

INFN

Recent progress on VH associated production at the LHC

Francesco Tramontano

francesco.tramontano@na.infn.it

Università "Federico II" & INFN sezione di Napoli

Based on:

- G. Ferrera, M. Grazzini, FT [Phys. Rev. Lett. 2011, JHEP 2014, Phys. Lett. 2015]
- G. Luisoni, P. Nason, C. Oleari, FT [JHEP 2013]
- V. Del Duca, C. Duhr, G. Somogyi, FT, Z. Trocsanyi [JHEP 2015]
- G. Ferrera, G. Somogyi, FT [to appear]

LHCTheory ERC meeting, 22-24 March 2017, Brussels

Outline

- * Motivation
- * Higher order corrections
- * Results
- * Conclusion/Outlook

Higgs particle @ ATLAS and CMS

- VH allows to measure Higgs coupling to beauty
- Deviation from the SM still possible
- Need of precise fully differential predictions 19.7 fb^{-1} (8 TeV) + 5.1 fb⁻¹ (7 TeV) Combined m_H = 125 GeV CMS $\mu = 1.00 \pm 0.14$ $H \rightarrow \gamma \gamma$ (untagged) p_{SM} = 0.84 $H \rightarrow \gamma \gamma$ (VBF tag) $H \rightarrow \gamma \gamma$ (VH tag) $H \rightarrow \gamma \gamma$ (ttH tag) $H \rightarrow ZZ (0/1 \text{ jet})$ $H \rightarrow ZZ$ (2 jets) $H \rightarrow WW (0/1 \text{ jet})$ $H \rightarrow WW (VBF tag)$ $H \rightarrow WW (VH tag)$ $H \rightarrow WW$ (ttH tag) $H \rightarrow \tau \tau$ (0/1 jet) $H \rightarrow \tau \tau$ (VBF tag) $H \rightarrow \tau \tau$ (VH tag) $H \rightarrow \tau \tau$ (ttH tag) $H \rightarrow bb (VH tag)$ $H \rightarrow bb$ (ttH tag) -2 2 O -4 $\bar{B}est fit \sigma / \sigma_{SM}$

- Large sources of backgrounds from V+bb,V+b,V+jets, tt,VV
- For boosted events S/B ratio improve considerably and allows detection at the LHC [Butterworth, Davison, Rubin, Salam 2008]
- Search strategy for VH production important to asses the relevance of the corrections to the decay process ŀ

$$R_{bb} \gtrsim 2 \frac{m_H}{p_T} \qquad (p_T \gg m_H)$$

Search for the Standard Model Higgs boson produced in association with a vector boson and decaying to a b-bbar pair in pp collisions at 13 TeV using the ATLAS detector

ATLAS-CONF-2016-091

Selection	0-lepton	1-lepton	2-lepton			
Trigger	$E_{\mathrm{T}}^{\mathrm{miss}}$	$E_{\rm T}^{\rm miss}$ (μ sub-channel)				
		Lowest unpresc	aled single lepton			
Leptons	0 loose lepton	1 tight lepton	2 loose leptons			
			$(\geq 1 \text{ medium lepton})$			
Lepton pair	-	-	Same flavour			
			opposite-charge for $\mu\mu$			
$E_{\rm T}^{\rm miss}$	> 150 GeV	> 30 GeV (e sub-channel)	-			
m_{ll}	-	-	$71 < m_{ll} < 121 \text{ GeV}$			
S_{T}	> 120 (2 jets), > 150 GeV (3 jets)	-	-			
Jets	Exactly 2 or 3 s	Exactly 2 or ≥ 3 signal jets				
<i>b</i> -jets						
Leading jet $p_{\rm T}$	$> 45 { m GeV}$					
$\min\Delta\phi(E_{\rm T}^{\rm miss}, {\rm jet})$	$> 20^{\circ}$	-	-			
$\Delta \phi(E_{\mathrm{T}}^{\mathrm{miss}},h)$	$> 120^{\circ}$	-	-			
$\Delta \phi(\text{jet1,jet2})$	$< 140^{\circ}$	-	-			
$\Delta\phi(E_{\rm T}^{\rm miss}, E_{{\rm T},trk}^{\rm miss})$	< 90°	-	-			
$p_{\rm T}^V$ regions	$[0, 150]$ GeV (2-lepton), $[150, \infty]$ GeV					

ATLAS Preliminary Vs=13 TeV, fL dt= 13.2 fb⁻¹

- too early to claim the need of NP, but...
- quite large negative fluctuation

 with combined ATLAS and CMS 2016 data H-b-b coupling will be measured with high accuracy

Higher order corrections

VH higher Order Corrections (EW)

* EW corrections:

NLO EW total cross section (5~10% at the LHC) [Ciccolini, Dittmaier, Kramer '03] NLO EW known differentially (5~10% or more at the LHC)

→ HAWK [Denner, Dittmaier, Kallweit, Mück]

- ✓ Fully differential $2 \rightarrow 3$ NLO EW computation
- ✓ Implemented through the Complex Mass Scheme@NLO [Denner, Dittmaier]
- * Combination of QCD and EW corrections
 - \checkmark as done already in YR2, also at differential level

$$\sigma = \sigma^{\rm QCD} \times (1 + \delta^{\rm rec}_{\rm EW}) + \sigma_{\gamma}$$

 More can only be achieved by some NNLO QCD-EW calculation: currently out of reach

VH higher order Corrections (QCD) (parton level)

QCD corrections (differential)

QCD corrections (inclusive)

- NNLO QCD corrections for VH are basically the same of DY (1~3% at the LHC)
 [Van Neerven et al 1991, Brein, Harlander, Djouadi 2000]
- For ZH there is also gg->ZH top-loop, the most accurate prediction covers gg->ZH @ NLO QCD in the heavy-top limit (5% at the LHC)
 [Altenkamp, Dittmaier, Harlander, Rzehak, Zirke 2012]
- NNLO top-mediated contribution (1~2% at the LHC) [Brei, Harlander, Wiesemann, Zirke 2011]
- N3LO threshold corrections computed [Kumal, Mandal, Ravindran (2014)]
- The inclusive H → bb decay rate is known up to fourth order in QCD (0.1%) [Baikov,Chetyrkin,Kuhn('05)] (and up to NLO EW (1~2%) [Dabelstein, Hollik; Kniehl (1992)])
- Fully differential NNLO QCD corrections for VH, including leptonic V decays with spin correlations and NLO H decay HVNNLO [Ferrera, Grazzini, FT (2011, 2014)] (qT subtraction method) MCFM [Campbell, Ellis, Giele, Williams (2016)] (N-jettiness method) + top-loop contributions from [Brein et al (2011)]
- NNLO fully-differential decay rate H → bb computed through new non-linear mapping method
 [Anastasiou,Herzog,Lazopoulos (2012)] and the Colourful (dipole) method [Del Duca,Duhr,Somogyi,FT,Trocsanyi (2015)]
- Resummation of jet-veto and transverse-momentum logarithms performed [Y.Li,Liu(2014)][Shao,C.S.Li,H.T.Li(2013)], [Dawson,Han,Lai,Leibovich,Lewis(2012)]

Higgs boson associated production

- Drell-Yan type contribution
- They contribute to the cross section at order $g^4 \alpha_s^n$ (n = 0, 1, 2)
- increase the cross section by about 30% with respect to LO
- (a) (b) (a) (b) (c) (c) (c)

- top-loop-induced contributions
- Interference with the LO and the real-emission NLO amplitude is of order $\lambda_t \ g^3 \ \alpha_s ^2$
- numerical impact is at the percent level.

(c)

(f)

- Contributes to the cross section at order $\lambda_t{}^2\,g^2\,\alpha_s{}^2$
- At one-loop order it amounts to about 4% (6%) of the total Higgs strahlung cross section at the LHC with 8TeV (14TeV)
- Rather strong renormalisation and factorisation scale dependence of about 30%
 - increase the theoretical uncertainty of the HZ relative to the WH process

WH higher order corrections (YR4) (parton level)

• LHCI3 • anti-kt with R=0.4 $p_{Tl} > 15 \text{ GeV}, |y_l| < 2.5.$

Inclusive Cross Section

\sqrt{s} [GeV]	σ [fb]	$\Delta_{\rm scale}[\%]$	$\Delta_{PDF/\alpha_s/PDF\oplus\alpha_s}[\%]$	$\sigma^{\rm DY}_{ m NNLOQCD}[{ m fb}]$	$\sigma^{ m ggZH}_{ m NLO+NLL}[m fb]$	$\sigma_{\text{t-loop}}[\text{fb}]$	$\delta_{\rm EW}[\%]$	σ_γ [fb]
7	11.43	$^{+2.6}_{-2.4}$	$\pm 1.6/\pm 0.7/\pm 1.7$	10.91	0.94	0.11	-5.2	$0.03\substack{+0.04 \\ -0.00}$
8	14.18	$^{+2.9}_{-2.4}$	$\pm 1.5/\pm 0.8/\pm 1.7$	13.36	1.33	0.14	-5.2	$0.04\substack{+0.05\\-0.00}$
13	29.82	$^{+3.8}_{-3.1}$	$\pm 1.3 / \pm 0.9 / \pm 1.6$	26.66	4.14	0.31	-5.3	$0.11\substack{+0.12 \\ -0.01}$
14	33.27	$+3.8 \\ -3.3$	$\pm 1.3/\pm 1.0/\pm 1.6$	29.47	4.87	0.36	-5.3	$0.12\substack{+0.13 \\ -0.01}$

Differential Cross Section

 $75 \text{ GeV} < M_{ll} < 105 \text{ GeV}.$

Higgs cross section working group

ggZH associated production at NNLO

ggZH contribution to the associated production $\sqrt{s} = 8 \text{ TeV}$ (dashed) and 14 TeV (solid)

Large Mass Expansion for the LO

[Altenkamp, Dittmaier, Harlander, Rzehak, Zirke 2012]

$M_{\rm H}[{\rm GeV}]$ ggZH contribution to the associated production $\sqrt{s} = 8 \,{\rm TeV}$ (dashed) and 14 TeV (solid)

[Altenkamp, Dittmaier, Harlander, Rzehak, Zirke 2012]

Merging and Matching

* NLO QCD & parton shower:

- f merging and matching for pp \rightarrow VH(<u>j</u>) available in the POWHEG-BOX framework [Luisoni, Nason, Oleari, FT]
- \checkmark also in MG5_aMC (FxFx) and Sherpa (MEPS@NLO)
- ✓ also with anomalous couplings

MINLO [Familton, Nason, Zanderighi] \rightarrow No error related to the merging scale

- * NNLO matching with PS possible through reweighting of HVj-MINLO with HVNNLO. Already worked out for:
 - H production [Hamilton, Nason, Re, Zanderighi]
 reweighting with HNNLO [Grazzini]
 - ✓ DY production [Karlberg, Re, Zanderighi] reweighting with DYNNLO [Catani, Cieri, Ferrera, de Florian, Grazzini]

$(pp \rightarrow VH) \otimes (H \rightarrow bb)$

QCD corrections in the Narrow Width Approximation

$$d\sigma_{pp \to VH + X \to Vb\bar{b} + X} = \left[\sum_{k=0}^{\infty} d\sigma_{pp \to VH + X}^{(k)}\right] \times \left[\frac{\sum_{k=0}^{\infty} d\Gamma_{H \to b\bar{b}}^{(k)}}{\sum_{k=0}^{\infty} \Gamma_{H \to b\bar{b}}^{(k)}}\right] \times Br(H \to b\bar{b})$$

Precise knowledge from YR1

Including up to NLO corrections

$$d\sigma_{pp \to VH + X \to Vb\bar{b} + X}^{\text{NLO(prod)+NLO(dec)}} = \left[d\sigma_{pp \to VH}^{(0)} \times \frac{d\Gamma_{H \to b\bar{b}}^{(0)} + d\Gamma_{H \to b\bar{b}}^{(1)}}{\Gamma_{H \to b\bar{b}}^{(0)} + \Gamma_{H \to b\bar{b}}^{(1)}} + d\sigma_{pp \to VH + X}^{(1)} \times \frac{d\Gamma_{H \to b\bar{b}}^{(0)}}{\Gamma_{H \to b\bar{b}}^{(0)}} \right] \times Br(H \to b\bar{b})$$

Including up to NNLO corrections for the production and up to NLO for the decay

$$\begin{split} d\sigma_{pp \to VH + X \to l\nu b\bar{b} + X}^{\text{NNLO(prod)+NLO(dec)}} &= \left[d\sigma_{pp \to VH}^{(0)} \times \frac{d\Gamma_{H \to b\bar{b}}^{(0)} + d\Gamma_{H \to b\bar{b}}^{(1)}}{\Gamma_{H \to b\bar{b}}^{(0)} + \Gamma_{H \to b\bar{b}}^{(1)}} \right. \\ &+ \left(d\sigma_{pp \to VH + X}^{(1)} + d\sigma_{pp \to VH + X}^{(2)} \right) \times \frac{d\Gamma_{H \to b\bar{b}}^{(0)}}{\Gamma_{H \to b\bar{b}}^{(0)}} \right] \times Br(H \to b\bar{b}) \end{split}$$

NNLO(pp \rightarrow VH) \otimes nlo(H \rightarrow bb)

LHC8 with standard WH search cuts

Including up to NNLO corrections for both the Higgs production and its decay

$$\begin{split} d\sigma_{pp \to WH + X \to l\nu b\bar{b} + X}^{\text{NNLO(prod)+NNLO(dec)}} = & \left[d\sigma_{pp \to WH}^{(0)} \times \frac{d\Gamma_{H \to b\bar{b}}^{(0)} + d\Gamma_{H \to b\bar{b}}^{(1)} + d\Gamma_{H \to b\bar{b}}^{(2)}}{\Gamma_{H \to b\bar{b}}^{(0)} + \Gamma_{H \to b\bar{b}}^{(1)} + \Gamma_{H \to b\bar{b}}^{(2)}} \right. \\ & \left. + d\sigma_{pp \to WH + X}^{(1)} \times \frac{d\Gamma_{H \to b\bar{b}}^{(0)} + d\Gamma_{H \to b\bar{b}}^{(1)}}{\Gamma_{H \to b\bar{b}}^{(0)} + \Gamma_{H \to b\bar{b}}^{(1)}} \right. \\ & \left. + d\sigma_{pp \to WH + X}^{(2)} \times \frac{d\Gamma_{H \to b\bar{b}}^{(0)}}{\Gamma_{H \to b\bar{b}}^{(0)}} \right] \times Br(H \to b\bar{b}) \end{split}$$

combine NNLO in the production and nnlo in the decay stages
inclusion of NLO(prod) x NLO(dec) contribution relevant

Production: qT subtraction method [Catani, Grazzini 2007] $h_1 \, h_2 \to F \;\; \text{a colorless system}$

- qT is the transverse momentum of the colorless system (F), it is exactly zero at the leading order
- for qT.ne.0 there can be only divergences from single unresolved parton configurations
 - \checkmark can be treated with NLO subtraction methods like CS dipoles
- double unres. singularities are all associated with qT = 0 configurations
 - ✓ can be treated by an additional subtraction defined exploiting the knowledge of the logarithmically enhanced contributions from the qT resummation formalism [Catani, De Florian, Grazzini 2000]

$$d\sigma_{N^{n}LO}^{F} \stackrel{q_{T} \to 0}{\longrightarrow} d\sigma_{LO}^{F} \otimes \Sigma(q_{T}/M) dq_{T}^{2} = d\sigma_{LO}^{F} \otimes \sum_{n=1}^{\infty} \sum_{k=1}^{2n} \left(\frac{\alpha_{S}}{\pi}\right)^{n} \Sigma^{(n,k)} \frac{M^{2}}{q_{T}^{2}} \ln^{k-1} \frac{M^{2}}{q_{T}^{2}} dq_{T}^{2}$$
$$d\sigma^{CT} \stackrel{q_{T} \to 0}{\longrightarrow} d\sigma_{LO}^{F} \otimes \Sigma(q_{T}/M) dq_{T}^{2}$$

Production: qT subtraction method [Catani, Grazzini 2007]

Fully differential cross section: $d\sigma_{(N)NLO}^F = \mathcal{H}_{(N)NLO}^F \otimes d\sigma_{LO}^F + \left[d\sigma_{(N)LO}^{F+\text{jets}} - d\sigma_{(N)LO}^{CT} \right]$

where
$$\mathcal{H}_{NNLO}^{F} = \left[1 + \frac{\alpha_{S}}{\pi}\mathcal{H}^{F(1)} + \left(\frac{\alpha_{S}}{\pi}\right)^{2}\mathcal{H}^{F(2)}\right]$$

- the choice of the counter term (CT) has arbitrariness but the $qT \rightarrow 0$ limit behavior is universal
- CT regularize simultaneously the real-virtual and the double real integration that have to be run together
- the Hard function H contains both the double virtual amplitude and the integral of the CT
 - ✓ its process dependent part can be obtained by the virtual amplitude via a universal process independent factorisation formula [Catani, Cieri, De Florian, Ferrera, Grazzini 2009]
- the method has been used for:
 ggF Higgs production [Catani, Grazzini 2007],
 DY and Diphoton [Catani, Cieri, De Florian, Ferrera, Grazzini 2009],
 VV' production [Grazzini,Kallweit,Rathlev,Torre 2013] and
 [Gehrmann, Grazzini, Kallweit, Maierhöfer, von Manteuffel, Pozzorini, Rathlev, Tancredi 2014]

Decay: Colourful method [Del Duca, Somogyi and Trocsanyi 2007, 2009]

- completely local method
- based on the universal infrared factorization of QCD squared matrix elements
- local subtraction terms for regulating the singularities
- Phase space factorization
- O(300) integrals to account of the final state singularities

$$d\sigma_{m+2}^{\text{NNLO}} = \left\{ d\sigma_{m+2}^{\text{RR}} J_{m+2} - d\sigma_{m+2}^{\text{RR},\text{A}_2} J_m - \left[d\sigma_{m+2}^{\text{RR},\text{A}_1} J_{m+1} - d\sigma_{m+2}^{\text{RR},\text{A}_{12}} J_m \right] \right\}_{\epsilon=0}, \\ d\sigma_{m+1}^{\text{NNLO}} = \left\{ \left[d\sigma_{m+1}^{\text{RV}} + \int_1 d\sigma_{m+2}^{\text{RR},\text{A}_1} \right] J_{m+1} - \left[d\sigma_{m+1}^{\text{RV},\text{A}_1} + \left(\int_1 d\sigma_{m+2}^{\text{RR},\text{A}_1} \right)^{\text{A}_1} \right] J_m \right\}_{\epsilon=0}, \\ d\sigma_m^{\text{NNLO}} = \left\{ d\sigma_m^{\text{VV}} + \int_2 \left[d\sigma_{m+2}^{\text{RR},\text{A}_2} - d\sigma_{m+2}^{\text{RR},\text{A}_{12}} \right] + \int_1 \left[d\sigma_{m+1}^{\text{RV},\text{A}_1} + \left(\int_1 d\sigma_{m+2}^{\text{RR},\text{A}_1} \right)^{\text{A}_1} \right] \right\}_{\epsilon=0} J_m$$

Status of (287) integrals

	Int	status	Int	status	Int	status		Int	status	Int	status
-	$\mathcal{I}_{1\mathcal{C}}^{(k)}$	 	$\mathcal{I}_{1\mathcal{S},0}$	V	$\mathcal{I}_{1CS,0}$	 		$\mathcal{I}_{12\mathcal{C}}^{(k,l)}$	 	$\mathcal{I}_{2\mathcal{S},1}$	✓
	$\mathcal{I}_{1,0}^{(k)}$	V	$\mathcal{I}_{1\mathcal{S},1}$	 	$\mathcal{I}_{1CS,1}$	 		$\mathcal{I}_{12C}^{(k,l)}$	~	$\mathcal{I}_{2\mathcal{S},2}$	✓
	$\tau^{1C,1}$ $\tau^{(k)}$	<i>.</i>	$\mathcal{I}_{1\mathcal{S},2}$	(m > 3) ✓	$\mathcal{I}_{1CS,2}^{(k)}$	~		$\tau^{(k)}$	~	$\mathcal{I}_{2\mathcal{S},3}$	v
	$\mathcal{L}_{1\mathcal{C},2}$		$\mathcal{I}_{1\mathcal{S},3}^{(k)}$	v	$\mathcal{I}_{1CS,3}$	~		$\frac{L_{12C}}{\pi(k,l)}$		$\mathcal{I}_{2\mathcal{S},4}$	~
	$\mathcal{I}_{1\mathcal{C},3}^{(n)}$	V	$\mathcal{I}_{1\mathcal{S},4}$	V	$\mathcal{I}_{1CS,4}$	~		$\mathcal{I}_{12\mathcal{C},4}^{(1,1)}$	~	$\mathcal{I}_{2\mathcal{S},5}$	
	$\mathcal{I}_{1\mathcal{C},4}^{(\kappa)}$	\checkmark	$\mathcal{I}_{1\mathcal{S},5}$	\checkmark	,			$\mathcal{I}_{12\mathcal{C},5}^{(\kappa)}$	\checkmark	$\mathcal{I}_{2\mathcal{S},6}$	
	$\mathcal{I}_{1C,5}^{(k,l)}$	\checkmark	$\mathcal{I}_{1\mathcal{S},6}$	v				$\mathcal{I}_{12C,6}^{(k)}$	v	$\mathcal{I}_{2\mathcal{S},7}$	~
	$\mathcal{I}_{1,2,c}^{(k,l)}$	 	$\mathcal{I}_{1\mathcal{S},7}$	~				$\mathcal{I}_{122}^{(k)}$	<i>✓</i>	$\mathcal{I}_{2\mathcal{S},8}$	v
	$\tau^{(k)}$	<i>.</i>						$\tau^{(k)}$	~	$\mathcal{I}_{2\mathcal{S},9}$	
	$\mathcal{L}_{1\mathcal{C},7}$							$\frac{L}{12C},8$		$\mathcal{I}_{2\mathcal{S},10}$	
	$\mathcal{L}_{1\mathcal{C}}, 8$	v						$\mathcal{I}_{12\mathcal{C},9}^{(n)}$	~	$\mathcal{I}_{2\mathcal{S},11}$	
								$\mathcal{I}_{12\mathcal{C},10}^{(\kappa)}$	~	$\mathcal{I}_{2\mathcal{S},12}$	
										$\mathcal{I}_{2\mathcal{S},13}$	
	Int	status	Int	status	Int		status	Int	status	$\mathcal{L}_{2\mathcal{S}},$ 14	
=	$\tau^{(k)}$	V	$\tau^{(k)}$	<u> </u>	$\tau^{(j,k,l,m)}$		~	$\tau^{(k)}$	V	$\mathcal{L}_{2\mathcal{S},15}$ $ au$	
	$\mathcal{I}_{12S,1}$ $\tau^{(k)}$		$\mathcal{I}_{12CS,1}$	V	$\mathcal{L}_{2\mathcal{C},1}$ $\mathcal{T}(j,k,l,m)$			$\mathcal{I}_{2CS},1$ $\tau^{(k)}$		$\mathcal{I}_{2S},16$ \mathcal{T}_{2S}	
	$L_{12S,2}^{(k)}$		$\mathcal{I}_{12CS,2}$ $\mathcal{I}_{12CS,2}$	~	$L_{2C,2}$			$L_{2CS}^{2}, 2$		$\mathcal{I}_{2S,17}$	
	$\mathcal{I}_{12\mathcal{S},3}^{(\kappa)}$	~	1268,3	·	$\mathcal{I}_{2\mathcal{C},3}^{(j,\kappa,i,i,i)}$		~	$\mathcal{I}_{2CS,2}^{(2)}$	~	$\mathcal{L}_{2S},18$ $\mathcal{T}_{2S},10$	~
	$\mathcal{I}_{12\mathcal{S},4}^{(k)}$	v			$\mathcal{I}_{2\mathcal{C},4}^{(J,k,I,m)}$		~	$\mathcal{I}_{2CS,3}^{(k)}$	 	$\mathcal{I}_{2S}, 19$ $\mathcal{I}_{2S}, 20$	 ✓
	$\mathcal{I}_{12S}^{(k)}$	v			$\mathcal{I}_{2C,5}^{(-1,-1,-1)}$	-1, -1)	~	$\mathcal{I}_{2CS}^{(k)}$	 	$T_{2S,20}$	V
	$\mathcal{I}_{12S,6}$	~			$\mathcal{T}^{(k,l)}_{\mathbf{r},\mathbf{r},\mathbf{r},\mathbf{r},\mathbf{r},\mathbf{r},\mathbf{r},\mathbf{r}$		~	$\mathcal{T}^{(k)}_{n}$	 	Ins 22	v
	$\mathcal{I}_{12\mathcal{S},7}$	V			-20,6			-265,5		-28,22 I28,23	
	$\mathcal{I}_{12\mathcal{S},8}$	~								20,25	
	$\mathcal{I}_{12\mathcal{S},9}$	 									
	$\mathcal{I}_{12\mathcal{S},10}$	~									
	$\mathcal{I}_{12\mathcal{S},11}$	\checkmark	1	· pole co	efficie	nts a	re ki	nown	analytica		
	$\mathcal{I}_{12\mathcal{S},12}$	V									
	$\mathcal{I}_{12\mathcal{S},13}$	\checkmark	fir	nite nume	rically	, in so	ome	cases	s analytic	ally	page O

Fully analytic determination of all the singularities for $H \rightarrow bb$

$$\sigma_{m}^{\text{NNLO}} = \int_{m} \left\{ \mathrm{d}\sigma_{m}^{\text{VV}} + \int_{2} \left[\mathrm{d}\sigma_{m+2}^{\text{RR},\text{A}_{2}} - \mathrm{d}\sigma_{m+2}^{\text{RR},\text{A}_{12}} \right] + \int_{1} \left[\mathrm{d}\sigma_{m+1}^{\text{RV},\text{A}_{1}} + \left(\int_{1} \mathrm{d}\sigma_{m+2}^{\text{RR},\text{A}_{1}} \right)^{\text{A}_{1}} \right] \right\} J_{m}$$

$$d\sigma_{H\to b\bar{b}}^{\rm VV} = \left(\frac{\alpha_{\rm s}(\mu^2)}{2\pi}\right)^2 d\sigma_{H\to b\bar{b}}^{\rm B} \left\{ +\frac{2C_{\rm F}^2}{\epsilon^4} + \left(\frac{11C_{\rm A}C_{\rm F}}{4} + 6C_{\rm F}^2 - \frac{C_{\rm F}n_{\rm f}}{2}\right) \frac{1}{\epsilon^3} + \left[\left(\frac{8}{9} + \frac{\pi^2}{12}\right)C_{\rm A}C_{\rm F} + \left(\frac{17}{2} - 2\pi^2\right)C_{\rm F}^2 - \frac{2C_{\rm F}n_{\rm f}}{9} \right] \frac{1}{\epsilon^2} + \left[\left(-\frac{961}{216} + \frac{13\zeta_3}{2}\right)C_{\rm A}C_{\rm F} + \left(\frac{109}{8} - 2\pi^2 - 14\zeta_3\right)C_{\rm F}^2 + \frac{65C_{\rm F}n_{\rm f}}{108} \right] \frac{1}{\epsilon} \right\}$$

C. Anastasiou, F. Herzog, A. Lazopoulos, arXiv:0111.2368

$$\sum \int d\sigma^{A} = \left(\frac{\alpha_{s}(\mu^{2})}{2\pi}\right)^{2} d\sigma^{B}_{H \to b\bar{b}} \left\{-\frac{2C_{F}^{2}}{\epsilon^{4}} - \left(\frac{11C_{A}C_{F}}{4} + 6C_{F}^{2} + \frac{C_{F}n_{f}}{2}\right)\frac{1}{\epsilon^{3}} - \left[\left(\frac{8}{9} + \frac{\pi^{2}}{12}\right)C_{A}C_{F} + \left(\frac{17}{2} - 2\pi^{2}\right)C_{F}^{2} - \frac{2C_{F}n_{f}}{9}\right]\frac{1}{\epsilon^{2}} - \left[\left(-\frac{961}{216} + \frac{13\zeta_{3}}{2}\right)C_{A}C_{F} + \left(\frac{109}{8} - 2\pi^{2} - 14\zeta_{3}\right)C_{F}^{2} + \frac{65C_{F}n_{f}}{108}\right]\frac{1}{\epsilon}\right\}$$

V. Del Duca, C. Duhr, G. Somogyi, FT, Z. Trocsanyi, arXiv:1501.07226

Inclusive result

In perfect agreement with: [Gorishnii, Kataev, Larin, Surguladze 1990] [Baikov, Chetyrkin, Kuhn 2006]

Differential results

[Anastasiou, Herzog, Lazopoulos '12]

[Del Duca, Duhr, Somogyi, FT, Trocsanyi 2015]

Jet algorithm

Flavor-kT provides an IRC safe definition of jet flavour

[Banfi, Salam, Zanderighi 2006]

$$\begin{split} d_{ij}^{(F)} = & (\Delta \eta_{ij}^2 + \Delta \phi_{ij}^2) \\ & \times \begin{cases} \max(k_{\mathrm{t}i}^2, k_{\mathrm{t}j}^2) \,, & \text{softer of } i, j \text{ is flavoured}, \\ \min(k_{\mathrm{t}i}^2, k_{\mathrm{t}j}^2) \,, & \text{softer of } i, j \text{ is flavourless}, \end{cases} \end{split}$$

 $d_{iB}^{(F)} = \begin{cases} \max(k_{ti}^2, k_{tB}^2), & i \text{ is flavoured,} \\ \min(k_{ti}^2, k_{tB}^2), & i \text{ is flavourless.} \end{cases}$

$$k_{\mathrm{t}B}(\eta) = \sum_{i} k_{\mathrm{t}i} \left(\Theta(\eta_{i} - \eta) + \Theta(\eta - \eta_{i}) \mathrm{e}^{\eta_{i} - \eta} \right)$$
$$k_{\mathrm{t}\bar{B}}(\eta) = \sum_{i} k_{\mathrm{t}i} \left(\Theta(\eta - \eta_{i}) + \Theta(\eta_{i} - \eta) \mathrm{e}^{\eta - \eta_{i}} \right)$$

Results

WH(bb)@NNLO in both production and decay

[G. Ferrera, G. Somogyi, FT(to appear)]

ptW > 150GeV

LHCI3 with standard WH search cuts

do/dM_{bb} [fb/GeV] (NNLO+nnlo) (NNLO+nlo) $\mu_R = \mu_F = M_{WH}$ μ_R decay = M_H 0.1 **Preliminary** 0.01 0.001 (NNLO+nnlo)/(NNLO+nlo) 1.8 1.6 1.4 1.2 1 0.8 0.6 80 100 120 140 160 180 M_{bb} [GeV]

Conclusion

- * Calculation of NNLO QCD corrections to VH production with nnlo QCD H \rightarrow bb decay in hadron collision included in a fully-exclusive parton level Monte Carlo code: HVNNLO
- * Perturbative corrections are important
- * first reliable estimate of perturbative uncertainty possible

Outlook/Work in progress

- * Public release of the HVNNLO parton-level numerical code
- * Inclusion of other Higgs boson decay channels, es. H \rightarrow WW/ZZ \rightarrow 2l2v/4l decay
- * Further comparisons among fixed order and computations matched to the PS
- * Would be important to have a NLOPS event generator with both QCD and EW effects
 * NNLOPS (?)

Backup

NNLO(pp \rightarrow VH) \otimes nlo(H \rightarrow bb)

LHC8 with standard WH search cuts and a jet veto

