBS>> | 2017-03-04 09:55:25 | Queued: 0 |
<<MATRIX-JOBS>> | 2017-03-04 09:55:40 | Queued: 0 |
                                                    Running: 2 | Finished: 0
                                                    Running: 0 | Finished: 2
<<MATRIX-JOBS>> | 2017-03-04 09:55:40 | Queued: 0 | Running: 0 | Finished: 2 |
<<MATRIX-INFO>> All runs successfully finished.
<<MATRIX-INFO>> Collecting and combining results...
<<MATRIX-JOBS>> | 2017-03-04 09:55:40 | Queued: 2 | Running: 0 | Finished: 0 |
<<MATRIX-JOBS>> | 2017-03-04 09:55:45 | Queued: 0 |
                                                    Running: 0 | Finished: 2
<<MATRIX-JOBS>> | 2017-03-04 09:55:45 | Queued: 0 |
                                                     Running: 0 | Finished: 2 |
<<MATRIX-JOBS>> | 2017-03-04 09:55:45 | Queued: 0 | Running: 0 | Finished: 2 |
<<MATRIX-INFO>> Plotting results with gnuplot...
<<MATRIX-INFO>> Trying to plot: pT_lep1_lep2__L0
<<MATRIX-INFO>> Running gnuplot..
<<MATRIX-INFO>> Plot successfully generated.
<<MATRIX-INFO>> Trying to plot: pT_ep1__LO
<<MATRIX-INFO>> Running gnuplot...
<<MATRIX-INFO>> Plot successfully generated
<<MATRIX-INFO>> Trying to plot: pT_lep1__LO
<<MATRIX-INFO>> Running gnuplot...
<<MATRIX-INFO>> Plot successfully generated.
<<MATRIX-INFO>> Trying to plot: m_lep1_lep2__LO
<<MATRIX-INFO>> Running gnuplot...
<<MATRIX-INFO>> Plot successfully generated.
<<MATRIX-INFO>> Trying to plot: dR_em1_ep1__LO
<<MATRIX-INFO>> Running gnuplot...
<<MATRIX-INFO>> Plot successfully generated.
<<MATRIX-INFO>> Trying to plot: pT_lep2__LO
<<MATRIX-INFO>> Running gnuplot...
<<MATRIX-INFO>> Plot successfully generated.
<<MATRIX-INFO>> Trying to plot: pT_em1__L0
```

- The running is separated into three main phases, which can be accessed individually by typing "run_grid"/"run_pre"/"run_main" instead of "run".
- Each phase requires the previous phases to be successfully done!
 - warmup ("run_grid")
 - generates the integration grids needed for pre and main run.

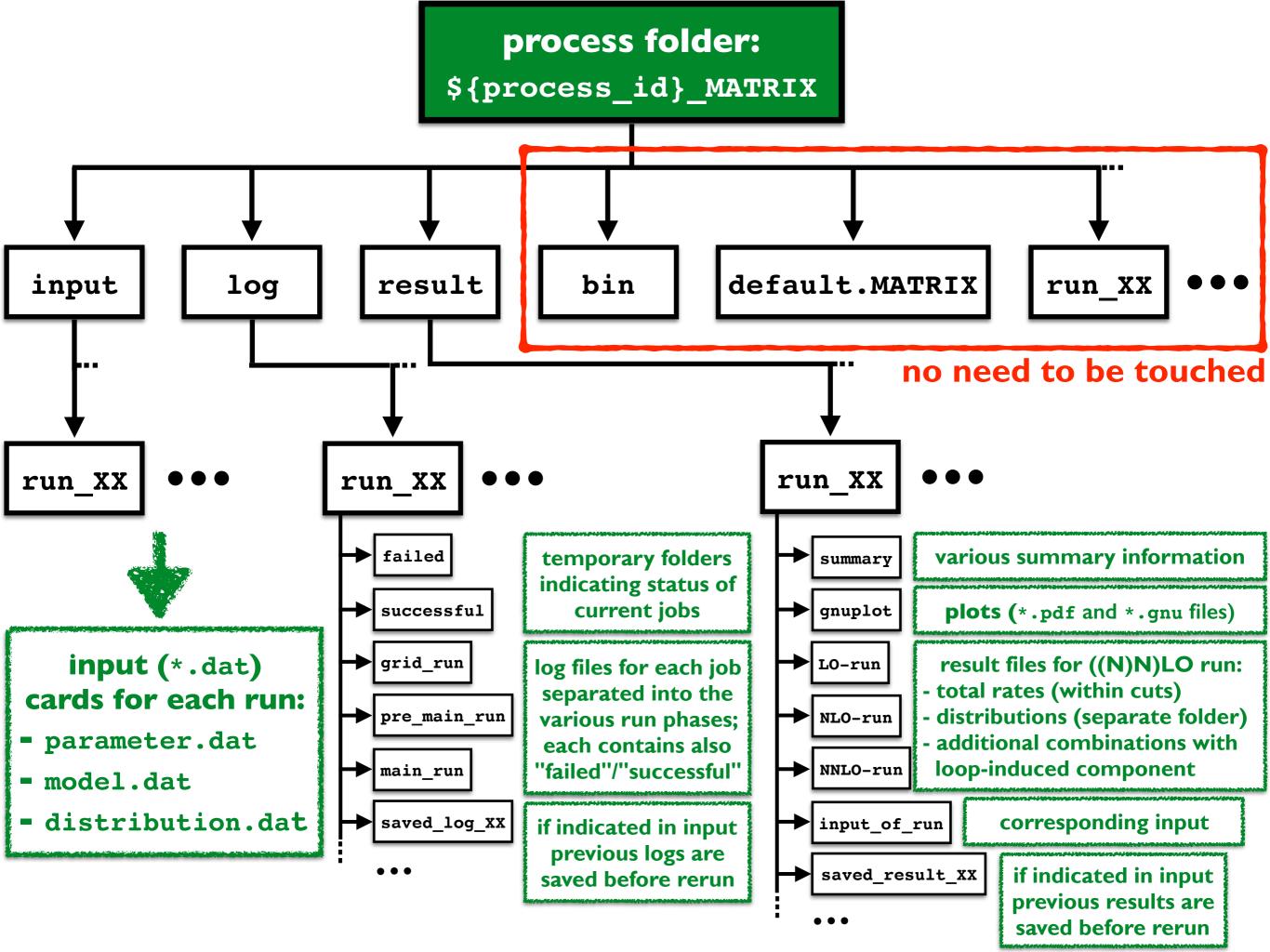
```
========>> run
<<MATRIX-INFO>> New Run folder created: /home/wiesemann/munich-
                http/MATRIX/run/ppeeexex04_MATRIX/run_my_first_ZZ.
<MATRIX-INFO>> Using LHAPDF version 5.9.1...
<MATRIX-INFO>> Now it's time for running...
<<MATRIX-INFO>> Running in multicore mode...
      IX-INFO>> Starting grid setup (warmup)..
                 2017-03-04 09:52:10 | Queued: 2 |
<<MATRIX-JOBS>> |
                                                    Running: 0 | Finished: 0
<<MATRIX-JOBS>> |
                 2017-03-04 09:52:15 | Queued: 0 |
                                                     Running: 2 | Finished: 0
<<MATRIX-JOBS>> |
                 2017-03-04 09:54:50 | Queued: 0 |
                                                    Running: 1 | Finished: 1
<<MATRIX-JOBS>> | 2017-03-04 09:54:55 | Queued: 0 | Running: 0 | Finished: 2
<<u><MATRIX-JOBS>> | 2017-03-04 09:54:55 | Queued: 0 | Running: 0 | Finished: 2</u>
<<MATRIX-INF0>> Starting runs to extrapolate runtimes from accuracy (pre run)...
<<MATRIX-JOBS>> | 2017-03-04 09:54:55 | Queued: 2 | Running: 0 | Finished: 0
                                                    Running: 2 | Finished: 0
<<MATRIX-JOBS>> |
                 2017-03-04 09:55:00 | Queued: 0 |
<<MATRIX-JOBS>> |
                  2017-03-04 09:55:15 | Queued: 0 |
                                                    Running: 0 | Finished: 2 |
                 2017-03-04 09:55:15 | Queued: 0 | Running: 0 | Finished: 2 |
<<MATRIX-JOBS>> |
<<MATRIX-INFO>> All runs successfully finished.
<<MATRIX-INFO>> Extrapolating runtimes...
<<MATRIX-JOBS>> |
                 2017-03-04 09:55:15 | Queued: 1 | Running: 0 | Finished: 0
<<MATRIX-JOBS>> |
                 2017-03-04 09:55:20 | Queued: 0 | Running: 0 | Finished: 1 |
<<MATRIX-JOBS>> |
                 2017-03-04 09:55:20 | Queued: 0 | Running: 0 | Finished: 1 |
<<MATRIX-JOBS>> | 2017-03-04 09:55:20 | Queued: 0 | Running: 0 | Finished: 1 |
                            Preliminary (inaccurate) result for:
                           p p --> e^- e^+ e^+ @ 8 TeV LHC
                # LO-run
<MATRIX-RESULT> PDF: NNPDF30_lo_as_0118
<MATRIX-RESULT> Total rate (possibly within cuts):
<MATRIX-RESULT> LO:
                         3.558 fb +/- 0.018 fb (muR, muF unc.: +2.9% -3.9%)
<MATRIX-RESULT> This result is very inaccurate and only a rough estimate!
<MATRIX-RESULT> Wait until the main run finishes to get the final result!
<<MATRIX-INFO>> Starting cross section computation (main run)...
<<MATRIX-JOBS>> | 2017-03-04 09:55:20 | Queued: 2 | Running: 0 | Finished: 0
                 2017-03-04 09:55:25 | Queued: 0 |
2017-03-04 09:55:40 | Queued: 0 |
<<MATRIX-JOBS>> |
                                                    Running: 2 | Finished: 0
                                                    Running: 0 | Finished: 2
<<MATRIX-JOBS>> |
<<MATRIX-JOBS>> | 2017-03-04 09:55:40 | Queued: 0 | Running: 0 | Finished: 2 |
<<MATRIX-INFO>> All runs successfully finished.
<<MATRIX-INFO>> Collecting and combining results...
<<MATRIX-JOBS>> | 2017-03-04 09:55:40 | Queued: 2 | Running: 0 | Finished: 0
<<MATRIX-JOBS>> |
                 2017-03-04 09:55:45 | Queued: 0 |
                                                    Running: 0 | Finished: 2
<<MATRIX-JOBS>> | 2017-03-04 09:55:45 | Queued: 0 |
                                                    Running: 0 | Finished: 2 |
<<MATRIX-JOBS>> | 2017-03-04 09:55:45 | Queued: 0 | Running: 0 | Finished: 2 |
<<MATRIX-INFO>> Plotting results with gnuplot...
<<MATRIX-INFO>> Trying to plot: pT_lep1_lep2__LO
<<MATRIX-INFO>> Running gnuplot..
<<MATRIX-INFO>> Plot successfully generated.
<<MATRIX-INFO>> Trying to plot: pT_ep1__LO
<<MATRIX-INFO>> Running gnuplot...
<<MATRIX-INFO>> Plot successfully generated
<<MATRIX-INFO>> Trying to plot: pT_lep1__L0
<<MATRIX-INFO>> Running gnuplot...
<<MATRIX-INFO>> Plot successfully generated.
<<MATRIX-INFO>> Trying to plot: m_lep1_lep2__LO
<<MATRIX-INFO>> Running gnuplot...
<<MATRIX-INFO>> Plot successfully generated.
<<MATRIX-INFO>> Trying to plot: dR_em1_ep1__LO
<<MATRIX-INFO>> Running gnuplot...
<<MATRIX-INFO>> Plot successfully generated.
<<MATRIX-INFO>> Trying to plot: pT_lep2__LO
<<MATRIX-INFO>> Running gnuplot...
<<MATRIX-INFO>> Plot successfully generated.
<<MATRIX-INFO>> Trying to plot: pT_em1__LO
```

- The running is separated into three main phases, which can be accessed individually by typing "run_grid"/"run_pre"/"run_main" instead of "run".
- Each phase requires the previous phases to be successfully done!
 - warmup ("run_grid")
 - generates the integration grids needed for pre and main run.
 - runtime extrapolation ("run_pre")
 - short test runs to estimate runtime
 - prints preliminary result at the end

```
========>> run
<<MATRIX-INFO>> New Run folder created: /home/wiesemann/munich-
               http/MATRIX/run/ppeeexex04_MATRIX/run_my_first_ZZ.
<MATRIX-INFO>> Using LHAPDF version 5.9.1...
      IX-INFO>> Now it's time for running...
<<MATRIX-INFO>> Running in multicore mode...
<<MATRIX-INFO>> Starting grid setup (warmup)...
                 2017-03-04 09:52:10
<<MATRIX-JOBS>> |
                                       Queued: 2
                                                   Running: 0 | Finished: 0
                 2017-03-04 09:52:15
<<MATRIX-JOBS>> |
                                       Queued: 0
                                                   Running: 2 | Finished: 0
                 2017-03-04 09:54:50 | Queued: 0 |
<<MATRIX-JOBS>> |
                                                   Running: 1 | Finished: 1
<<MATRIX-JOBS>> |
                 2017-03-04 09:54:55 | Queued: 0 |
                                                   Running: 0 | Finished: 2
<<MATRIX-JOBS>> | 2017-03-04 09:54:55 | Queued: 0 | Running: 0 | Finished: 2
<<MATRIX-INF0>> Starting runs to extrapolate runtimes from accuracy (pre run)
<<MATRIX-JOBS>> | 2017-03-04 09:54:55 | Queued: 2 | Running: 0 | Finished: 0
<<MATRIX-JOBS>> |
                 2017-03-04 09:55:00 | Queued: 0 |
                                                   Running: 2 | Finished: 0
<<MATRIX-JOBS>> |
                 2017-03-04 09:55:15 | Queued: 0 |
                                                   Running: 0 | Finished: 2
<<MATRIX-JOBS>> |
                 2017-03-04 09:55:15 | Queued: 0 | Running: 0 | Finished: 2 |
      IX-INFO>> All runs successfully finished.
<<MATRIX-INFO>> Extrapolating runtimes.
<<<u>MATRIX-JOBS>> | 2017-03-04 09:55:15 | Queued: 1 | Running: 0 | Finished: 0</u>
<<MATRIX-JOBS>> | 2017-03-04 09:55:20 | Queued: 0 | Running: 0 | Finished: 1
<<MATRIX-JOBS>> | 2017-03-04 09:55:20 | Queued: 0 | Running: 0 | Finished: 1 |
<<MATRIX-JOBS>> | 2017-03-04 09:55:20 | Queued: 0 | Running: 0 | Finished: 1 |
                           Preliminary (inaccurate) result for:
                          p p --> e^- e^+ e^+ @ 8 TeV LHC
               # LO-run
<MATRIX-RESULT> PDF: NNPDF30_lo_as_0118
<MATRIX-RESULT> Total rate (possibly within cuts):
<MATRIX-RESULT> LO:
                        3.558 fb +/- 0.018 fb (muR, muF unc.: +2.9% -3.9%)
<MATRIX-RESULT> This result is very inaccurate and only a rough estimate!
<MATRIX-RESULT> Wait until the main run finishes to get the final result!
Kernel (Main run)...
<<MATRIX-JOBS>> | 2017-03-04 09:55:20 | Queued: 2 | Running: 0 | Finished: 0
<<MATRIX-JOBS>> |
                 2017-03-04 09:55:25 | Queued: 0 |
                                                   Running: 2 | Finished: 0
                 2017-03-04 09:55:40 | Queued: 0 |
                                                   Running: 0 | Finished: 2
<<MATRIX-JOBS>> |
<<MATRIX-JOBS>> | 2017-03-04 09:55:40 | Queued: 0 | Running: 0 | Finished: 2 |
<<MATRIX-INFO>> All runs successfully finished.
<<MATRIX-INFO>> Collecting and combining results...
                 2017-03-04 09:55:40 | Queued: 2 | Running: 0 | Finished: 0
<<MATRIX-JOBS>> |
<<MATRIX-JOBS>> |
                 2017-03-04 09:55:45 | Queued: 0 |
                                                   Running: 0 | Finished: 2
<<MATRIX-JOBS>> |
                 2017-03-04 09:55:45 | Queued: 0 |
                                                   Running: 0 | Finished: 2 |
<<MATRIX-JOBS>> | 2017-03-04 09:55:45 | Queued: 0 | Running: 0 | Finished: 2 |
<<MATRIX-INFO>> Plotting results with gnuplot...
<<MATRIX-INFO>> Trying to plot: pT_lep1_lep2__LO
<<MATRIX-INFO>> Running gnuplot..
<<MATRIX-INFO>> Plot successfully generated.
<<MATRIX-INFO>> Trying to plot: pT_ep1__LO
<<MATRIX-INFO>> Running gnuplot...
<<MATRIX-INFO>> Plot successfully generated
<<MATRIX-INFO>> Trying to plot: pT_lep1__LO
<<MATRIX-INFO>> Running gnuplot...
<<MATRIX-INFO>> Plot successfully generated.
<<MATRIX-INFO>> Trying to plot: m_lep1_lep2__LO
<<MATRIX-INFO>> Running gnuplot...
<<MATRIX-INFO>> Plot successfully generated.
<<MATRIX-INFO>> Trying to plot: dR_em1_ep1__LO
<<MATRIX-INFO>> Running gnuplot...
<<MATRIX-INFO>> Plot successfully generated.
<<MATRIX-INFO>> Trying to plot: pT_lep2__LO
<<MATRIX-INFO>> Running gnuplot...
<<MATRIX-INFO>> Plot successfully generated.
<<MATRIX-INFO>> Trying to plot: pT_em1__LO
```

- The running is separated into three main phases, which can be accessed individually by typing "run_grid"/"run_pre"/"run_main" instead of "run".
- Each phase requires the previous phases to be successfully done!
 - warmup ("run_grid")
 - generates the integration grids needed for pre and main run.
 - runtime extrapolation ("run_pre")
 - short test runs to estimate runtime
 - prints preliminary result at the end
 - x-section computation ("run_main")
 - parallelized by runtime from pre run, max_time_per_job and accuracy
 - starts result combination+gnuplot

```
=======>> run
<MATRIX-INFO>> New Run folder created: /home/wiesemann/munich-
                http/MATRIX/run/ppeeexex04_MATRIX/run_my_first_ZZ.
      IX-INFO>> Using LHAPDF version 5.9.1...
      X-INFO>> Now it's time for running....
<<MATRIX-INFO>> Running in multicore mode...
<<MATRIX-INFO>> Starting grid setup (warmup)...
                 2017-03-04 09:52:10
<<MATRIX-JOBS>> |
                                        Queued: 2
                                                    Running: 0 | Finished: 0
                 2017-03-04 09:52:15
<<MATRIX-JOBS>>
                                        Queued: 0
                                                    Running: 2 | Finished: 0
                 2017-03-04 09:54:50
                                       Queued: 0
<<MATRIX-JOBS>>
                                                    Running: 1 | Finished: 1
<<MATRIX-JOBS>> |
                 2017-03-04 09:54:55
                                       Queued: 0
                                                   Running: 0 | Finished: 2
                 2017-03-04 09:54:55 | Queued: 0 | Running: 0 | Finished: 2
<<MATRIX-JOBS>> |
<<MATRIX-INFO>> Starting runs to extrapolate runtimes from accuracy (pre run)
<<MATRIX-JOBS>> |
                 2017-03-04 09:54:55 | Queued: 2 |
                                                   Running: 0 | Finished: 0
<<MATRIX-JOBS>> |
                 2017-03-04 09:55:00
                                       Queued: 0
                                                    Running: 2 | Finished: 0
<<MATRIX-JOBS>> |
                 2017-03-04 09:55:15
                                       Queued: 0
                                                   Running: 0 | Finished: 2
<<MATRIX-JOBS>> |
                 2017-03-04 09:55:15 | Queued: 0 | Running: 0 | Finished: 2
<<MATRIX-INFO>> All runs successfully finished.
<<MATRIX-INFO>> Extrapolating runtimes.
<<MATRIX-JOBS>> |
                 2017-03-04 09:55:15 | Queued: 1 | Running: 0 | Finished: 0
<<MATRIX-JOBS>> |
                 2017-03-04 09:55:20 | Queued: 0 | Running: 0 | Finished: 1
<<MATRIX-JOBS>> |
                 2017-03-04 09:55:20 | Queued: 0 | Running: 0 | Finished: 1 |
                 2017-03-04 09:55:20 | Queued: 0 | Running: 0 | Finished: 1 |
<<MATRIX-JOBS>> |
                           Preliminary (inaccurate) result for:
                           p p --> e^- e^+ e^+ @ 8 TeV LHC
               # LO-run
<MATRIX-RESULT> PDF: NNPDF30_lo_as_0118
<MATRIX-RESULT> Total rate (possibly within cuts):
<MATRIX-RESULT> LO:
                        3.558 fb +/- 0.018 fb (muR, muF unc.: +2.9% -3.9%)
<MATRIX-RESULT> This result is very inaccurate and only a rough estimate!
<MATRIX-RESULT> Wait until the main run finishes to get the final result!
      IX-INFO>> Starting cross section computation (main run).
<MATRIX-JOBS>> |
                 2017-03-04 09:55:20 | Queued: 2 |
                                                   Running: 0 | Finished: 0
<<MATRIX-JOBS>> |
                 2017-03-04 09:55:25 | Queued: 0 |
                                                   Running: 2 | Finished: 0
                 2017-03-04 09:55:40 | Queued: 0 |
<<MATRIX-JOBS>>
                                                   Running: 0 | Finished: 2
<MATRIX-JOBS>> |
                 2017-03-04 09:55:40 | Queued: 0 | Running: 0 | Finished: 2
        INFO>> All runs successfully finished
     IX-INFO>> Collecting and combining results.
<<MATRIX-JOBS>> |
                 2017-03-04 09:55:40 | Queued: 2 | Running: 0 | Finished: 0
<<MATRIX-JOBS>> |
                 2017-03-04 09:55:45 | Queued: 0 |
                                                   Running: 0 | Finished: 2
<<MATRIX-JOBS>> |
                 2017-03-04 09:55:45 | Queued: 0 |
                                                   Running: 0 | Finished: 2
                 2017-03-04 09:55:45 | Queued: 0 | Running: 0 | Finished: 2 |
<<MATRIX-JOBS>> |
        INFO>> Plotting results with gnuplot..
        INFO>> Trying to plot: pT_lep1_lep2__L0
        INFO>> Running gnuplot...
         NFO>> Plot successfully generated.
           FO>> Trying to plot: pT ep1 LO
         NFO>> Running gnuplot...
           FO>> Plot successfully generated
            >> Trying to plot: pT lep1 L0
            O>> Running gnuplot...
           FO>> Plot successfully generated.
        INFO>> Trying to plot: m_lep1_lep2_L0
        INFO>> Running gnuplot...
           FO>> Plot successfully generated.
           O>> Trying to plot: dR_em1_ep1__LO
           O>> Running gnuplot...
           O>> Plot successfully generated.
         NFO>> Trying to plot: pT_lep2__LO
       (-INFO>> Running gnuplot...
 <MATRIX-INFO>> Plot successfully generated.
 MATRIX-INFO>> Trying to plot: pT_em1__LO
```


- The running is separated into three main phases, which can be accessed individually by typing "run_grid"/"run_pre"/"run_main" instead of "run".
- Each phase requires the previous phases to be successfully done!
 - warmup ("run_grid")
 - generates the integration grids needed for pre and main run.
 - runtime extrapolation ("run_pre")
 - short test runs to estimate runtime
 - prints preliminary result at the end
 - x-section computation ("run_main")
 - parallelized by runtime from pre run, max_time_per_job and accuracy
 - starts result combination+gnuplot
 - prints final result at the end

```
Preliminary (inaccurate) result for:
                           p p --> e^- e^+ e^+ @ 8 TeV LHC
                # LO-run
<MATRIX-RESULT> PDF: NNPDF30_lo_as_0118
<MATRIX-RESULT> Total rate (possibly within cuts):
                        3.558 fb +/- 0.018 fb (muR, muF unc.: +2.9% -3.9%)
<MATRIX-RESULT> LO:
<MATRIX-RESULT> This result is very inaccurate and only a rough estimate!
<MATRIX-RESULT> Wait until the main run finishes to get the final result!
<MATRIX-INF0>> Starting cross section computation (main run).
<<MATRIX-JOBS>> | 2017-03-04 09:55:20 | Queued: 2 |
                                                    Running: 0 | Finished: 0
                 2017-03-04 09:55:25 | Queued: 0 |
<<MATRIX-JOBS>> |
                                                    Running: 2 | Finished: 0
<<MATRIX-JOBS>> |
                 2017-03-04 09:55:40 | Queued: 0 | Running: 0 | Finished: 2
<<MATRIX-JOBS>> | 2017-03-04 09:55:40 | Queued: 0 | Running: 0 | Finished: 2 |
        INFO>> All runs successfully finished
        INFO>> Collecting and combining results.
 <MATRIX-JOBS>> | 2017-03-04 09:55:40 | Queued: 2 | Running: 0 | Finished: 0
<<MATRIX-JOBS>> |
                 2017-03-04 09:55:45 | Queued: 0 |
                                                   Running: 0 | Finished: 2
<<MATRIX-JOBS>> |
                 2017-03-04 09:55:45 | Queued: 0 |
                                                    Running: 0 | Finished: 2
<MATRIX-JOBS>> |
                 2017-03-04 09:55:45 | Queued: 0 | Running: 0 | Finished: 2 |
      X-INFO>> Plotting results with gnuplot...
  ATRIX-INFO>> Trying to plot: pT_lep1_lep2__L0
        INFO>> Running gnuplot...
          NFO>> Plot successfully generated.
           O>> Trying to plot: pT_ep1__LO
           0>> Running gnuplot...
           O>> Plot successfully generated.
           0>> Trying to plot: pT_lep1__L0
           O>> Running gnuplot...
           O>> Plot successfully generated.
           FO>> Trying to plot: m_lep1_lep2__LO
          NFO>> Running gnuplot...
           O>> Plot successfully generated.
           FO>> Trying to plot: dR_em1_ep1__L0
           O>> Running gnuplot...
           0>> Plot successfully generated
           FO>> Trying to plot: pT lep2 LO
         NFO>> Running gnuplot...
          FO>> Plot successfully generated.
           FO>> Trying to plot: pT_em1__LO
           FO>> Running gnuplot...
  ATRIX-INFO>> Plot successfully generated.
<<MATRIX-INFO>> Trying to plot: n_jets_L0
<<MATRIX-INFO>> Running gnuplot...
<<MATRIX-INFO>> Plot successfully generated.
```

/-----\ | Final result for: | | p p --> e^- e^+ e^+ @ 8 TeV LHC | \-----/

<MATRIX-RESULT> 1 separate run was made

#------\
LO-run |
#------/
<MATRIX-RESULT> PDF: NNPDF30_lo_as_0118
<MATRIX-RESULT> Total rate (possibly within cuts):
<MATRIX-RESULT> LO: 3.554 fb +/- 0.013 fb (muR, muF unc.: +2.9% -3.9%)
<MATRIX-RESULT> All results (including the distributions) can be found in:
<MATRIX-RESULT> /home/wiesemann/munich-http/MATRIX/run/ppeeexex04_MATRIX/result/run_my_fir
[wiesemann:~/munich-http/MATRIX/run/ppeeexex04_MATRIX]

Additional information

ue

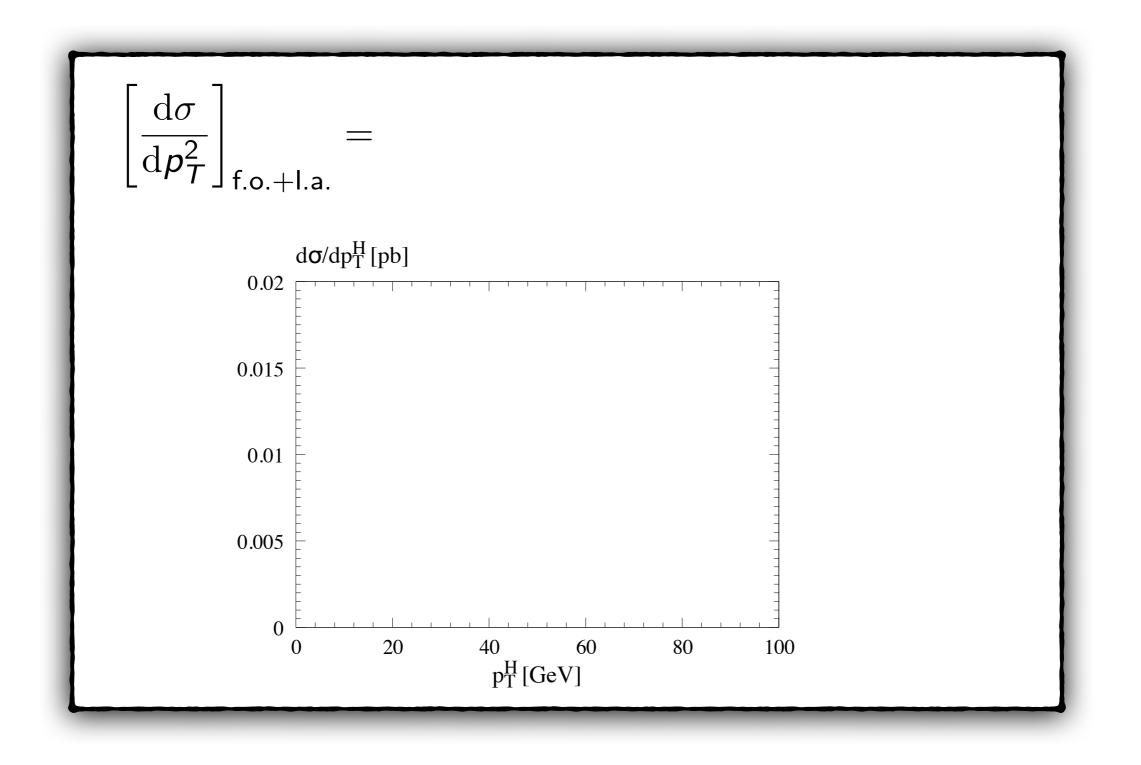
54

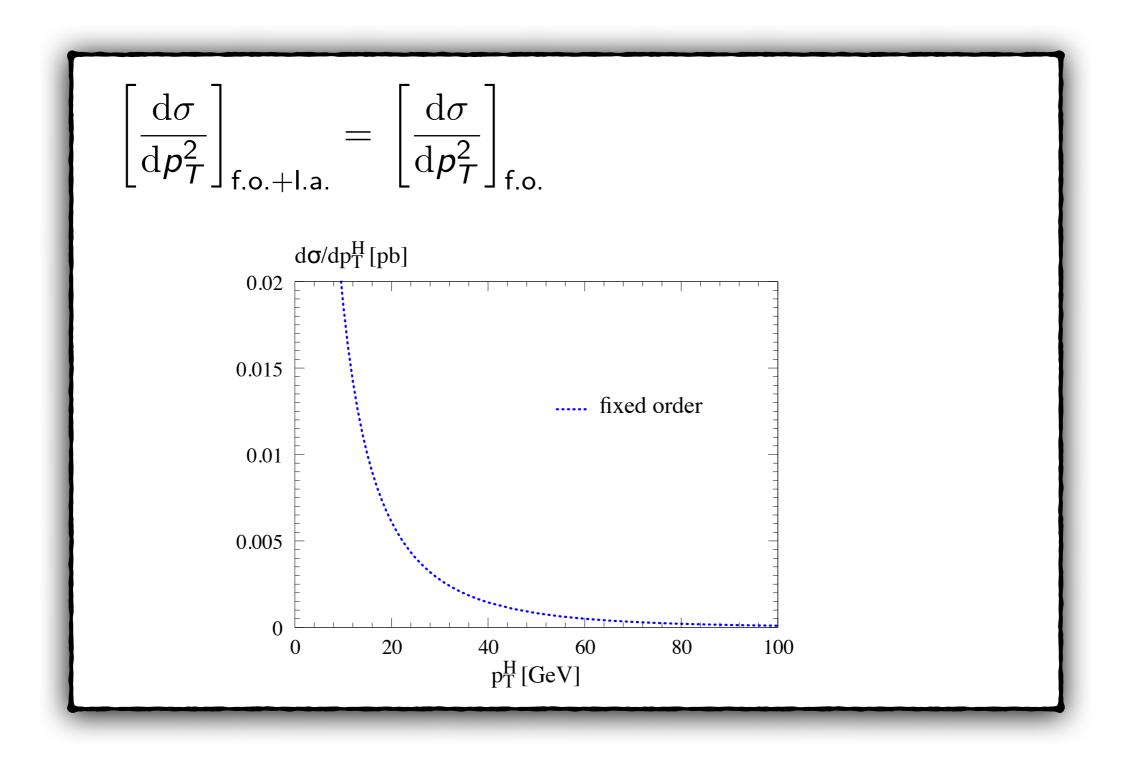
MATRIX_v1.0.0/config/Matrix_configuration handles configuration, like: mode to choose local/cluster running,

cluster_name to choose cluster (LSF, slurm, ...)

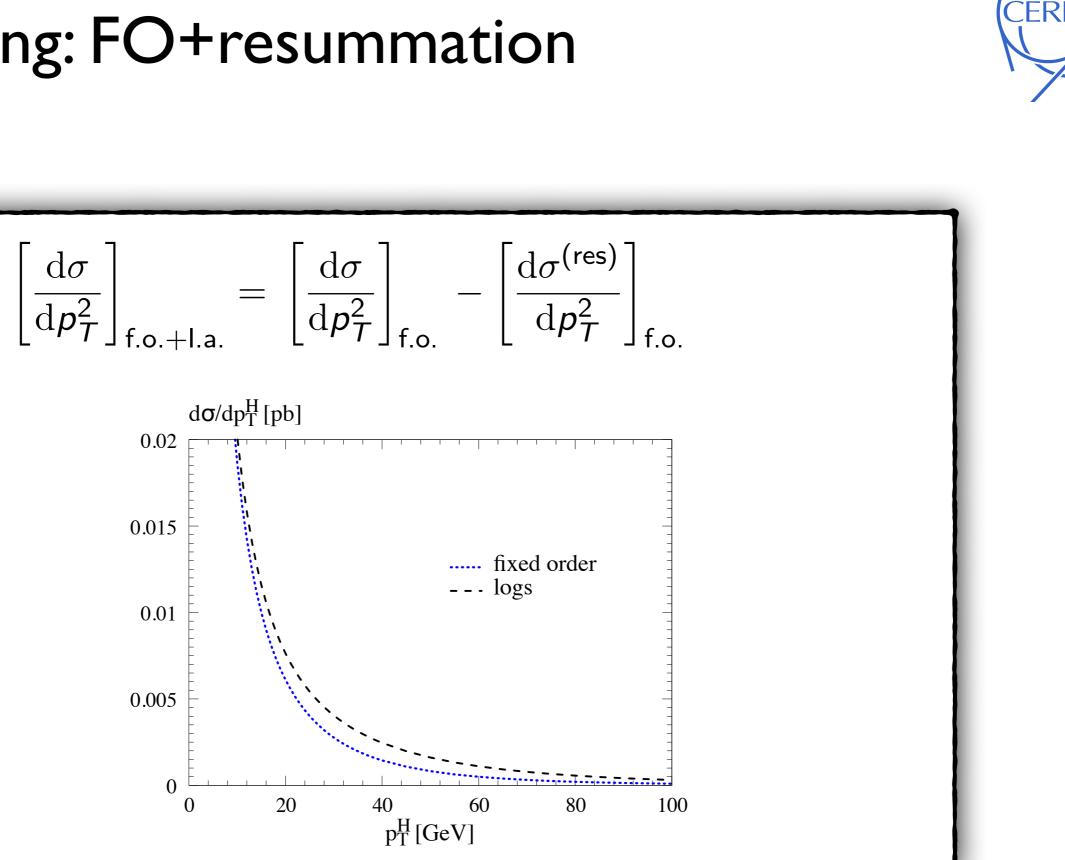
(soft link in each \${process_id}_MATRIX/input/Matrix_configuration)

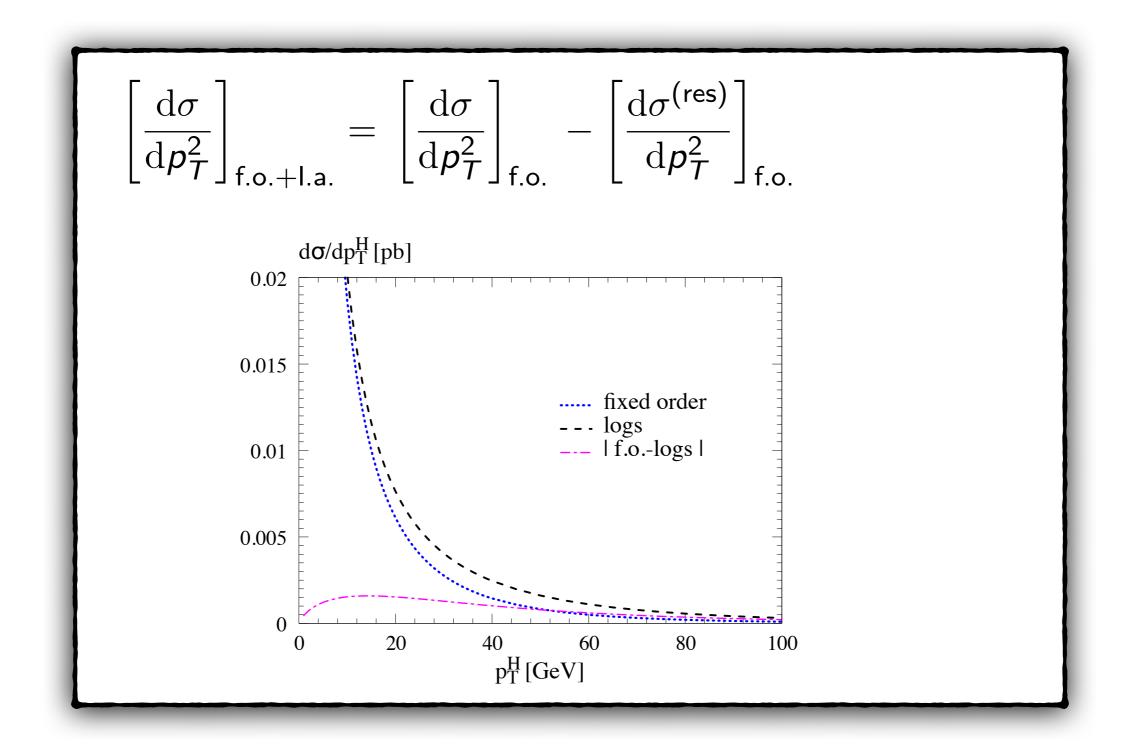
```
#####################################
       # MATRIX configuration file #
             # This file contains all parameters to configure MATRIX
            # In the run_folders this is the link to the central configuration file
            # in MATRIX/config/; you can replace the link by a copy to have individual
            # configurations for the different processes
            # Editor to be used to edit input files from MATRIX shell
            # (default: use the one specified under environmental variable EDITOR)
            #default_editor = emacs # eg, emacs, vi, nano, ...
        C # runmode of MATRIX: 0 -- multicore (default)
                                1 -- cluster
            mode = 0
       th ###==========####
            ## cluster parameter ##
            ###===============####
            # Name of cluster currently supported:
            # slurm, LSF (eg, lxplus), condor, qsub (Torque/OpenPBS tested+working; PBS, SGE not tested)
            cluster name = LSF
        • / # Queue/Partition of cluster to be used for running
            cluster_queue = 2nw
nohup # Maximal runtime for a single process on a single node,
# too low values may lead failure of the code
            #cluster_runtime = 2-00:00:00
       au # add customizable lines at the beginning of cluster submission file
            # this allows to add certain cluster-specific requirements as options to the submission
            # eg: cluster_submit_line1 = #SBATCH --mem-per-cpu=4000
                  to increase the memory of a slurm job on certain clusters
       cr
            #cluster_submit_line1 =
            #cluster_submit_line2 =
            #cluster_submit_line3 =
```

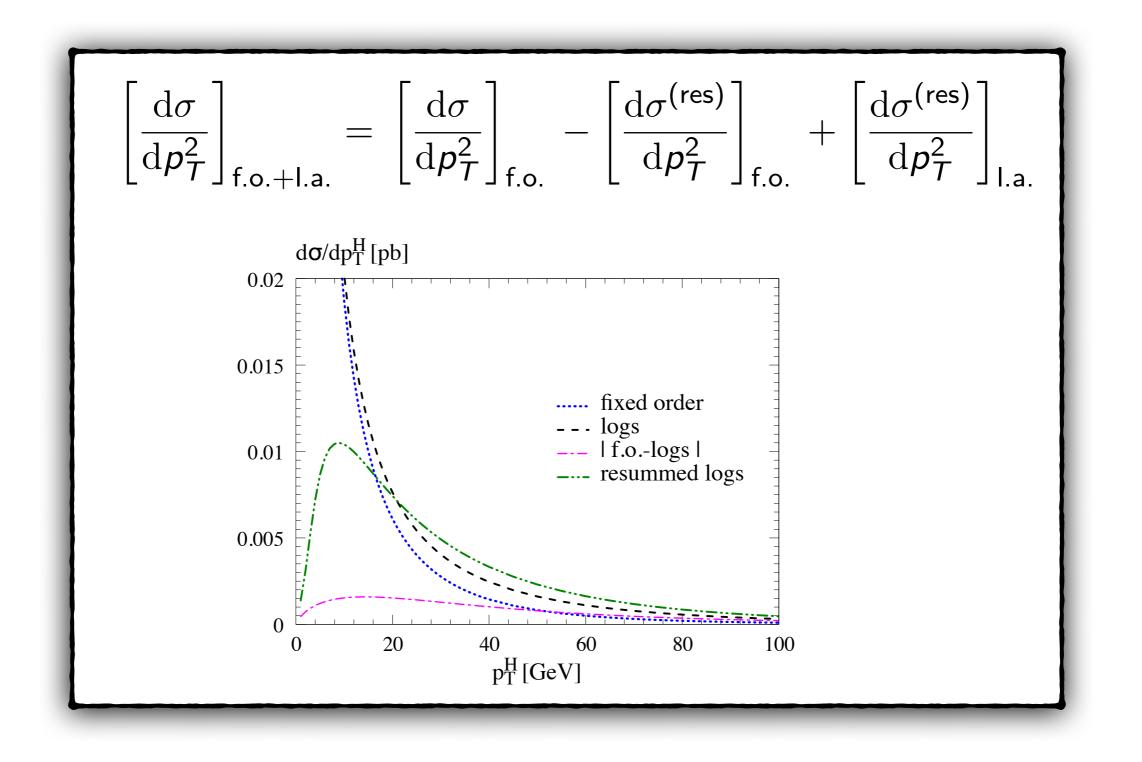

Additional information


./bin/run_process -h

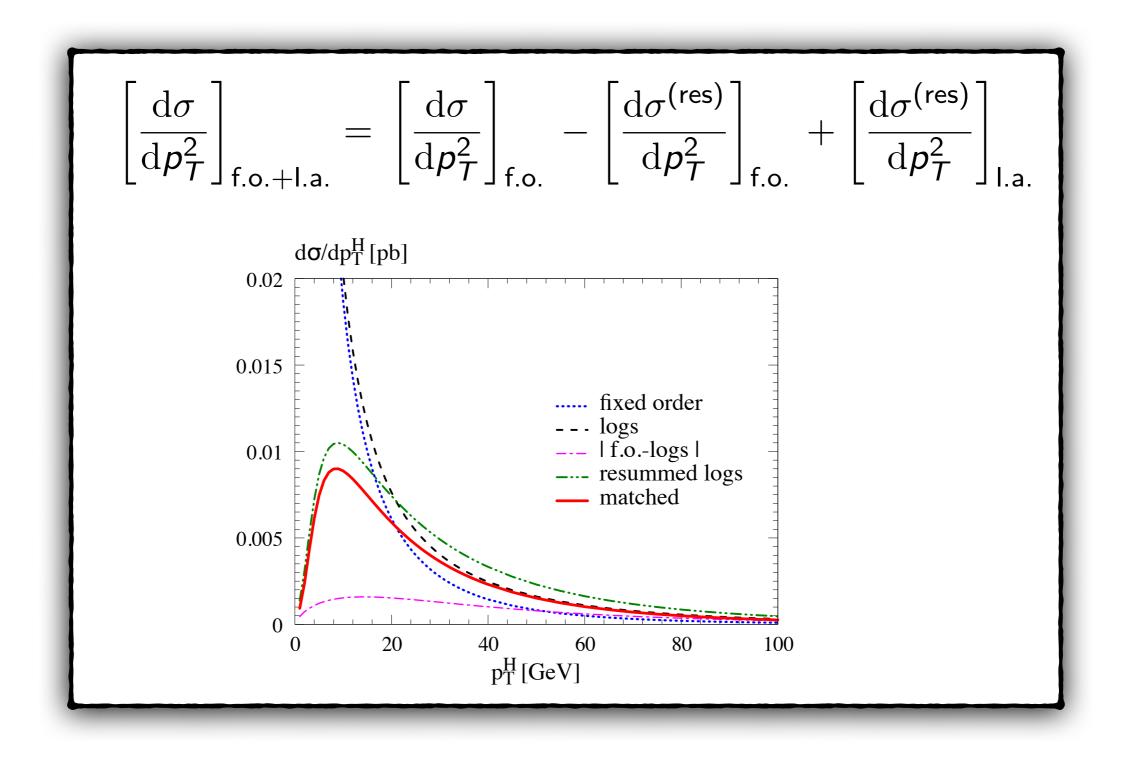
- eg, continue a previous run (all finished jobs will be kept) with "--continue"
- this way you can use the code completely without using the shells, eg:
 - ./matrix ppeeexex04
 - ./bin/run_process run_my_first_ZZ --run_mode run
- nohup ./bin/run_process run_my_first_ZZ --run_mode run > f.out &
 - automatic renormalization and factorization scale variations
 - creation of citation file for each run

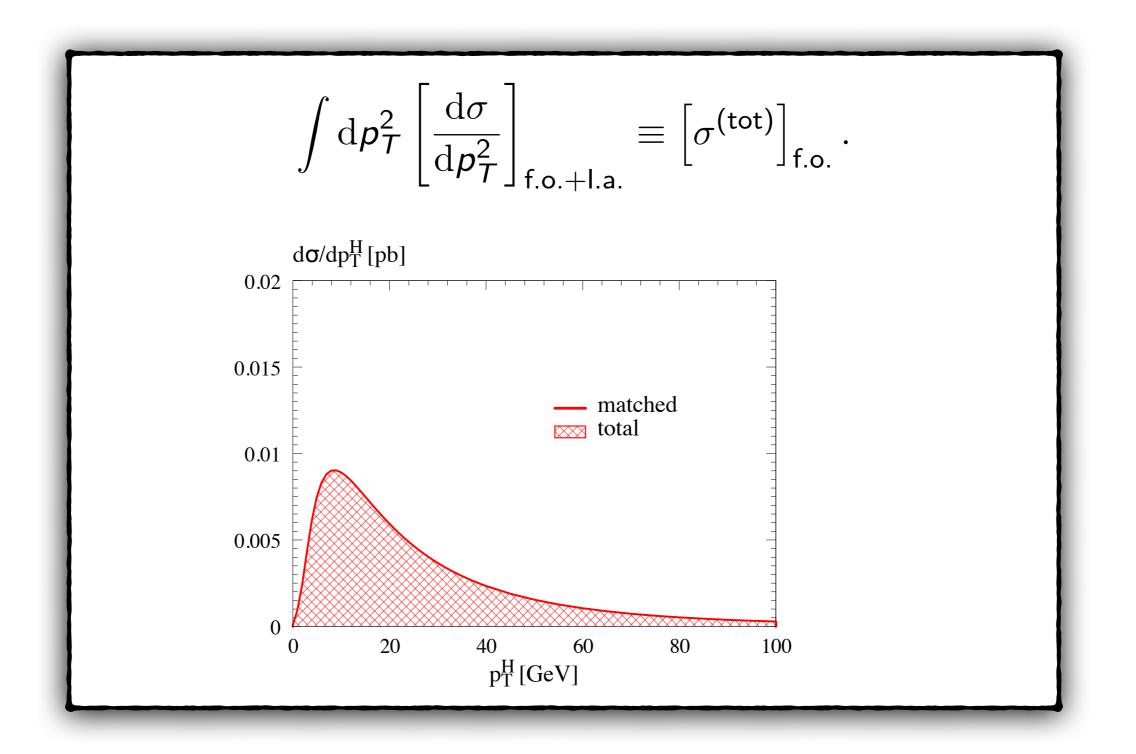

matching: FO+resummation


CER

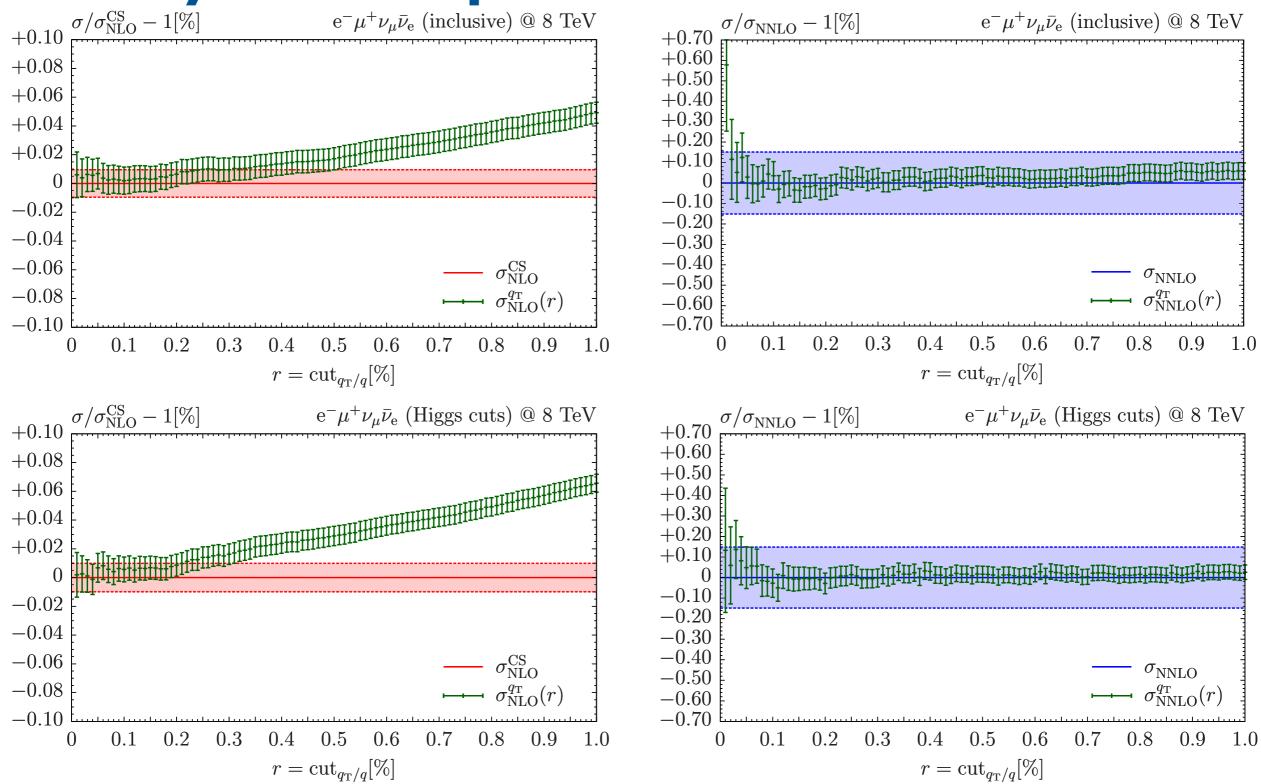


ER





FR


FR

ER

[Grazzini, Kallweit, Pozzorini, Rathlev, MW '16]

stability of r_{cut} dependence

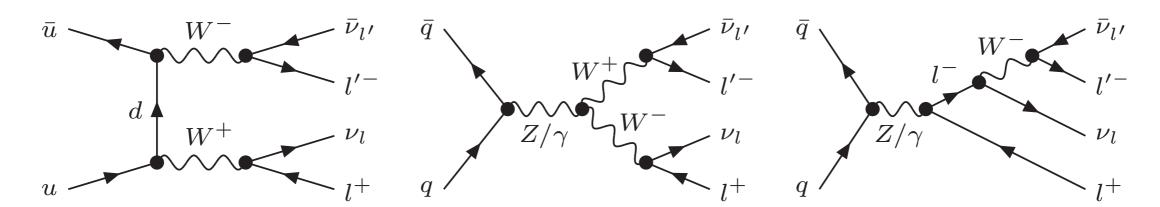
Theoretical status of WW production

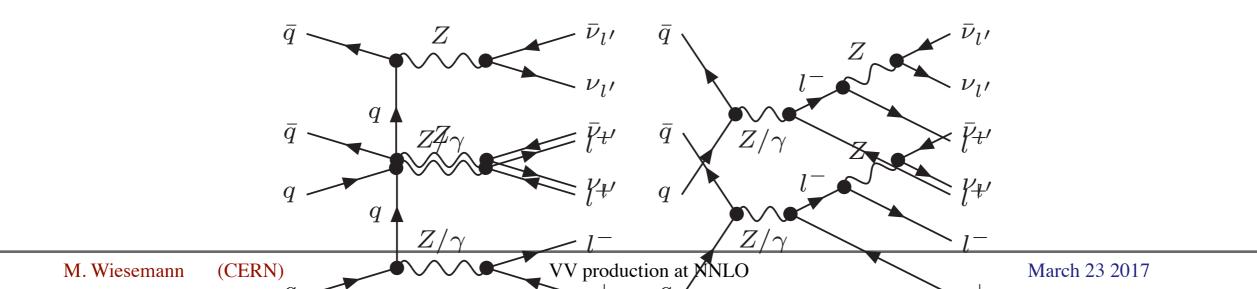
fixed-order:

NNLO corrections to inclusive [Gehrmann, Grazzini, Kallweit, P. Maierhöfer, von Manteuffel, Pozzorini, Rathlev, Tancredi '14]

and differential cross sections [Grazzini, Kallweit, Pozzorini, Rathlev, MW '16]

- NLO corrections to gg channel [Caola, Melnikov, Röntsch, Tancredi '15], second one for Higgs interference?
- NLO EW corrections [Biedermann, Billoni, Denner, Dittmaier, Hofer, Jäger, Salfelder '16]

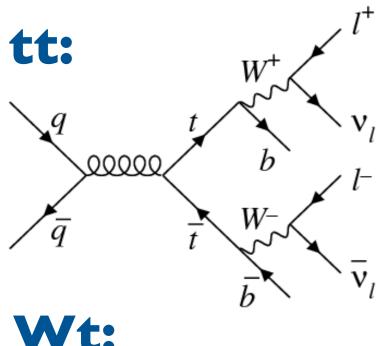

resummation:


- NNLO+NNLL pT resummation of WW pair [Grazzini, Kallweit, Rathlev, MW '15]
- recently: NNLO+NNLL jet-veto resummation [Dawson, Jaiswal, Li, Ramani, Zeng '16]

58

- [®] all $pp \rightarrow WW \rightarrow \ell \nu \ell' \nu'$ processes, including:
 - double-resonant W decays
 - Single-resonant Z/γ* decays (pp→Z/γ*→WW*/ℓνW→ℓνℓ'ν')
 - double(single)-resonant $pp \rightarrow ZZ/Z\gamma * \rightarrow \ell \nu \ell \nu (pp \rightarrow Z/\gamma * \rightarrow \ell \nu \ell \nu)$ in SF

- [®] all $pp \rightarrow WW \rightarrow \ell \nu \ell' \nu'$ processes, including:
 - ouble-resonant W decays
 - Single-resonant Z/γ* decays (pp→Z/γ*→WW*/ℓνW→ℓvℓ'v')
 - double(single)-resonant $pp \rightarrow ZZ/Z\gamma * \rightarrow \ell \nu \ell \nu (pp \rightarrow Z/\gamma * \rightarrow \ell \nu \ell \nu)$ in SF
- HERE: different-flavour channel $pp \rightarrow WW \rightarrow ev_e \mu v_{\mu}$ (for simplicity):


inclusive results

WW signal cuts:

$$\begin{split} m_{ll} &> 10 \,\text{GeV}, \quad \Delta R_{ll} > 0.1, \quad p_T^{\text{miss}} > 15 \,\,\text{GeV}, \quad p_T^{\text{miss, rel}} > 20 \,\text{GeV} \\ \textbf{jet veto} \quad (\text{anti-}k_T, \, R = 0.4, \, p_{T,j} > 25 \,\text{GeV}, \, |y_j| < 4.5) \\ \textbf{lepton cuts} \quad (p_{T,l_1} > 25 \,\text{GeV}, \, p_{T,l_2} > 20 \,\text{GeV}, \, |y_\mu| < 2.4, \, |y_e| < 1.37 \,\,\text{or} \, 1.52 < |y_e| < 2.47) \end{split}$$

top-quark contamination

g^{eeeee} \overline{b} \overline{b} \overline{b}

how to avoid tt/Wt contributions in computation:

four-flavour scheme (4FS)

- Idiagrams with final-state b-quarks finite subgroup (b massive)
- remove top-quark contamination by dropping such diagrams
- ø default choice in our computation

five-flavour scheme (5FS)

- b-quark contributions not finite (b massless, clustered in jets)
- use resonance structure with respect to top-quark width:

$$\sigma = A \cdot \frac{1}{\Gamma_t^2} + B \cdot \frac{1}{\Gamma_t} + C$$

- fit coefficients for different $\Gamma_t \longrightarrow C$: top-subtracted c.s.
- used as cross check (agreement for fiducial rates ~1%)

[Grazzini, Kallweit, Pozzorini, Rathlev, MW '16]

inclusive rates fiducial rates (WW cuts)

σ [fb]	8 TeV	$13\mathrm{TeV}$	8 TeV	$13\mathrm{TeV}$
LO	$ 425.41(4)^{+2.8\%}_{-3.6\%}$	778.99 $(8)^{+5.7\%}_{-6.7\%}$	$\overline{147.23(2)}^{+3.4\%}_{-4.4\%}$	$233.04(2)^{+6.6\%}_{-7.6\%}$
NLO	$623.47(6)^{+3.6\%}_{-2.9\%}$	$1205.11(12) {}^{+3.9\%}_{-3.1\%}$	$153.07(2)^{+1.9\%}_{-1.6\%}$	$236.19(2)_{-2.4\%}^{+2.8\%}$
NLO'+gg	$655.83(8)^{+4.3\%}_{-3.3\%}$	$1286.81(13) {}^{+4.8\%}_{-3.7\%}$	$166.41(3)^{+1.3\%}_{-1.3\%}$	$267.31(4)_{-2.1\%}^{+1.5\%}$
NNLO	$690.4(5) \begin{array}{c} +2.2\% \\ -1.9\% \end{array}$	$1370.9(11) \ {}^{+2.6\%}_{-2.3\%}$	164.1 (1) $^{+1.3\%}_{-0.8\%}$	$261.5(2) \ {}^{+1.9\%}_{-1.2\%}$

NLO'+gg = NLO+gg BOTH with NNLO PDFs

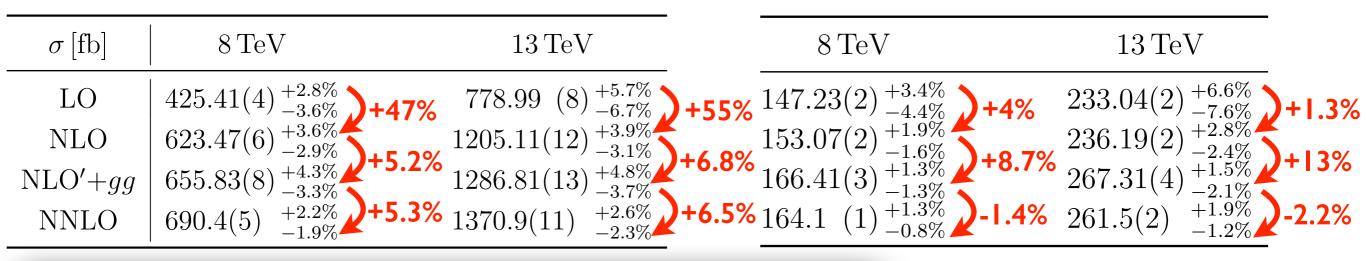
$A = \sigma^{\rm cuts} / \sigma^{\rm inclusive}$	8 TeV	$13\mathrm{TeV}$
LO	$\begin{vmatrix} 0.34608(7)^{+0.6\%}_{-0.7\%} \\ 0.24552(5)^{+4.4\%}_{-4.7\%} \\ 0.25374(7)^{+3.5\%}_{-3.7\%} \end{vmatrix}$	$\begin{array}{c} 0.29915(6)^{+0.8\%}_{-1.0\%} \\ 0.19599(4)^{+4.4\%}_{-4.7\%} \\ 0.20773(5)^{+3.2\%}_{-3.1\%} \end{array}$
NLO	$0.24552(5)^{+4.4\%}_{-4.7\%}$	$0.19599(4)^{+4.4\%}_{-4.7\%}$
NLO'+gg	$0.25374(7)^{+3.5\%}_{-3.7\%}$	$0.20773(5)^{+3.2\%}_{-3.1\%}$
NNLO	$0.2378(4) + 1.3\% \\ -0.9\%$	$0.1907(3) \ {}^{+1.2\%}_{-0.9\%}$

CERN

[Grazzini, Kallweit, Pozzorini, Rathlev, MW '16]

inclusive rates fiducial rates (WW cuts)

σ [fb]	$8\mathrm{TeV}$	$13\mathrm{TeV}$	$8\mathrm{TeV}$	$13\mathrm{TeV}$
LO	$425.41(4)^{+2.8\%}_{-3.6\%}$	+47% 778.99 $(8)^{+5.7\%}_{-6.7\%}$	+55% 147.23(2) +3.4%	$233.04(2)_{-7.6\%}^{+6.6\%}$
NLO	$623.47(6) {}^{+3.6\%}_{-2.9\%}$	+5.2% $\frac{1205.11(12)_{-3.1\%}^{+3.9\%}}{1286.81(13)_{-3.7\%}^{+4.8\%}}$	+6.8% $\frac{153.07(2)}{166.41(3)} + \frac{11.9\%}{-1.6\%}$ 166.41(3)	$236.19(2)_{-2.4\%}^{+2.8\%}$
NLO'+gg	$ 055.83(8) \frac{14.070}{-3.3\%}$	+5.2% $1286.81(13)^{+4.8\%}_{-3.7\%}$	$166.41(3)^{+1.3\%}_{-1.3\%}$	$267.31(4)^{+1.5\%}_{-2.1\%}$
NNLO	$690.4(5) \begin{array}{c} +2.2\% \\ -1.9\% \end{array}$	+5.3% 1370.9(11) $^{+2.6\%}_{-2.3\%}$	+6.5% 164.1 (1) $^{+1.3\%}_{-0.8\%}$	$261.5(2) \ {}^{+1.9\%}_{-1.2\%}$

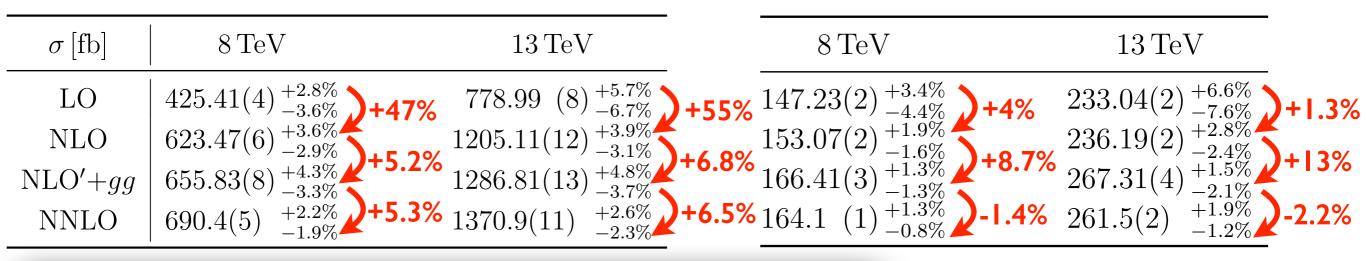

NLO'+gg = NLO+gg BOTH with NNLO PDFs

$A = \sigma^{\rm cuts} / \sigma^{\rm inclusive}$	8 TeV	$13\mathrm{TeV}$
LO	$ \begin{vmatrix} 0.34608(7)^{+0.6\%}_{-0.7\%} \\ 0.24552(5)^{+4.4\%}_{-4.7\%} \\ 0.25374(7)^{+3.5\%}_{-3.7\%} \end{vmatrix} $	$\begin{array}{c} 0.29915(6)^{+0.8\%}_{-1.0\%} \\ 0.19599(4)^{+4.4\%}_{-4.7\%} \\ 0.20773(5)^{+3.2\%}_{-3.1\%} \end{array}$
NLO	$0.24552(5)^{+4.4\%}_{-4.7\%}$	$0.19599(4)^{+4.4\%}_{-4.7\%}$
NLO'+gg	$0.25374(7)^{+3.5\%}_{-3.7\%}$	$0.20773(5)^{+3.2\%}_{-3.1\%}$
NNLO	$0.2378(4) + 1.3\% \\ -0.9\%$	$0.1907(3) \ {}^{+1.2\%}_{-0.9\%}$

CERN

[Grazzini, Kallweit, Pozzorini, Rathlev, MW '16]

inclusive rates fiducial rates (WW cuts)

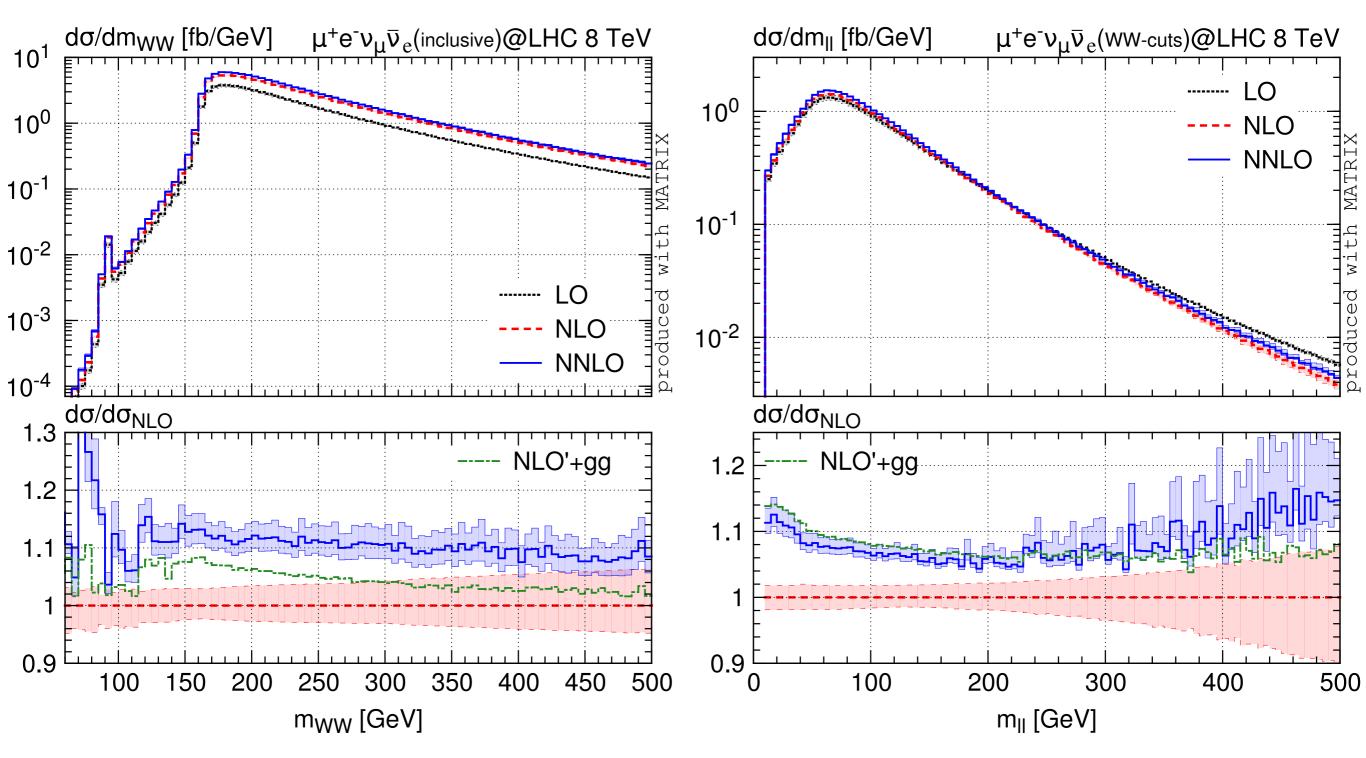

NLO'+gg = NLO+gg BOTH with NNLO PDFs

$A = \sigma^{\rm cuts} / \sigma^{\rm inclusive}$	8 TeV	$13\mathrm{TeV}$
LO	$\begin{vmatrix} 0.34608(7)^{+0.6\%}_{-0.7\%} \\ 0.24552(5)^{+4.4\%}_{-4.7\%} \\ 0.25374(7)^{+3.5\%}_{-3.7\%} \end{vmatrix}$	$\begin{array}{c} 0.29915(6)^{+0.8\%}_{-1.0\%} \\ 0.19599(4)^{+4.4\%}_{-4.7\%} \\ 0.20773(5)^{+3.2\%}_{-3.1\%} \end{array}$
NLO	$0.24552(5)^{+4.4\%}_{-4.7\%}$	$0.19599(4)^{+4.4\%}_{-4.7\%}$
NLO'+gg	$0.25374(7)^{+3.5\%}_{-3.7\%}$	$0.20773(5)^{+3.2\%}_{-3.1\%}$
NNLO	$0.2378(4) + 1.3\% \\ -0.9\%$	$0.1907(3) \stackrel{+1.2\%}{_{-0.9\%}}$

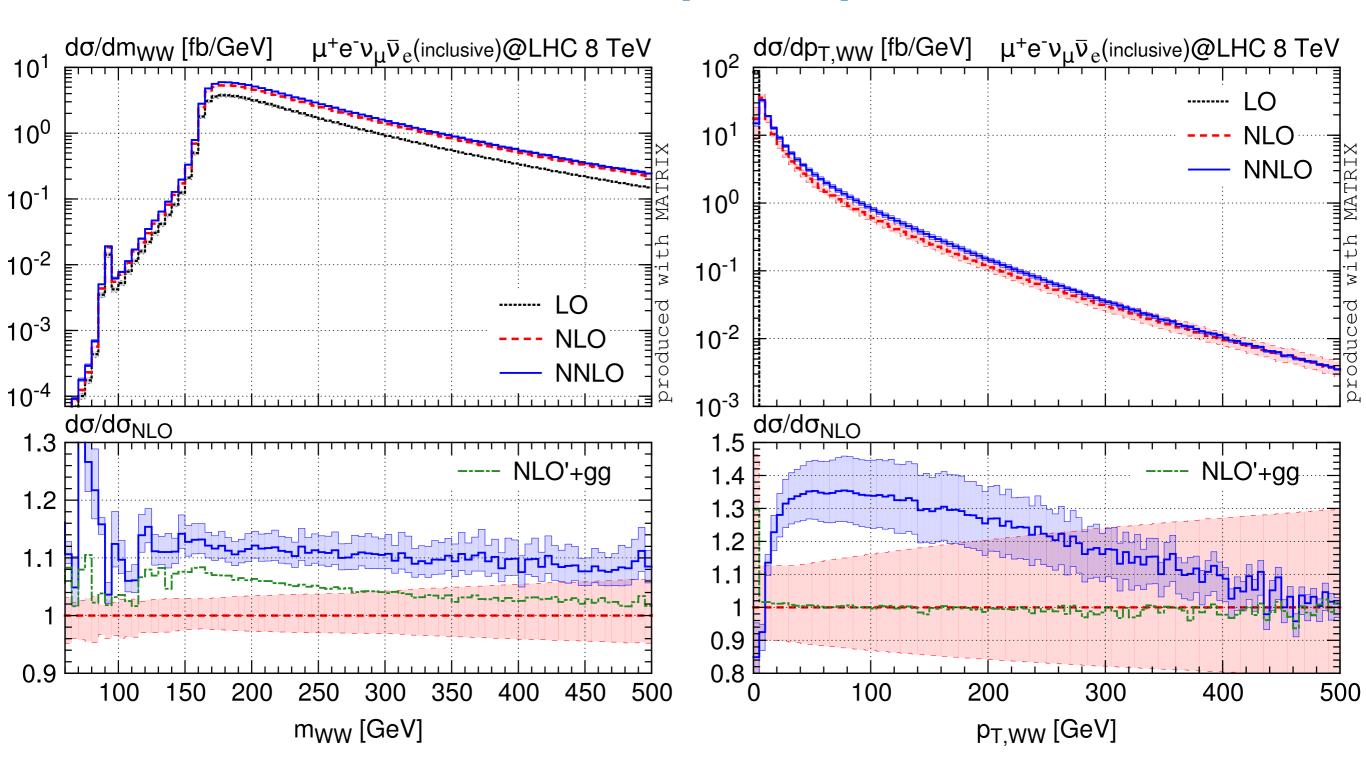
CERN

[Grazzini, Kallweit, Pozzorini, Rathlev, MW '16]

inclusive rates fiducial rates (WW cuts)



NLO'+gg = NLO+gg BOTH with NNLO PDFs


$A = \sigma^{\rm cuts} / \sigma^{\rm inclusive}$	8 TeV	$13\mathrm{TeV}$
LO	$ \begin{vmatrix} 0.34608(7)^{+0.6\%}_{-0.7\%} \\ 0.24552(5)^{+4.4\%}_{-4.7\%} \\ 0.25374(7)^{+3.5\%}_{-3.7\%} \\ \end{vmatrix} $	$\begin{array}{c c} 0.29915(6)^{+0.8\%}_{-1.0\%} \\ 0.19599(4)^{+4.4\%}_{-4.7\%} \\ 0.20773(5)^{+3.2\%}_{-3.1\%} \end{array} + 6\%$
NLO	$0.24552(5)^{+4.4\%}_{-4.7\%}$	$0.19599(4)^{+4.4\%}_{-4.7\%}$
NLO'+gg	$0.25374(7)^{+3.5\%}_{-3.7\%}$	$0.20773(5)^{+3.2\%}_{-3.1\%}$
NNLO	0.2378(4) + 1.3% - 6.3%	$0.1907(3) \stackrel{+1.2\%}{_{-0.9\%}}$ -8.2%

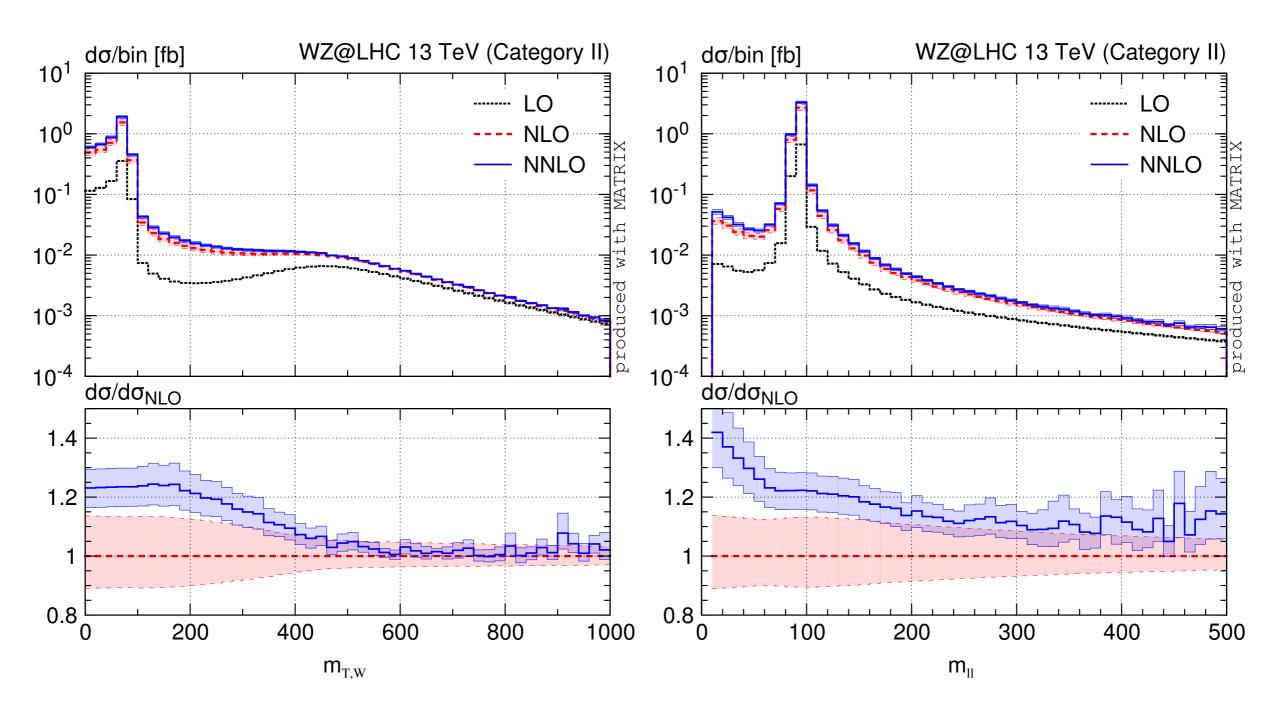
inclusive

WW cuts

inclusive: distributions (8 TeV)

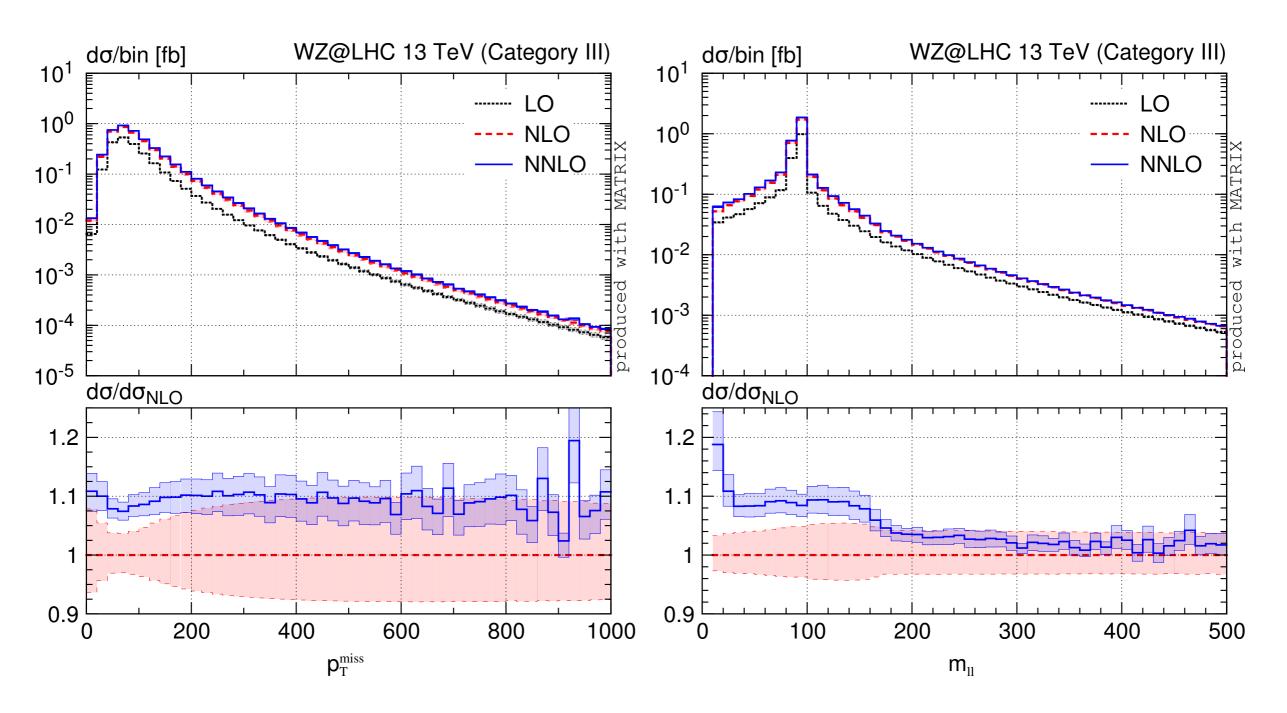
SM measurements

channel	$\sigma_{\rm LO}$ [fb]	$\sigma_{\rm NLO}$ [fb]	$\sigma_{\rm NNLO}$ [fb]	$\sigma_{\rm ATLAS}$ [fb]
$\mu^+ e^+ e^-$	11.50(0) + 2.2%	$20.42(0)^{+5.3\%}_{-4.0\%}$	$22.11(1)^{+1.8\%}_{-1.9\%}$	$23.9 \pm 6.5\%$ (stat) $\pm 2.5\%$ (syst) $\pm 2.2\%$ (lumi)
$e^+\mu^+\mu^-$	$11.59(0)_{-3.0\%}$			$19.9 \pm 7.2\%$ (stat) $\pm 3.5\%$ (syst) $\pm 2.2\%$ (lumi)
$e^+e^+e^-$	11.69(0) + 2.2%	20.49(0)+5.3%	22.17(1)+1.8%	$22.6 \pm 8.0\%$ (stat) $\pm 4.4\%$ (syst) $\pm 2.2\%$ (lumi)
$\mu^+\mu^+\mu^-$	$11.02(0)_{-3.0\%}$	$20.48(0)^{+5.3\%}_{-4.0\%}$	$22.1((1)^{+1.0})$	$19.8 \pm 6.0\%$ (stat) $\pm 2.5\%$ (syst) $\pm 2.2\%$ (lumi)
combined	$11.60(0)^{+2.2\%}_{-3.0\%}$	$20.45(0)^{+5.3\%}_{-4.0\%}$	$22.14(1)^{+1.8\%}_{-1.9\%}$	$21.2 \pm 3.4\%$ (stat) $\pm 2.3\%$ (syst) $\pm 2.2\%$ (lumi)
$\mu^- e^+ e^-$	6 722(1)+2.4%	12.25(0)+5.7%	12 42(1)+1.9%	$12.4 \pm 9.5\%$ (stat) $\pm 3.1\%$ (syst) $\pm 2.3\%$ (lumi)
$\mu^- e^+ e^-$ $e^- \mu^+ \mu^-$	$0.732(1)_{-3.4\%}$	$12.35(0)^{+5.7\%}_{-4.3\%}$	$13.42(1)_{-1.9\%}$	$15.7 \pm 7.5\%$ (stat) $\pm 2.8\%$ (syst) $\pm 2.3\%$ (lumi)
$e^-e^+e^-$	6.750(1)+2.4%	19 29(0)+5.7%	$12 \ 47(1) + 1.9\%$	$15.4 \pm 9.8\%$ (stat) $\pm 5.0\%$ (syst) $\pm 2.3\%$ (lumi)
$\mu^-\mu^+\mu^-$	$6.750(1)^{+2.4\%}_{-3.4\%}$	$12.30(0)_{-4.3\%}$	13.47(1)-2.0%	$13.4 \pm 7.5\%$ (stat) $\pm 2.8\%$ (syst) $\pm 2.3\%$ (lumi)
combined	$6.741(1)^{+2.4\%}_{-3.4\%}$	$12.36(0)^{+5.7\%}_{-4.3\%}$	$13.45(1)^{+1.9\%}_{-2.0\%}$	$14.0 \pm 4.3\%$ (stat) $\pm 2.8\%$ (syst) $\pm 2.3\%$ (lumi)
$\mu^{\pm}e^{+}e^{-}$	18 32(0)+2.3%	$32.76(1)^{+5.4\%}_{-4.1\%}$	35 53(9)+1.8%	$36.3 \pm 5.4\%$ (stat) $\pm 2.6\%$ (syst) $\pm 2.2\%$ (lumi)
$\mu^{\pm}e^{+}e^{-}$ $e^{\pm}\mu^{+}\mu^{-}$	$10.52(0)_{-3.2\%}$	$32.70(1)_{-4.1\%}$	$33.33(2)_{-1.9\%}$	$35.7 \pm 5.3\%$ (stat) $\pm 3.7\%$ (syst) $\pm 2.2\%$ (lumi)
$e^{\pm}e^{+}e^{-}$	18 27(0)+2.3%	22 85(1)+5.4%	25.64(2)+1.8%	$38.1 \pm 6.2\%$ (stat) $\pm 4.5\%$ (syst) $\pm 2.2\%$ (lumi)
$\mu^{\pm}\mu^{+}\mu^{-}$	$10.37(0)_{-3.2\%}$	$32.85(1)^{+5.4\%}_{-4.1\%}$	33.04(2) - 1.9%	$33.3 \pm 4.7\%$ (stat) $\pm 2.5\%$ (syst) $\pm 2.2\%$ (lumi)
combined	$18.35(0)^{+2.3\%}_{-3.2\%}$	$32.81(1)^{+5.4\%}_{-4.1\%}$	$\overline{35.59(2)^{+1.8\%}_{-1.9\%}}$	$35.1 \pm 2.7\%$ (stat) $\pm 2.4\%$ (syst) $\pm 2.2\%$ (lumi)

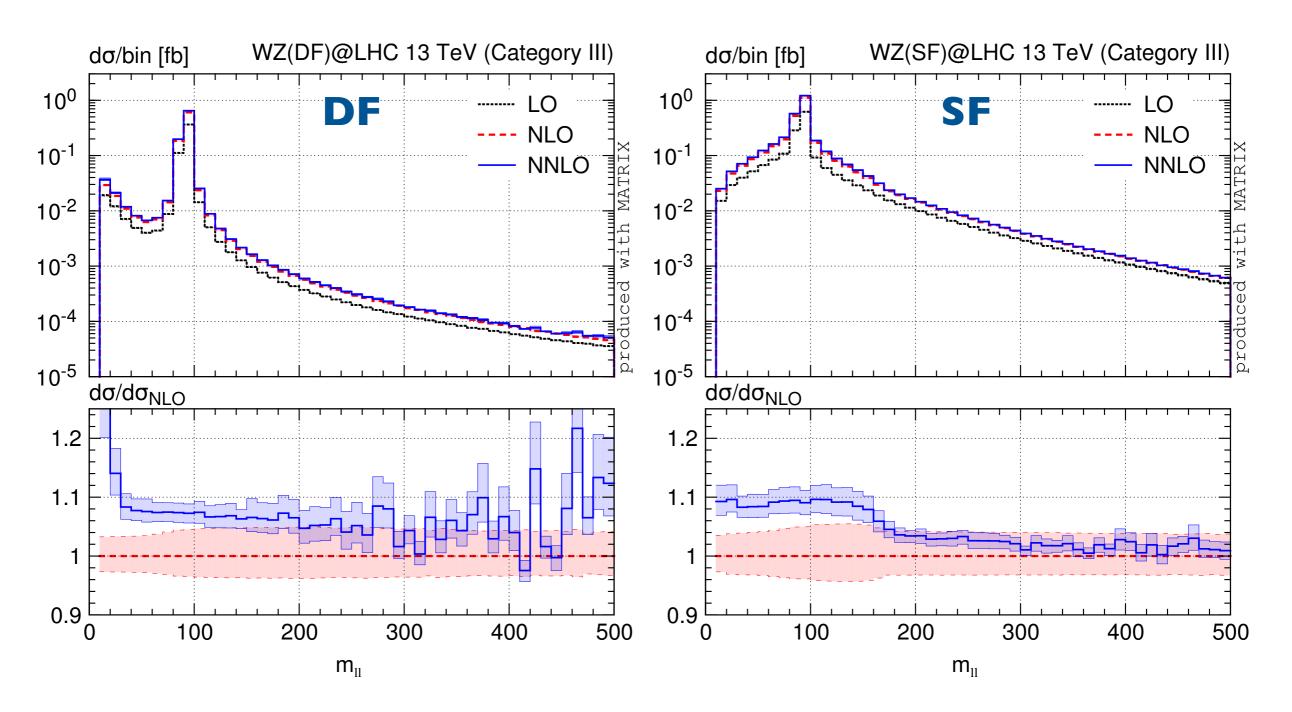

ATLAS (8 TeV):

$CMC (12 T_{\rm c})/(12$	channel	$\sigma_{\rm LO}$ [fb]	$\sigma_{\rm NLO}$ [fb]	$\sigma_{\rm NNLO} \ [{\rm fb}]$	$\sigma_{\rm CMS}$ [fb]
CMS (I3 TeV):	combined	$148.4(0)^{+5.4\%}_{-6.4\%}$	$301.4(1)^{+5.5\%}_{-4.5\%}$	$334.3(2)^{+2.3\%}_{-2.1\%}$	$258 \pm 8.1\%$ (stat) ^{+7.4%} _{-7.7%} (syst) ± 3.1 (lumi)
	channel	$\sigma_{\rm LO}$ [fb]	$\sigma_{\rm NLO}$ [fb]	$\sigma_{\rm NNLO}$ [fb]	$\sigma_{\rm ATLAS}$ [fb]
	$\mu^+ e^+ e^-$	17.22(0)+5.3%	$34.12(1)^{+5.3\%}_{-4.3\%}$	$37.75(2)^{+2.3\%}_{-2.0\%}$	$32.2 \pm 14.4\%$ (stat) $\pm 5.0\%$ (syst) $\pm 2.4\%$ (lumi)
	$e^+\mu^+\mu^-$	$17.33(0)_{-6.3\%}$			$45.0 \pm 12.1\%$ (stat) $\pm 4.6\%$ (syst) $\pm 2.3\%$ (lumi)
	$e^{+}e^{+}e^{-}$	17.07(0)+5.3%	$34.21(1)^{+5.3\%}_{-4.3\%}$	$37.84(2)^{+2.2\%}_{-2.0\%}$	$28.0 \pm 19.2\%$ (stat) $\pm 11.2\%$ (syst) $\pm 2.4\%$ (lumi)
	$\mu^+\mu^+\mu^-$	$17.37(0)_{-6.3\%}^{+0.0\%}$			$36.5 \pm 11.6\%$ (stat) $\pm 4.1\%$ (syst) $\pm 2.3\%$ (lumi)
	combined	$17.35(0)^{+5.3\%}_{-6.3\%}$	$34.16(1)^{+5.3\%}_{-4.3\%}$	$37.80(2)^{+2.2\%}_{-2.0\%}$	$36.7 \pm 6.7\%$ (stat) $\pm 3.9\%$ (syst) $\pm 2.3\%$ (lumi)
	$\mu^- e^+ e^-$	$11.50(0)^{+5.7\%}_{-6.8\%}$	$23.57(1)^{+5.5\%}_{-4.5\%}$	$26.18(1)^{+2.3\%}_{-2.1\%}$	$22.9 \pm 17.5\%$ (stat) $\pm 5.8\%$ (syst) $\pm 2.4\%$ (lumi)
	$e^-\mu^+\mu^-$				$30.2 \pm 15.2\%$ (stat) $\pm 6.9\%$ (syst) $\pm 2.3\%$ (lumi)
ATLAS (13 TeV):	$e^-e^+e^-$	11.52(0)+5.7%	$23.63(0)^{+5.5\%}_{-4.5\%}$	$26.25(1)^{+2.2\%}_{-2.1\%}$	$22.5 \pm 21.0\%$ (stat) $\pm 10.5\%$ (syst) $\pm 2.4\%$ (lumi)
	$\mu^-\mu^+\mu^-$	$11.33(0)_{-6.8\%}$			$27.1 \pm 13.7\%$ (stat) $\pm 5.0\%$ (syst) $\pm 2.4\%$ (lumi)
	combined	$11.51(0)^{+5.7\%}_{-6.8\%}$	$23.60(1)^{+5.5\%}_{-4.5\%}$	$26.22(1)^{+2.3\%}_{-2.1\%}$	$26.1 \pm 8.1\%$ (stat) $\pm 4.7\%$ (syst) $\pm 2.4\%$ (lumi)
	$\mu^{\pm}e^+e^-$	$28.83(0)^{+5.4\%}_{-6.5\%}$	$57.69(1)^{+5.4\%}_{-4.3\%}$	$63.93(3)^{+2.3\%}_{-2.1\%}$	$55.1 \pm 11.1\%$ (stat) $\pm 5.1\%$ (syst) $\pm 2.4\%$ (lumi)
	$e^{\pm}\mu^{+}\mu^{-}$				$75.2 \pm 9.5\%$ (stat) $\pm 5.3\%$ (syst) $\pm 2.3\%$ (lumi)
	$e^{\pm}e^{+}e^{-}$	$28.90(0)^{+5.4\%}_{-6.5\%}$	$57.84(1)^{+5.4\%}_{-4.3\%}$	$64.09(3)^{+2.2\%}_{-2.1\%}$	$50.5 \pm 14.2\%$ (stat) $\pm 10.6\%$ (syst) $\pm 2.4\%$ (lumi)
	$\mu^{\pm}\mu^{+}\mu^{-}$				$63.6 \pm 8.9\%$ (stat) $\pm 4.1\%$ (syst) $\pm 2.3\%$ (lumi)
	combined	$28.86(0)^{+5.4\%}_{-6.5\%}$	$57.76(1)^{+5.4\%}_{-4.3\%}$	$64.01(3)^{+2.3\%}_{-2.1\%}$	$63.2 \pm 5.2\%$ (stat) $\pm 4.1\%$ (syst) $\pm 2.4\%$ (lumi)

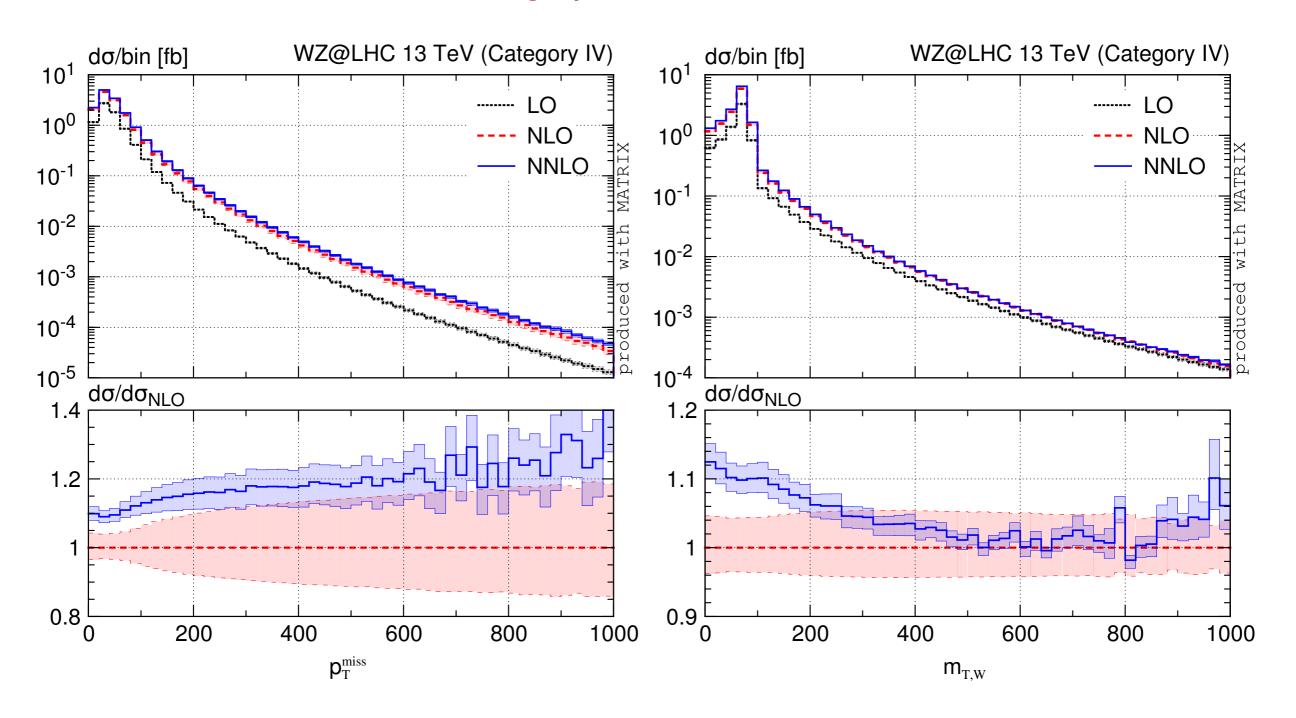
New-physics searches

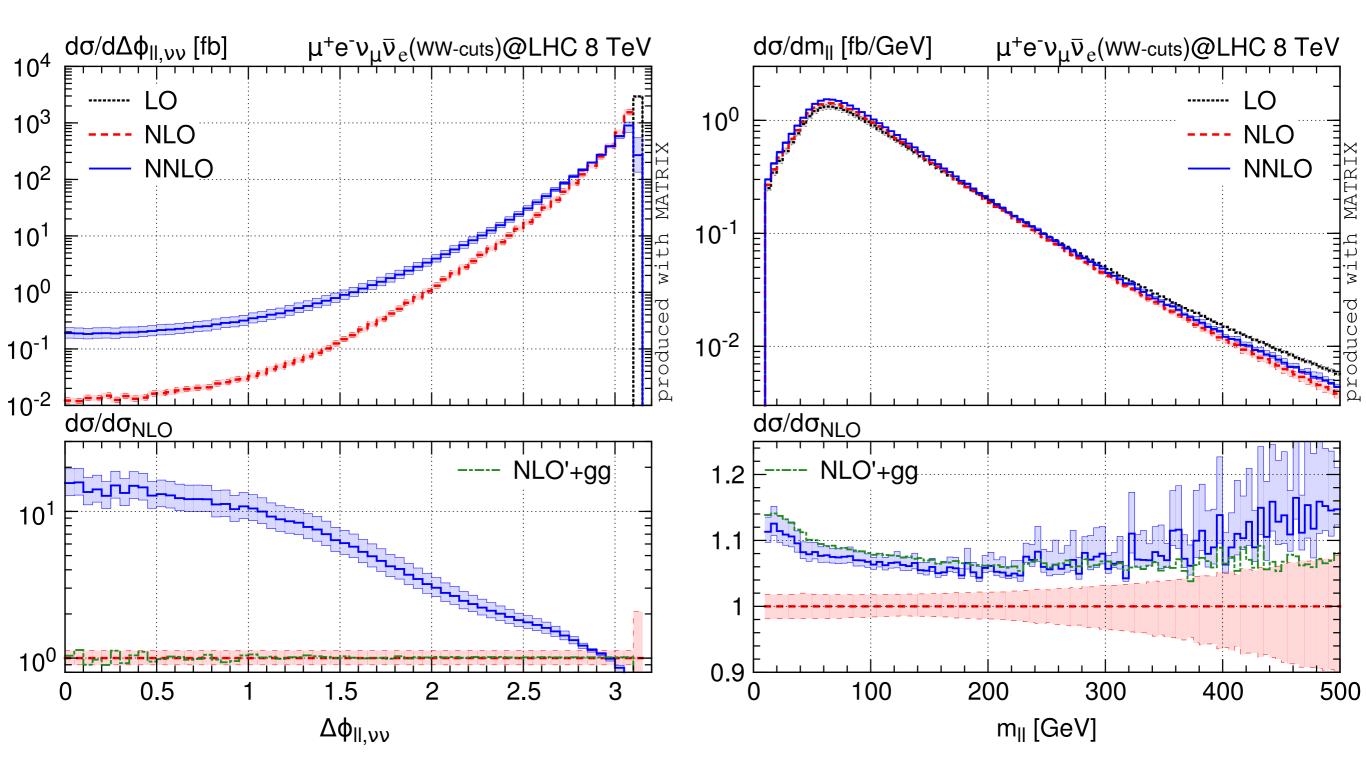

Category II: pT^{miss}>200 GeV

New-physics searches


Category III: m_{T,W}>120 GeV

New-physics searches


Category III: m_{T,W}>120 GeV



New-physics searches

Category IV: m_{ll}>105 GeV

WW signal cuts: distributions (8 TeV)

