
Higher-order QCD effects for associated VH
production and decay at the LHC

Giancarlo Ferrera

giancarlo.ferrera@mi.infn.it
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Higgs particle @ ATLAS and CMS

• VH allows to measure Higgs coupling to beauty

• Deviation from the SM still possible

• Need of precise fully differential predictions
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Associated VH production qT -subtraction VH production and decay at the LHC Conclusions

Associated VH production
and H → bb̄ decay >>>> ..

>>>>

h1(p1) + h2(p2) → V + H + X → ℓ1ℓ2 + bb̄ + X

where V = Z0,W± and ℓ1ℓ2 = ℓ+ℓ−, ℓνℓ

..
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(with p ≥ 1): Non perturbative power-corrections (higher-twist).

fa/h(x , µ
2
F ): Non perturbative universal parton densities (PDFs), µF ∼ Q.

d σ̂ab: Hard scattering cross section. calculable with a perturbative expansion in αS (Q)

d σ̂ab = d σ̂
(0)
ab + d σ̂

(1)
ab (µ2

R) + d σ̂
(2)
ab (µ2

R ) +O(α3
S ) .

Precise predictions for σ depend on good knowledge of both σ̂ab and fa/h(x , µ
2
F )
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} 1 or 2 b jets

High pt lepton

High pt lepton (V=Z)
or large missing energy (V=W)

• Large sources of backgrounds from V+bb, V+b, V+jets, tt, VV

• For boosted events S/B ratio improve considerably and allows detection at the LHC       

• Search strategy for VH production important to asses the relevance of the corrections 
to the decay process

VH(bb) signal phenomenology

Rbb & 2
mH

pT
(pT � mH)

[Butterworth, Davison, Rubin, Salam 2008]



ATLAS-CONF-2016-091
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Search for the Standard Model Higgs boson produced in association with a vector boson 
and decaying to a b-bbar pair in pp collisions at 13 TeV using the ATLAS detector 

• too early to claim the need of NP, but…
• quite large negative fluctuation
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• with combined ATLAS and CMS  2016 
data H-b-b coupling will be measured 
with high accuracy



Higher order corrections



* EW corrections:
       NLO EW total cross section (5~10% at the LHC) [Ciccolini, Dittmaier, Kramer ’03]

       NLO EW known differentially (5~10% or more at the LHC)
       →  HAWK [Denner, Dittmaier, Kallweit, Mück]

✓ Fully differential 2→3 NLO EW computation

✓ Implemented through the Complex Mass Scheme@NLO [Denner, Dittmaier]

* Combination of QCD and EW corrections

✓ as done already in YR2, also at differential level

✓ More can only be achieved by some NNLO QCD-EW calculation:
currently out of reach
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Figure 1: Feynman diagrams for the LO processes (2.1)–(2.4).

Carlo program Hawk, which was originally designed for the description of Higgs production via
vector-boson fusion including NLO QCD and EW corrections [15] and is publically available [16].

The paper is organized as follows: In Section 2 we describe the structure of the underlying
NLO calculation and the techniques used. Section 3 contains a detailed discussion of numerical
results for the processes pp/pp̄ → H+ lνl/l−l+/νlν̄l+X at the Tevatron and the LHC, the latter
at CM energies of 7TeV and 14TeV. Finally, we conclude in Section 4.

2 Structure of the NLO calculation

2.1 General setup

At LO, the associate production of a Higgs boson H with a weak gauge boson V = W,Z can only
proceed via quark–antiquark annihilation at hadron colliders. Treating the incoming quarks and
the outgoing leptons as massless, the Higgs boson does not couple to the massless fermions, and
there is only one LO diagram per channel, see Fig. 1. In detail, the following partonic processes
are considered,

ui d̄j → HW+ → Hνll
+ , (2.1)

dj ūi → HW− → Hl−ν̄l , (2.2)

qi q̄i → HZ → Hl−l+ , (2.3)

qi q̄i → HZ → Hνlν̄l , (2.4)

where qi denotes any light quark and ui, di the up- and down-type quarks of the ith generation.
The intermediate W/Z-boson resonances are described by complex W/Z-boson masses µV via
the replacement

M2
V → µ2

V = M2
V − iMV ΓV , V = W,Z (2.5)

in the V propagator as dictated by the complex-mass scheme (see below). Hence, all our results
correspond to a fixed-width description of the Breit–Wigner resonance. Moreover, all related
quantities, in particular the weak mixing angle, are formulated in terms of the complex mass
parameters.

The final-state leptons are treated as massless unless their small masses are used to regularize
a collinear divergence. Concerning bremsstrahlung, we support the possibility that collinear
photons may be completely separated from an outgoing charged lepton, because this situation
is relevant for muons. More details on the treatment of such non-collinear-safe observables are
described below.

The light quarks are considered massless as well, in line with the parton-model requirements.
This means that the quark mixing matrix only appears as global weight factor |Vij |2 in the

2

on the transverse momentum of the Higgs and the weak gauge bosons, respectively. The corresponding
selection of events with boosted Higgs bosons is improving the signal-to-background ratio in the context
of employing the measurement of the jet substructure in H → bb̄ decays leading to a single fat jet.
The need for background suppression calls for (almost) identical cuts on the transverse momentum of
the vector bosons and the Higgs boson. However, symmetric cuts induce large radiative corrections in
fixed-order calculations in the corresponding pT distributions near the cut. Since the Higgs boson and
the vector boson are back-to-back at LO, any initial-state radiation will either decrease pT,H or pT,W/Z

and the event may not pass the cut anymore. Hence, the differential cross section near the cut is sensitive
to almost collinear and/or rather soft initial-state radiation. By choosing the above (slightly asymmetric)
cuts this large sensitivity to higher-order corrections can be removed for the important pT,H-distribution.
Of course, since the LO distribution for pT,W/Z is vanishing for pT,W/Z < 200 GeV due to the pT,H cut,
the higher-order corrections to the pT,W/Z distributions are still large in this region.

In the following plots, we show several relative corrections and the absolute cross-section predic-
tions based on factorisation for QCD and EW corrections,

σ = σQCD × (1 + δrecEW) + σγ , (64)

where σQCD is the best QCD prediction at hand, δrecEW is the relative EW correction with recombination
and σγ is the cross section due to photon-induced processes which are at the level of 1% and estimated
employing the MRSTQED2004 PDF set for the photon. In detail, we discuss the distributions in pT,H,
pT,V, pT,l, and yH. More detailed results can be found in Ref. [263].

Figure 56 shows the distributions for the two WH production channels Hl+ν and Hl−ν and for the
ZH production channels Hl+l− andHνν. The respective EW corrections are depicted in Figure 57 for the
two different treatments of radiated photons, but the difference between the two versions, which amounts
to 1−3%, is small. The bulk of the EW corrections, which are typically in the range of −(10−15)%, is
thus of pure weak origin. In all pT distributions the EW corrections show a tendency to grow more and
more negative for larger pT, signalling the onset of the typical logarithmic high-energy behaviour (weak
Sudakov logarithms). The rapidity distributions receive rather flat EW corrections, which resemble the
ones to the respective integrated cross sections. Note that the latter are significantly larger in size than
the ones quoted in Ref. [7] for the total cross sections, mainly due to the influence of the pT cuts on
the Higgs and gauge bosons, which enforce the dominance of larger scales in the process. This can be
clearly seen upon comparing the results with the ones shown in Figure 58, where only the basic cuts are
applied, but not Eq. (63). For the basic cuts, the EW corrections are globally smaller in size by about
5%, but otherwise show the same qualitative features.

The relative EW corrections shown here could be taken into account in any QCD-based prediction
for the respective distributions (based on the quoted cuts) via reweighting. For this purpose the data files
of the histograms are available at the TWiki page of the WH/ZH working group35. The small photon-
induced contributions, which are included in our best prediction and at the level of 1% for WH production
and negligible for ZH production, are also available and could be simply added.

For definiteness, in Table 19, we show the integrated results corresponding to the cuts in the
boosted setup.

Finally, we estimate the uncertainties resulting from the remaining spurious QCD scale depen-
dences, missing higher-order contributions, and uncertainties in the PDFs:

– We estimate the scale uncertainties upon varying the renormalisation and factorisation scales in-
dependently by a factor of two around our default scale choice. At NNLO for WH production, the
integrated cross section for the boosted Higgs analysis varies by ∆scale = 2%. In the considered
distributions, the variation of the scales only affects the overall normalisation. Only in the pT,W/Z

35https://twiki.cern.ch/twiki/bin/view/LHCPhysics/WHZH

97

VH higher Order Corrections (EW)



VH higher order Corrections (QCD)

QCD corrections (inclusive)
Associated VH production qT -subtraction VH production and decay at the LHC Conclusions
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• NNLO QCD corrections for VH are basically the same of DY 
(1~3% at the LHC)

    [Van Neerven et al 1991, Brein, Harlander, Djouadi 2000]

• For ZH there is also gg->ZH top-loop, the most accurate 
prediction covers gg->ZH @ NLO QCD in the heavy-top limit

    (5% at the LHC)
    [Altenkamp, Dittmaier, Harlander, Rzehak, Zirke 2012]

• NNLO top-mediated contribution
    (1~2% at the LHC)
    [Brei, Harlander, Wiesemann, Zirke 2011]

• N3LO threshold corrections computed
    [Kumal, Mandal, Ravindran (2014)]

• The inclusive H → bb decay rate is known up to fourth order in 
QCD (0.1%) [Baikov,Chetyrkin,Kuhn(’05)] (and up to NLO EW 
(1~2%) [Dabelstein, Hollik; Kniehl (1992)])

• Fully differential NNLO QCD corrections for VH, including leptonic V decays with spin correlations and NLO H decay 
HVNNLO [Ferrera, Grazzini, FT (2011, 2014)] (qT subtraction method)                                                                
MCFM [Campbell, Ellis, Giele, Williams (2016)] (N-jettiness method) + top-loop contributions from [Brein et al (2011)]

• NNLO fully-differential decay rate H → bb computed through new non-linear mapping method 
[Anastasiou,Herzog,Lazopoulos (2012)] and the Colourful (dipole) method [Del Duca,Duhr,Somogyi,FT,Trocsanyi (2015)]

• Resummation of jet-veto and transverse-momentum logarithms performed [Y.Li,Liu(2014)][Shao,C.S.Li,H.T.Li(2013)],
[Dawson,Han,Lai,Leibovich,Lewis(2012)]

QCD corrections (differential)

(parton level)



• Contributes to the cross section at order λt2 g2 αs2

• At one-loop order it amounts to about 4% (6%) of the total 
Higgs strahlung cross section at the LHC with 8TeV (14TeV)

• Rather strong renormalisation and factorisation scale 
dependence of about 30%

‣ increase the theoretical uncertainty of the HZ relative to 
the WH process

• Drell–Yan type contribution

• They contribute to the cross section at order g4 αsn (n = 0, 1, 2)

• increase the cross section by about 30% with respect to LO 

• top-loop-induced contributions
• Interference with the LO and the real-emission 

NLO amplitude is of order λt g3 αs2

• numerical impact is at the percent level.

V ⇤

q̄

q

V

H

(a) (b) (c)

(d) (e) (f)

t

(g)

t

(h)

t

(i)

t

(j)

Figure 1: Representative diagrams to hadronic HZ production of Drell–Yan type up to
NNLO (a-f) and non-Drell–Yan-like NNLO graphs with Higgs radiation o↵ top-quark loops;
both types of corrections (up to NNLO) are not considered in this publication.
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Higgs boson associated production



WH higher order corrections (YR4)100 I.5.2. VH cross-section predictions
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Figure 40: Left: transverse-momentum distributions of the Higgs boson in W+H production at LO and including
NNLO QCD and NLO EW corrections (upper plots) and relative higher-order contributions (lower plots) for⇥
s = 13 TeV and MH = 125 GeV. Right: the same for W⇥H production. Note that ⌥⇥ is based on the central

value of the photon PDF of NNPDF2.3QED, while ⌃⇥ in Tables 27–33 is based on combined results using the
median and the photon PDF of MRST2004QED (and smaller by a factor 0.7), see text.

Differential cross section results in NNLO QCD + NLO EW accuracy have been computed follow-
ing the same procedure as outlined above for the fiducial cross section. QCD corrections are calculated
with VHNNLO using the settings reported above for the computation of the fiducial cross sections. The
EW corrections are again calculated with HAWK as in the previous section, with the only difference in
the calculation of the photon-induced contribution. Instead of working with many PDF replicas we have
calculated ⌃� with the central PDF of NNPDF2.3QED. In order to obtain ⌃� in the same setup as for
the integrated cross sections of the previous section (for

⇥
s = 13 TeV), the shown results on ⌃� in WH

production should be rescaled by a factor of 0.7. This rescaling is based on the corresponding integrated
results for ⌃� . Taking over the relative uncertainty from the integrated cross section as well, we get the
estimate �� ⌃ 1.5%. For ZH production ⌃� and �� have a phenomenologically negligible impact.

The theoretical uncertainties of differential cross sections originating from unknown higher-order
EW effects can be estimated by

�EW = max{1%, ⌥2EW,��}, (I.5.20)

i.e. �EW is taken somewhat more conservative than for integrated cross sections, accounting for possible
enhancements of higher-order effects due to a kinematical migration of events in distributions. Note that
⌥2EW, in particular, covers the known effect of enhanced EW corrections at high momentum transfer (EW
Sudakov logarithms, etc.).

Figures 40–44 show the impact of radiative corrections of the most important differential distribu-
tions for Higgs boson production via WH mode in the SM, while in Figures 45–47 the same effects are
shown for the Higgs boson production in association with a Z boson. The figures generically show the
known size of the NLO QCD corrections at the level of ⌃ 20⇤30% in the most important phase-space
regions. At NNLO, the QCD corrections amount to some per cent in the dominating regions, but can

�EW = �EW /�LO

�� = ��/�LO

• LHC13
• anti-kt with R=0.4

96 I.5.2. VH cross-section predictions

In the calculation of the QCD-based cross sections, the renormalization and factorization scales
are set equal to the invariant mass of the VH system,

µ = µR = µF = MVH, M2
VH ⌅ (pV + pH)

2, (I.5.11)

and both scales are varied independently in the range MVH/3 < µ < 3MVH. The PDFs are taken from
the set PDF4LHC15_nnlo_mc PDFs.

For the calculation of the EW corrections we employed the NNPDF2.3QED PDF set [279], which
includes EW corrections and a photon PDF. For the calculation of photon-induced contributions to the
cross sections with a realistic error estimate we took into account the photon PDF of the MRST2004QED
PDF set [302] as well. A considerable reduction in the photon PDF uncertainty can be achieved by using
the more recent LUXqed_plus_PDF4LHC15_nnlo_100 PDF set [280].

Note, however, that the relative EW correction factor, which is used in the following, hardly de-
pends on the PDF set, so that the uncertainty due to the mismatch in the PDF selection is easily covered
by the other remaining theoretical uncertainties. Moreover, the EW corrections show a very small de-
pendence on the factorization scale, so that the use of µF = MV + MH is acceptable,I.27 although full
consistency would require to use equal QCD and QED factorization scales.

For the fiducial cross section and for differential distributions the following reconstruction scheme
and cuts have been applied. Jets are constructed according to the anti-kT algorithm [191] with D = 0.4,
using the default recombination scheme (E scheme). Jets are constructed from partons j with

|⇧j | < 5 , (I.5.12)

where yj denotes the rapidity of the (massive) jet. In the presence of phase-space cuts and in the gen-
eration of differential distributions, the treatment of real photons, which appear as part of the NLO EW
corrections, has to be specified. In the following we assume perfect isolation of photons from leptons.I.28

The charged leptons l have to pass the following acceptance cuts,

pTl > 15 GeV, |yl| < 2.5 . (I.5.13)

For ZH production with Z �  + ⇥ the invariant mass of the two leptons should further concentrate
around the Z pole,

75 GeV < Mll < 105 GeV. (I.5.14)

While the ZH cross sections are independent from the CKM matrix, quark mixing has some effect
on WH production. For the calculation of the latter we employed a Cabbibo-like CKM matrix (i.e.
without mixing to the third quark generation) with Cabbibo angle ⌅C fixed by sin ⌅C = 0.225. Moreover,
we note that we employ complex W- and Z-boson masses in the calculation of the EW corrections in the
standard HAWK approach, as described in Ref. [258].

The Higgs boson is treated as on-shell particle in the following consistently, since its finite-width
and off-shell effects in the signal region are suppressed in the Standard Model.

I.5.2.c Total VH cross sections
Tables 27 and 28 summarize the total Standard Model W±H cross sections with W+�l+�l and W⇥�l⇥�̄l
as well as the corresponding uncertainties for different proton–proton collision energies for a Higgs bo-
son mass MH = 125 GeV. Tables 29 and 30 likewise show the respective results on the total Standard
Model ZH cross sections with Z �  + ⇥ and Z � ��̄ (summed over three neutrino generations).

I.27In its present version, HAWK does not support dynamical scales.
I.28Perfect isolation to some extent applies to muons going out into the muon chamber. A simulation of radiation off electrons

requires some recombination of collinear electron–photon pairs, mimicking the inclusive treatment of electrons within electro-
magnetic showers in the detector. The two different treatments were compared in Ref. [258], revealing differences at the 1%
level for the relevant physical observables.

(parton level)
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In the calculation of the QCD-based cross sections, the renormalization and factorization scales
are set equal to the invariant mass of the VH system,

µ = µR = µF = MVH, M2
V H ⌘ (pV + pH)2, (I.5.11)

and both scales are varied independently in the range MV H/3 < µ < 3MV H. The PDFs are taken from
the set PDF4LHC15_nnlo_mc PDFs.

For the calculation of the EW corrections we employed the NNPDF2.3QED PDF set [279], which
includes EW corrections and a photon PDF. For the calculation of photon-induced contributions to the
cross sections with a realistic error estimate we took into account the photon PDF of the MRST2004QED
PDF set [302] as well. A considerable reduction in the photon PDF uncertainty can be achieved by using
the more recent LUXqed_plus_PDF4LHC15_nnlo_100 PDF set [280].

Note, however, that the relative EW correction factor, which is used in the following, hardly de-
pends on the PDF set, so that the uncertainty due to the mismatch in the PDF selection is easily covered
by the other remaining theoretical uncertainties. Moreover, the EW corrections show a very small de-
pendence on the factorization scale, so that the use of µF = MV + MH is acceptable,I.27 although full
consistency would require to use equal QCD and QED factorization scales.

For the fiducial cross section and for differential distributions the following reconstruction scheme
and cuts have been applied. Jets are constructed according to the anti-kT algorithm [191] with D = 0.4,
using the default recombination scheme (E scheme). Jets are constructed from partons j with

|⌘j | < 5 , (I.5.12)

where yj denotes the rapidity of the (massive) jet. In the presence of phase-space cuts and in the gen-
eration of differential distributions, the treatment of real photons, which appear as part of the NLO EW
corrections, has to be specified. In the following we assume perfect isolation of photons from leptons.I.28

The charged leptons l have to pass the following acceptance cuts,

pTl > 15 GeV, |yl| < 2.5 . (I.5.13)

For ZH production with Z ! `+`� the invariant mass of the two leptons should further concentrate
around the Z pole,

75 GeV < Mll < 105 GeV. (I.5.14)

While the ZH cross sections are independent from the CKM matrix, quark mixing has some effect
on WH production. For the calculation of the latter we employed a Cabbibo-like CKM matrix (i.e.
without mixing to the third quark generation) with Cabbibo angle ✓C fixed by sin ✓C = 0.225. Moreover,
we note that we employ complex W- and Z-boson masses in the calculation of the EW corrections in the
standard HAWK approach, as described in Ref. [258].

The Higgs boson is treated as on-shell particle in the following consistently, since its finite-width
and off-shell effects in the signal region are suppressed in the Standard Model.

I.5.2.c Total VH cross sections
Tables 27 and 28 summarize the total Standard Model W±H cross sections with W+!l+⌫l and W�!l�⌫̄l

as well as the corresponding uncertainties for different proton–proton collision energies for a Higgs bo-
son mass MH = 125 GeV. Tables 29 and 30 likewise show the respective results on the total Standard
Model ZH cross sections with Z ! `+`� and Z ! ⌫⌫̄ (summed over three neutrino generations).

I.27In its present version, HAWK does not support dynamical scales.
I.28Perfect isolation to some extent applies to muons going out into the muon chamber. A simulation of radiation off electrons

requires some recombination of collinear electron–photon pairs, mimicking the inclusive treatment of electrons within electro-
magnetic showers in the detector. The two different treatments were compared in Ref. [258], revealing differences at the 1%
level for the relevant physical observables.
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Table 27: Total W+(!l+⌫l)H cross sections including QCD and EW corrections and their uncertainties for
different proton–proton collision energies

p
s for a Higgs boson mass MH = 125 GeV.

p
s[GeV] �[fb] �scale[%] �PDF/↵s/PDF�↵s

[%] �DY
NNLOQCD[fb] �t-loop[fb] �EW[%] ��[fb]

7 40.99 +0.7
�0.9 ±1.9/ ± 0.7/ ± 2.0 42.78 0.42 �7.2 0.88+1.10

�0.10

8 49.52 +0.6
�0.9 ±1.8/ ± 0.8/ ± 2.0 51.56 0.53 �7.3 1.18+1.38

�0.14

13 94.26 +0.5
�0.7 ±1.6/ ± 0.9/ ± 1.8 97.18 1.20 �7.4 3.09+3.33

�0.37

14 103.63 +0.3
�0.8 ±1.5/ ± 0.9/ ± 1.8 106.65 1.36 �7.4 3.55+3.72

�0.43

Table 28: Total W�(!l�⌫̄l)H cross sections including QCD and EW corrections and their uncertainties for
different proton–proton collision energies

p
s for a Higgs boson mass MH = 125 GeV.

p
s[GeV] �[fb] �scale[%] �PDF/↵s/PDF�↵s

[%] �DY
NNLOQCD[fb] �t-loop[fb] �EW[%] ��[fb]

7 23.04 +0.6
�0.8 ±2.2/ ± 0.6/ ± 2.3 23.98 0.24 �7.0 0.51+0.69

�0.05

8 28.62 +0.6
�0.8 ±2.1/ ± 0.6/ ± 2.1 29.71 0.31 �7.1 0.70+0.94

�0.07

13 59.83 +0.4
�0.7 ±1.8/ ± 0.8/ ± 2.0 61.51 0.78 �7.3 2.00+2.34

�0.22

14 66.49 +0.5
�0.6 ±1.7/ ± 0.9/ ± 1.9 68.24 0.89 �7.3 2.32+2.65

�0.26

Table 29: Total ZH cross sections with Z ! `+`� including QCD and EW corrections and their uncertainties for
different proton–proton collision energies

p
s for a Higgs boson mass MH = 125 GeV.

p
s[GeV] �[fb] �scale[%] �PDF/↵s/PDF�↵s [%] �DY

NNLOQCD[fb] �
ggZH
NLO+NLL[fb] �t-loop[fb] �EW[%] ��[fb]

7 11.43 +2.6
�2.4 ±1.6/ ± 0.7/ ± 1.7 10.91 0.94 0.11 �5.2 0.03+0.04

�0.00

8 14.18 +2.9
�2.4 ±1.5/ ± 0.8/ ± 1.7 13.36 1.33 0.14 �5.2 0.04+0.05

�0.00

13 29.82 +3.8
�3.1 ±1.3/ ± 0.9/ ± 1.6 26.66 4.14 0.31 �5.3 0.11+0.12

�0.01

14 33.27 +3.8
�3.3 ±1.3/ ± 1.0/ ± 1.6 29.47 4.87 0.36 �5.3 0.12+0.13

�0.01

Table 30: Total ZH cross sections with Z ! ⌫⌫̄ (summed over three neutrino generations) including QCD and
EW corrections and their uncertainties for different proton–proton collision energies

p
s for a Higgs boson mass

MH = 125 GeV.

p
s[GeV] �[fb] �scale[%] �PDF/↵s/PDF�↵s [%] �DY

NNLOQCD[fb] �
ggZH
NLO+NLL[fb] �t-loop[fb] �EW[%] ��[fb]

7 68.18 +2.6
�2.4 ±1.6/ ± 0.7/ ± 1.7 64.70 5.59 0.64 �4.3 �0.00

8 84.56 +2.9
�2.4 ±1.5/ ± 0.8/ ± 1.7 79.25 7.89 0.81 �4.3 �0.00

13 177.62 +3.8
�3.1 ±1.3/ ± 0.9/ ± 1.6 158.10 24.57 1.85 �4.4 �0.00

14 198.12 +3.8
�3.3 ±1.3/ ± 1.0/ ± 1.6 174.77 28.88 2.11 �4.4 �0.00

Inclusive
Cross Section

Differential
Cross Section

Higgs cross section working group
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Figure 44: Left: missing transverse momentum in W+H production at LO and including NNLO QCD and NLO
EW corrections (upper plots) and relative higher-order contributions (lower plots) for

⇥
s = 13 TeV and MH =

125 GeV. Right: the same for W⇥H production. Note that ⌥⇥ is based on the central value of the photon PDF of
NNPDF2.3QED, while ⌃⇥ in Tables 27–33 is based on combined results using the median and the photon PDF of
MRST2004QED (and smaller by a factor 0.7), see text.

�� � �� � ���

�� � ������

��
��
� �
��
���
��
��
�

��
���������������

����

����

����

����

���� �����

�������
������

�������������
�������������

�����������
���
���
���
���
���
�

���
���
���
���

� ��� ��� ��� ��� ���

�� � �� � ���

�� � ������

��
��
� �
��
���
��
��
�

��
���������������

����

����

����

���

���� �����

�������
������

�������������
�������������

�����������
���
���
���
���
���
�

���
���
���
���

� ��� ��� ��� ��� ���

Figure 45: Left: transverse-momentum distributions of the Higgs boson in Z(�  + ⇥)H production at LO and
including NNLO QCD and NLO EW corrections (upper plots) and relative higher-order contributions (lower plots)
for

⇥
s = 13 TeV and MH = 125 GeV. Right: the same for Z(� ��̄)H production.
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Figure 2: Representative diagrams to hadronic HZ production via quark-loop-induced
gluon fusion. It is understood that crossed diagrams have to be taken into account as
well.
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ggZH associated production at NNLO
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Figure 4: Comparison of the LO hadronic cross section in the e↵ective and the full theory
for

p
s = 8TeV (dashed) and 14TeV (solid).

Taking into account the kinematical constraint
p
ŝ > MH + MZ, the region where the

e↵ective theory is nominally applicable shrinks to zero for MH > 2mt �MZ ⇡ 253GeV.
Figure 4 (a) compares the total inclusive LO hadronic cross section at 8TeV and 14TeV
when the full top- and bottom-mass dependence is taken into account to the e↵ective-
theory result. The behaviour is expected from the considerations above: The e↵ective
theory works better for smaller Higgs masses, agreeing to the full results within 2% (25%)
for 8TeV (14TeV) at MH = 125GeV. Note that the PDFs suppress the contribution from
larger ŝ, thus emphasising the region where the 1/mt expansion converges. For larger
values of MH, the e↵ective-theory approximation deteriorates; at MH = 200GeV, the
deviation to the full result is 74% (143%) for 8TeV (14TeV).

The situation becomes more problematic in the boosted regime which we study by im-
posing a lower cut on the Higgs’ transverse momentum, requiring pT,H > 200GeV, see
Fig. 4 (b). In this case, the minimal value for

p
ŝ is already above the top-quark thresh-

old when MH = 100GeV. Consequently, the direct application of the e↵ective-theory
approximation is o↵ by almost a factor of five to ten, which is clearly unacceptable.

A direct evaluation of the NLO contribution in the e↵ective theory is therefore not possible.
However, in Refs. [21–27] it was shown for the process gg ! H at NLO and NNLO that
the perturbative correction factor, defined at NLO in Eq. (2), depends only very weakly on
the top-quark mass. To some degree, this holds even far outside the convergence region of
the heavy-top expansion, as long as only the leading term in 1/mt is taken into account.
Motivated by this observation, we move on to NLO and present our results in the next
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ggZH contribution to the associated production

√s = 8 TeV (dashed) and 14 TeV (solid)

Large Mass Expansion for the LO
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Figure 5: NLO hadronic cross section as obtained by using Eq. (17) (upper), and NLO

K-factor (lower) for
p
s = 8TeV (dashed) and 14TeV (solid).

section.

4.3 Next-to-leading order results

4.3.1 Correction factor

As outlined above, we evaluate the NLO hadronic cross section by rescaling the full LO
result by the perturbative K-factor calculated in the e↵ective theory:

�NLO
approx(mt,mb) = �LO(mt,mb)K(mt ! 1,mb = 0)

=
�LO(mt,mb)

�LO(mt ! 1,mb = 0)
�NLO(mt ! 1,mb = 0) .

(17)

Since we are aiming at a NLO quantity, it actually might be more appropriate to evaluate
the formally LO cross sections in Eq. (17) with NLO PDFs. We checked that the e↵ect
of this is much smaller than the uncertainty due to variations of the renormalization and
factorization scale, which is why we stick to LO PDFs in �LO.
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* NLO QCD & parton shower:
✓ merging and matching for pp→VH(j) available in the POWHEG-BOX framework [Luisoni, Nason, Oleari, FT]
✓ also in MG5_aMC (FxFx) and Sherpa (MEPS@NLO)
✓ also with anomalous couplings

Merging and Matching

MINLO [Hamilton, Nason, Zanderighi] → No error related to the merging scale

* NNLO matching with PS possible through reweighting of  
  HVj-MINLO with HVNNLO. Already worked out for:

✓ H production [Hamilton, Nason, Re, Zanderighi]
reweighting with HNNLO [Grazzini]

✓ DY production [Karlberg, Re, Zanderighi] reweighting with 
DYNNLO [Catani, Cieri, Ferrera, de Florian, Grazzini]

LHC8

tables. In general the HVJ-MiNLO central values are 2% smaller than the HV ones. As already

pointed out in ref. [22], comparing full independent scale variation in the HVJ-MiNLO and

in the HV approaches does not seem to be totally fair. In fact, in the HV case, there is no

renormalization scale dependence at LO, while there is such a dependence in HVJ-MiNLO.

It was shown in ref. [22] for the case of W production at LO that an independent scale

variation corresponds at least in part to a symmetric scale variation in the MiNLO formula.

It is thus not surprising that the MiNLO independent scale variation is so much larger than

the HV one also at NLO. If we limit ourselves to consider only symmetric scale variations,

the MiNLO and the HV results are more consistent, although the HV scale variation band is

extremely small.
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Figure 9: Comparison between the HW+PYTHIA result and the HWJ-MiNLO+PYTHIA result for the
HW− rapidity distribution at the LHC at 8 TeV. The left plot shows the 7-point scale-variation
band for the HW generator, while the right plot shows the HWJ-MiNLO 7-point band.

Turning now to less inclusive quantities, we plot in fig. 9 the rapidity distribution of

the HW system obtained with the HW and HWJ-MiNLO generator. We remind that this

quantity is predicted at NLO by both generators, and in fact the agreement is very good.

The uncertainty band of the HW generator is shown on the left while that of the HWJ-MiNLO

generator is shown on the right.

In fig. 10 we show another inclusive quantity, i.e. the charged lepton transverse mo-

mentum from the W− decay. Also in this case we find perfect agreement between the two

generators

In figs. 11 and 12 we compare the HW and HWJ-MiNLO generators for the transverse

momentum of the HW system. In this case we do observe small differences, that are

however perfectly acceptable if we remember that this distribution is only computed at

leading order by the HW generator, while it is computed at NLO accuracy by the HWJ-

MiNLO generator. It can also be noted that the uncertainty band for the HW generator is

uniform, while it depends upon the transverse momentum for the HWJ-MiNLO one. In fact,

the uniformity of the scale-variation band in the HW case is well understood: in POWHEG, the

scale uncertainty manifests itself only in the B̄ function, while the shape of the transverse-

momentum distribution is totally insensitive to it.

The transverse momentum of the second jet computed with the HWJ-MiNLO generator

– 11 –
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Figure 10: Comparison between the HW+PYTHIA result and the HWJ-MiNLO+PYTHIA result for the
rapidity distribution of the charged lepton from the W− decay, at the LHC at 8 TeV. The left
plot shows the 7-point scale-variation band for the HW generator, while the right plot shows the
HWJ-MiNLO 7-point band.
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Figure 11: Comparison between the HW+PYTHIA result and the HWJ-MiNLO+PYTHIA result for the
HW− transverse-momentum distribution. The bands are obtained as in fig. 9.
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Figure 12: Same as fig. 11 for a different pHW

T
range.

compared with the pure NLO result is plotted in fig. 13. In this plot, MiNLO plays no role,

but the POWHEG formalism is still in place. In fact, the NLO prediction for the second jet

– 12 –
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Figure 62: Comparison of HWJ-MINLO (PYTHIA8+HADR) (blue), NNLO (green), and HW-NNLOPS
(PYTHIA8+HADR) (red) for pT,W (left) and pT,HW (right).
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Figure 63: Comparison of HWJ-MINLO (PYTHIA8+HADR) (blue), NNLO (green), and HW-NNLOPS
(PYTHIA8+HADR) (red) for pT,j1

(left) and yj1
(right).

the sizeable reduction of the uncertainty band when HWJ-MINLO results are upgraded to NNLOPS.
As no particularly tight cuts are imposed, the NNLO/NLO K-factor is almost exactly flat. The right
panel shows instead the effects due to the Sudakov resummation. At small transverse momenta, the
NNLO cross section becomes larger and larger due to the singular behaviour of the matrix elements for
HW production in association with arbitrarily soft-collinear emissions. The MINLO method resums
the logarithms associated to these emissions, thereby producing the typical Sudakov peak, which for this
process is located at 1 GeV � pT,HW � 4 GeV, as expected from the fact that the LO process is Drell-Yan
like. It is also interesting to notice here two other features that occur away from the collinear singularity,
and which are useful to understand plots to be shown in the following. Firstly, the pT -dependence of
the NNLO reweighting can be explicitly seen in the bottom panel, where one can also appreciate that
at very large values not only the NNLOPS and MINLO results approach each other, but also that the
uncertainty band of HVNNLOPS becomes progressively larger (in fact, in this region, the nominal
accuracy is NLO). Secondly, in the region 50 GeV � pT,HW � 300 GeV, the NNLO and NNLOPS
lines show deviations of up to about 10 %: these are due both to the compensation that needs taking
place in order for the two results to integrate to the same total cross section, as well as to the fact that
the scale choices are different (fixed for the NNLO line, dynamic and set to pT,HW in MINLO). When
pT,HW ⇥ 250 GeV the two predictions start to approach, as this is the region of phase space where the
MINLO scale is similar to that used at NNLO (µ = MH +MW ).

In Figure 63 we show the transverse momentum and the rapidity of the hardest jet. Most of the
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Figure 62: Comparison of HWJ-MINLO (PYTHIA8+HADR) (blue), NNLO (green), and HW-NNLOPS
(PYTHIA8+HADR) (red) for pT,W (left) and pT,HW (right).
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Figure 63: Comparison of HWJ-MINLO (PYTHIA8+HADR) (blue), NNLO (green), and HW-NNLOPS
(PYTHIA8+HADR) (red) for pT,j1

(left) and yj1
(right).

the sizeable reduction of the uncertainty band when HWJ-MINLO results are upgraded to NNLOPS.
As no particularly tight cuts are imposed, the NNLO/NLO K-factor is almost exactly flat. The right
panel shows instead the effects due to the Sudakov resummation. At small transverse momenta, the
NNLO cross section becomes larger and larger due to the singular behaviour of the matrix elements for
HW production in association with arbitrarily soft-collinear emissions. The MINLO method resums
the logarithms associated to these emissions, thereby producing the typical Sudakov peak, which for this
process is located at 1 GeV � pT,HW � 4 GeV, as expected from the fact that the LO process is Drell-Yan
like. It is also interesting to notice here two other features that occur away from the collinear singularity,
and which are useful to understand plots to be shown in the following. Firstly, the pT -dependence of
the NNLO reweighting can be explicitly seen in the bottom panel, where one can also appreciate that
at very large values not only the NNLOPS and MINLO results approach each other, but also that the
uncertainty band of HVNNLOPS becomes progressively larger (in fact, in this region, the nominal
accuracy is NLO). Secondly, in the region 50 GeV � pT,HW � 300 GeV, the NNLO and NNLOPS
lines show deviations of up to about 10 %: these are due both to the compensation that needs taking
place in order for the two results to integrate to the same total cross section, as well as to the fact that
the scale choices are different (fixed for the NNLO line, dynamic and set to pT,HW in MINLO). When
pT,HW ⇥ 250 GeV the two predictions start to approach, as this is the region of phase space where the
MINLO scale is similar to that used at NNLO (µ = MH +MW ).

In Figure 63 we show the transverse momentum and the rapidity of the hardest jet. Most of the
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=
3

16⇤

�
d⌃

d⇥HW⇤
(1 + cos2 ⌅⇤) +

7⇥

i=0

Ai(⇥HW⇤)fi(⌅
⇤,↵⇤)

⇤
, (I.5.33)

where ⇥HW⇤ = {pT,H, yHW ,�yHW ,me⌅}, and the angular dependence is encoded in the coefficients
Ai(⇥HW⇤) and the functions:

f0(⌅
⇤,↵⇤) =

⌅
1⇤ 3 cos2 ⌅⇤

⇧
/2 , f1(⌅⇤,↵⇤) = sin 2⌅⇤ cos↵⇤ ,

f2(⌅
⇤,↵⇤) = (sin2 ⌅⇤ cos 2↵⇤)/2 , f3(⌅⇤,↵⇤) = sin ⌅⇤ cos↵⇤ ,

f4(⌅
⇤,↵⇤) = cos ⌅⇤ , f5(⌅⇤,↵⇤) = sin ⌅⇤ sin↵⇤ ,

f6(⌅
⇤,↵⇤) = sin 2⌅⇤ sin↵⇤ , f7(⌅⇤,↵⇤) = sin2 ⌅⇤ sin 2↵⇤ . (I.5.34)

Since the angular dependence is fully expressed in terms of the fi(⌅⇤,↵⇤) functions, the coefficients
of the expansion Ai(⇥HW⇤) depend only on the remaining kinematic variables. Using orthogonality
properties of spherical harmonics we can extract these coefficients.

In our work we have simplified our procedure by noting that the me⌅ invariant mass distribution
has a flat K-factor. This is true even when examining the d⌃/dme⌅ distribution in different bins of
⇥HW = {pT,H , yHW ,�yHW}. Therefore, in eq. (I.5.33) we replace the 4-dimensional ⇥HW⇤ with the
3-dimensional ⇥HW . This is an approximation, however we believe that it works extremely well as
discussed in ref. [314]. In our work we obtain d⇧

d�HW
and Ai(⇥HW ) (i = 0, 7) at pure NNLO level by

running the HVNNLO code [282, 291], and we obtain the results at MINLO level by running HWJ-
MINLO [308]. We store the results in 9 three-dimensional tables. Following this step, we use these
tables along with eq. (I.5.33) to obtain the function eq. (I.5.29) to reweight each produced event. The
final ensemble of events is NNLO accurate for all observables at Born level and a parton shower can now
be applied without affecting the NNLO accuracy.

In the following we show results for 13 TeV LHC collisions applying the lepton cuts reported in
Eq. (I.5.13). Jets have been clustered using the anti-kt algorithm with R = 0.4 [191] as implemented in
FASTJET [192, 317] and count if they fulfil the following conditions:

pT(jet) > 20 GeV, |⇧(jet)| < 4.5 . (I.5.35)

As for the PDF, we have used the MMHT2014nnlo68cl set [37], corresponding to a value of ⇥s(MZ) =
0.118. For HWJ-MINLO events the scale choice is dictated by the MINLO procedure, while for the
NNLO we have used for the central renormalization and factorization scales µ0 = MH + MW . To
estimate uncertainties we calculate both the fixed order NNLO and HWJ-MINLO results at 7 scales,
each with renormalization and factorization scale varied independently up and down by a factor of 2.
When these results are then used in eq. (I.5.29) this gives 49 combinations for the NNLOPS results. We
define our perturbative uncertainty as the envelope of these 49 variations.

To shower partonic events, we have used PYTHIA8 [318] (version 8.185) with the “Monash
2013” [319] tune. We consider events after parton showering and hadronization effects, unless otherwise
stated. Underlying event and multiple parton interactions were kept switched off. To define leptons from
the boson decays we use the Monte Carlo truth, i.e. we assume that if other leptons are present, the ones
coming from the W decay can be identified correctly. To obtain the results shown in the following, we
have switched on the “doublefsr” option introduced in ref. [320]. The plots shown throughout this study
have been obtained keeping the veto scale equal to the default POWHEG prescription. In some figures
we also compare our results against HVNNLO, run with µ0 = MH +MW as central scale choice, and
with the same PDF set used for HWJ-MINLO and HVNNLOPS.

In Figure 62 we show distributions for the transverse momenta of the W boson and the WH
system, respectively. NNLO results (from HVNNLO) are compared against those obtained with HWJ-
MINLO and HVNNLOPS. For observables that are fully inclusive over QCD radiation, as pT,W, the
agreement among the HVNNLO and NNLOPS predictions is perfect, as expected. One also notices

[Astill, Bizon, Re, Zanderighi 2016]
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h1 h2 ! F a colorless system

• qT is the transverse momentum of the colorless system (F), it is exactly zero at the 
leading order

• for qT.ne.0 there can be only divergences from single unresolved parton 
configurations

✓ can be treated with NLO subtraction methods like CS dipoles

• double unres. singularities are all associated with qT = 0 configurations

✓ can be treated by an additional subtraction defined exploiting the knowledge 
of the logarithmically enhanced contributions from the qT resummation 
formalism   [Catani, De Florian, Grazzini 2000]

Associated VH production qT -subtraction VH production and decay at the LHC Conclusions

qT -subtraction method at NNLO [Catani,Grazzini(’07)]

h1(p1) + h2(p2) → F (M, qT ) + X

F is one or more colourless particles (vector bosons, leptons, photons, Higgs
bosons,. . . ) [Catani,Grazzini(’07)]. q̄

q

qT = −kT
F

kT

g

Key point I: at LO the qT of the F is exactly zero.

dσF
(N)NLO |qT ̸=0 = dσF+jets

(N)LO ,

for qT ̸= 0 the NNLO IR divergences cancelled with the NLO subtraction method
(e.g. with dipole formalism [Catani,Seymour(’98)] as in MCFM).

The only remaining NNLO singularities are associated with the qT → 0 limit.

Key point II: treat the NNLO singularities at qT = 0 by an additional subtraction
using the universality of logarithmically-enhanced contributions from qT
resummation formalism [Catani,de Florian,Grazzini(’00)].

dσF
NnLO

qT→0
−→ dσF

LO⊗Σ(qT/M)dq2
T = dσF
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∞
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2n
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π

)n

Σ(n,k)M
2

q2
T

lnk−1 M2

q2
T

d2qT

dσCT qT→0
−→ dσF

LO ⊗ Σ(qT/M)dq2
T
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Production: qT subtraction method  [Catani, Grazzini 2007]



Production: qT subtraction method  [Catani, Grazzini 2007]

• the choice of the counter term (CT) has arbitrariness but the qT→0 limit 
behavior is universal 

• CT regularize simultaneously the real-virtual and the double real 
integration that have to be run together 

• the Hard function H contains both the double virtual amplitude and the 
integral of the CT 

✓ its process dependent part can be obtained by the virtual amplitude 
via a universal process independent factorisation formula 
[Catani, Cieri, De Florian, Ferrera, Grazzini 2009] 

• the method has been used for: 
ggF Higgs production [Catani, Grazzini 2007], 
DY and Diphoton [Catani, Cieri, De Florian, Ferrera, Grazzini 2009], 
VV′ production [Grazzini,Kallweit,Rathlev,Torre 2013] and 
[Gehrmann, Grazzini, Kallweit, Maierhöfer, von Manteuffel, Pozzorini, Rathlev, Tancredi 2014]

Associated VH production qT -subtraction VH production and decay at the LHC Conclusions

The final result valid also for qT = 0 is:

dσF
(N)NLO = HF

(N)NLO ⊗ dσF
LO +

[

dσF+jets

(N)LO − dσCT
(N)LO

]

,

where HF
NNLO =

[

1 +
αS

π
HF (1) +

(

αS

π

)2

HF (2)

]

The choice of the counter-term has some arbitrariness but it must behave
dσCT qT→0

−→ dσF
LO ⊗ Σ(qT/M)dq2

T where Σ(qT/M) is universal.

dσCT regularizes the qT = 0 singularity of dσF+jets: double real and real-virtual
NNLO contributions.

The finite part of two-loops virtual corrections is contained in the hard-collinear
function HF

NNLO . Its process dependent part can be directly related to the all-order
virtual amplitude by an universal (process independent) factorization formula
[Catani,Cieri,de Florian,G.F.,Grazzini(’09)] (→ L.Cieri talk).

Final state partons only appear in dσF+jets so that NNLO IR-safe cuts are
included in the NLO computation: observable-independent NNLO extension
of the subtraction formalism.
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Fully differential cross section:
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Such search strategies may be aided by accurate modeling of QCD radiation in the H ! bb̄
decay, which motivates the computation of the fully di↵erential decay rate at next-to-next-to-
leading order (NNLO) accuracy in QCD perturbation theory. Computing fully di↵erential cross
sections and decay rates at NNLO turns out to be rather involved, however the last decade has
witnessed substantial development [10–41] leading to a number of di↵erential results for specific
processes [42–76].

The first computation of the fully di↵erential decay rate of the SM Higgs boson into b-quarks
at NNLO accuracy was published in ref. [47]. That computation was performed with the method of
sector decomposition based on non-linear mappings [13]. Here we o↵er a di↵erent approach based
on the numerical implementation of the general subtraction scheme developed in a series of papers
for the computation of QCD jet cross sections at NNLO accuracy [31–41]. This method, which
is used for the first time in this paper to compute a physical observable at NNLO, employs the
universal infrared factorization of QCD squared matrix elements to define local subtraction terms
for regulating the singularities emerging in unresolved real radiation.

Specifically, we can write the NNLO correction to the cross section of a generic m-jet process
as a sum of three contributions, the tree level double real radiation, the one-loop plus a single
radiation, and the two-loop double virtual terms of the basic process under consideration,

�NNLO =

Z

m+2

d�RR
m+2Jm+2 +

Z

m+1

d�RV
m+1Jm+1 +

Z

m

d�VV
m Jm , (1.1)

and rearrange it as follows,

�NNLO =

Z

m+2

d�NNLO
m+2 +

Z

m+1

d�NNLO
m+1 +

Z

m

d�NNLO
m , (1.2)

where,

d�NNLO
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io
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, (1.3)
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, (1.4)

d�NNLO
m =

n

d�VV
m +

Z

2

h

d�RR,A2
m+2 � d�RR,A12

m+2

i

+

Z

1

h

d�RV,A1
m+1 +

⇣

Z

1

d�RR,A1
m+2

⌘

A1
io

✏=0
Jm . (1.5)

The subscripts on the integral signs are simply reminders that the integration is over the phase space
of n = m, m + 1 or m + 2 final state particles. Above Jn denotes the value of some infrared-safe
observable J evaluated on an n parton final state.

The right-hand sides of eqs. (1.3) and (1.4) are integrable in four dimensions by construction
[31–34], while the integrability of eq. (1.5) in four dimensions is ensured by the Kinoshita–Lee–
Nauenberg (KLN) theorem on infrared-safe quantities, provided that our subtraction scheme is well
defined.

The counterterms which contribute to d�NNLO
m+2 and to d�NNLO

m+1 were introduced in refs. [33]
and [34]. The integration of the real–virtual counterterms (the last two terms of eq. (1.5)) was
performed in refs. [35, 36, 38]. The integral of the iterated single unresolved counterterm (the third
term of eq. (1.5)) was computed in ref. [39]. The integration of the collinear-type contributions to the
double unresolved counterterm (the second term of eq. (1.5)) was performed in ref. [40]. The soft-
type contributions to the same counterterm were presented in ref. [41]. Most of these results were
given as expansions in ✏ whose coe�cients were computed numerically. Here we present the relevant
integrals with pole coe�cients evaluated analytically, while the finite parts are given numerically.
The final test on the consistency of our subtraction scheme is then to verify that eq. (1.5) is free of
singularities, as prescribed by the KLN theorem. In this paper, we perform that check analytically

– 2 –

Decay: Colourful method  [Del Duca, Somogyi and Trocsanyi 2007, 2009]

• completely local method

• based on the universal infrared factorization of QCD squared matrix elements 

• local subtraction terms for regulating the singularities

• Phase space factorization

• O(300) integrals to account of the final state singularities
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Figure 1. Scale dependence of the inclusive decay rate at LO, NLO and NNLO accuracy. The estimated

uncertainty on the numerical results is too small to be appreciated.

The inclusive decay rate is obtained by setting J = 1 and is given by the sum of the leading
order width (3.3) and the NLO (4.19) and NNLO (5.49) corrections. At µ = mH we obtain

�NNLO = �LO
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in agreement with the known analytic prediction [78]. In figure 1, we compute the inclusive decay
rate at µ = mH/2 and µ = 2mH and compare it to the known analytic result for the scale
dependence, finding excellent agreement.

To illustrate the impact of NNLO QCD corrections on di↵erential distributions, we apply the
Durham jet algorithm [84] with resolution parameter ycut = 0.05 to cluster final state partons and
order the resulting jets in energy. In the top panel of figure 2 we show the energy distribution of
the leading jet in the rest frame of the decaying Higgs boson for two-jet events. In ref. [47] the same
distribution was computed for jets clustered according to the JADE algorithm with ycut = 0.1. We
have repeated that calculation and found excellent agreement with the published results. However,
for two-parton kinematics the energy of the leading jet is just Emax = mH/2, so at leading order
the leading jet energy distribution is a delta function. Furthermore, double unresolved subtractions
for four parton matrix elements, as well as single unresolved subtractions for three parton matrix
elements also contribute to this distribution only at Emax = mH/2. Then, to show the subtraction
method at work on an observable that has a non-trivial distribution already at leading order, we
consider the absolute value of the pseudorapidity of the leading jet, |⌘1|, with respect to an arbitrary
axis. The e↵ect of higher order corrections on this distribution is shown on the bottom panel of
figure 2. In this last illustrative example we note that going from the leading order to NNLO, the
uncertainty bands shrink, and that the NNLO band falls within the NLO band, thereby showing
the good convergence of the perturbative series.
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In perfect agreement with:
 [Gorishnii, Kataev, Larin, Surguladze 1990]

[Baikov, Chetyrkin, Kuhn 2006]

Inclusive result

[Del Duca, Duhr, Somogyi, FT, Trocsanyi 2015]
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configuration consists of quark jets; but for jet production
at hadron colliders, the Born configuration involves two in-
coming and two outgoing jets and many flavour channels
are possible: qq→ qq, qq̄→ gg, gg→ gg, etc. The ability
to assign flavours to the jets is especially useful when com-
bining fixed-order predictions with all-order calculations
(be it for parton showers as in [7] or for analytical resum-
mations [8–10]). This is because all-order calculations are
carried out for a fixed Born configuration, with a single
flavour channel at a time, while fixed-order calculations im-
plicitly sum over all flavour channels and can at best be
split up a posteriori to match onto the individual flavour
channels of the all-order calculation.

As a concrete example, consider the calculation of
higher-order corrections to the process qq̄→ qq̄, Fig. 1a.
An all-order calculation treats the addition of any num-
ber of soft/collinear gluons and extra qq̄ pairs implicitly,
leaving the underlying 2→ 2 flavours unchanged. When
trying to supplement this with results of a fixed-order
calculation one encounters the problem that higher-order
contributions cannot be uniquely assigned to any given
2→ 2 flavour channel – the O (αs) corrections to qq̄→ qq̄
include e.g. a qq̄→ qq̄→ qq̄g piece, but a fixed-order calcu-
lation gives only the squared sum of all qq̄→ qq̄g diagrams,
among them qq̄→ qq̄→ qq̄g and qq̄→ gg→ qq̄g, illustrated
in Fig. 1b and c respectively. There can exist no unambigu-
ous procedure for separating the qq̄→ qq̄g contribution
into its different underlying channels, both because the dif-
ferent channels are not individually gauge invariant and
because they interfere when squaring the amplitude.

One therefore needs a prescription to assign qq̄→ qq̄g
either to the qq̄→ qq̄ or the qq̄→ gg underlying Born 2→ 2
process (or else to declare it irreducibly 2→ 3-like), it only
being in the qq̄→ qq̄ case that one needs to put it together
with the qq̄→ qq̄ all-order calculation. This reclassification
of a 2→ 3 event as a 2→ 2 event is similar conceptually
to what is done in a normal jet algorithm, except that not
only should the momenta of the resulting 2→ 2 config-
uration be infrared and collinear safe, but so should the
flavours. Accordingly we call it a jet-flavour algorithm.

An obvious approach to defining jet flavours at the per-
turbative level would be to start with an existing jet algo-
rithm, such as the kt-clustering [11–13] or cone [14] algo-
rithm, that defines jets such that each particle belongs to at
most one jet. One can then determine the net flavour con-
tent of each of the jets, as the total number of quarks minus
antiquarks for each quark flavour. Jets with no net flavour
are identified as gluon jets, those with (minus) one unit of
net flavour are (anti) quark jets, while those with more than

Fig. 1. a Specific qq̄→ qq̄ flavour channel for a 2→ 2 parton
scattering process; b higher-order diagram that can be seen as
a correction to a; c higher-order diagram that can be seen as
a correction to the process qq̄→ gg, but with the same final-
state partons as b

one unit of flavour (or both a flavour and a different anti-
flavour) cannot be identified with a single QCD parton.

Applied to the kt or cone algorithms, this procedure
yields a jet flavour that is infrared (IR) safe at (rela-
tive) order αs discussed in our example above. However at
(relative) order α2

s a large-angle soft gluon can split into
a widely separated soft qq̄ pair and the q and q̄ may end up
being clustered into different jets, “polluting” the flavour
of those jets; see Fig. 2. Because this happens for arbi-
trarily soft gluons branching to quarks, the resulting jet
flavours are infrared unsafe from order α2

s onwards. We are
not aware of this problem having been discussed previously
in the literature, though there do exist statements that are
suggestive of IR safety issues when discussing flavour [15].

In Sect. 2 we shall discuss IR flavour unsafety with re-
spect to the kt (or “Durham”) algorithm in e+e− [11].
There we shall recall that the kt closeness measure is spe-
cifically related to the divergences of QCD matrix elements
when producing soft and collinear gluons. However there
are no divergences for the production of soft quarks and, as
we shall see, it is the use for quarks of a distance measure
designed for gluons that leads to the infrared unsafety of
jet flavour in the kt algorithm. By taking into account the
absence of a soft-quark divergence when designing the jet-
clustering distance measure, one can eliminate the infrared
divergence of the jet flavour.

The essence of the modification to the kt distance is
that instead of the min(E2

i , E
2
j ) factor that appears usu-

ally, one needs to use max(E2
i , E

2
j ) when the softer of i, j

is a quark. In Sect. 3 we will examine how this can be
extended to processes with incoming hadrons. There the
added difficulty is the need for a particle-beam distance
measure. Traditionally this involves only one dimensionful
scale, related to the squared transverse momentum k2

ti of
the particle. There is a sense in which this can be under-
stood as min(k2

ti, k
2
tB), where k2

tB is some transverse scale
associated with the beam that is larger than all k2

ti and
so could up to now be ignored. In order to obtain a sensi-
ble jet-flavour algorithm we shall however need to consider
also max(k2

ti, k
2
tB) and therefore in Sect. 3 we shall investi-

gate how to construct sensible “beam scales”.
As well as explaining how to build jet algorithms that

provide an infrared-safe jet flavour, we shall also examine
how they fare in practice. In e+e− it will be possible to
carry out tests both with an NLO code (which explicitly
reveals the IR unsafety of flavour in traditional jet algo-

Fig. 2. A large-angle soft gluon splitting to a large-angle soft
qq̄ pair (k3, k4) with the q and q̄ then clustered into different
jets (k1, k2)

[Banfi, Salam, Zanderighi 2006]
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else gets called a jet, in the “inclusive” version of the algo-
rithm).

The modification of the dij needed to obtain a flavour-
safe jet algorithm is directly analogous to that used for the
e+e− algorithm:

d
(F )
ij =(∆η2ij +∆φ2

ij)

×

{
max(k2

ti, k
2
tj) , softer of i, j is flavoured,

min(k2
ti, k

2
tj) , softer of i, j is flavourless,

(10)

where by “softer” we now mean that having lower kt and
where temporarily, for simplicity, we consider only the case
α= 2.

It is less obvious how to modify the beam distance. The
problem is that diB involves just a single scale, k2

ti, and so
there is no “minimum” that one can replace with a “max-
imum”. However one could imagine that diB is actually the
minimum of k2

ti and some transverse scale associated with
the beam, k2

tB, which has never been explicitly needed so
far because it was always larger than any of the k2

ti. The
analogue of (10) would then be to take

d
(F )
iB =

{
max(k2

ti, k
2
tB) , i is flavoured,

min(k2
ti, k

2
tB) , i is flavourless.

(11)

The question that remains is how to define ktB .
A first issue is that we will want to identify the flavour

of each of the incoming beams. So whereas for the normal
kt algorithm one recombines particles with “the beams”,
here we will need to specify which of the two beams a par-
ticle recombines with. Therefore we will need to define ktB

for the beam moving towards positive rapidities (right) and
ktB̄ for the other beam.

In line with the DGLAP idea [21] of logarithmic order-
ing, such that harder emissions are at successively larger
angles with respect to the beam that produced them, it
makes sense for the beam hardness to be a function of ra-
pidity, ktB(η). In the definition of diB , (11), one would then
use ktB(ηi). For the right-moving (positive rapidity) beam,
one scale that appears naturally is (with Θ(0)≡ 1/2),

Pt,right(η) =
∑

i

ktiΘ(ηi−η) , (12)

i.e. the beam scale should be at least as hard as all emis-
sions that have already occurred from that beam (i.e. all
emissions that are at larger rapidity). Another scale that
arises is

Pα,left(η) =
∑

i

ktie
ηiΘ(η−ηi) . (13)

When one performs a Sudakov decomposition of all mo-
menta ki = αiP + βiP̄ + kti (P = (1, 0, 0, 1) and P̄ =
(1, 0, 0,−1)), in the massless approximation, this scale is
just the sum of the αi = ktieηi components of all particles
that are still to be emitted by this beam (i.e. are at smaller
rapidity). It is equivalent to the light-cone momentum still
left in the beam. This scale depends on the reference frame,

but can be transformed into a boost invariant, local “trans-
verse” hardness by multiplying it by e−η, giving9

Ptα,left(η) =
∑

i

ktie
ηi−ηΘ(η−ηi) . (14)

By adding the two measures, Pt,right(η) and Ptα,left(η)
for the beam scale, one obtains an overall beam hardness
measure,

ktB(η) =
∑

i

kti

(
Θ(ηi−η)+Θ(η−ηi)eηi−η

)
, (15)

that takes into account both emissions that have already
occurred at a certain rapidity (in the picture of ordering of
emissions) and those that will occur further on. Similarly
one defines a scale for the other beam

ktB̄(η) =
∑

i

kti

(
Θ(η−ηi)+Θ(ηi−η)eη−ηi

)
. (16)

In the same way that one updates the dij and diB after each
clustering, one should update also the ktB and ktB̄.

To illustrate the properties of ktB and ktB̄, Fig. 5 shows
these two quantities for a typical multi-jet LHC event (rep-
resented as a histogram of total transverse momentum per
bin of rapidity). Towards positive rapidities, ktB(η) de-
creases as e−η, while ktB̄(η) approaches a constant, so that
as is natural, positive-rapidity particles combine with B,
while negative-rapidity particles combine with B̄. At the
point where ktB and ktB̄ cross, they are of the same order

Fig. 5. Plot of ktB and ktB̄ for a multi-jet parton-level LHC
event, generated by Herwig; also shown is the histogram of the
rapidity distribution of transverse momenta

9 Another way of seeing how this scale arises naturally is to
recall that in the non-longitudinally invariant version of the kt

algorithm for DIS and hadron–hadron collisions [22], the beam
distance is diB = 2E2

i (1− cos θiB). Replacing Ei with the ef-
fective beam energy 1

2Pα,left (i.e. taking the larger of Ei and the
effective beam energy) and taking the small-angle limit gives
precisely P 2

tα,left.
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else gets called a jet, in the “inclusive” version of the algo-
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The modification of the dij needed to obtain a flavour-
safe jet algorithm is directly analogous to that used for the
e+e− algorithm:
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where by “softer” we now mean that having lower kt and
where temporarily, for simplicity, we consider only the case
α= 2.

It is less obvious how to modify the beam distance. The
problem is that diB involves just a single scale, k2

ti, and so
there is no “minimum” that one can replace with a “max-
imum”. However one could imagine that diB is actually the
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The question that remains is how to define ktB .
A first issue is that we will want to identify the flavour

of each of the incoming beams. So whereas for the normal
kt algorithm one recombines particles with “the beams”,
here we will need to specify which of the two beams a par-
ticle recombines with. Therefore we will need to define ktB

for the beam moving towards positive rapidities (right) and
ktB̄ for the other beam.

In line with the DGLAP idea [21] of logarithmic order-
ing, such that harder emissions are at successively larger
angles with respect to the beam that produced them, it
makes sense for the beam hardness to be a function of ra-
pidity, ktB(η). In the definition of diB , (11), one would then
use ktB(ηi). For the right-moving (positive rapidity) beam,
one scale that appears naturally is (with Θ(0)≡ 1/2),

Pt,right(η) =
∑

i

ktiΘ(ηi−η) , (12)

i.e. the beam scale should be at least as hard as all emis-
sions that have already occurred from that beam (i.e. all
emissions that are at larger rapidity). Another scale that
arises is

Pα,left(η) =
∑

i

ktie
ηiΘ(η−ηi) . (13)

When one performs a Sudakov decomposition of all mo-
menta ki = αiP + βiP̄ + kti (P = (1, 0, 0, 1) and P̄ =
(1, 0, 0,−1)), in the massless approximation, this scale is
just the sum of the αi = ktieηi components of all particles
that are still to be emitted by this beam (i.e. are at smaller
rapidity). It is equivalent to the light-cone momentum still
left in the beam. This scale depends on the reference frame,

but can be transformed into a boost invariant, local “trans-
verse” hardness by multiplying it by e−η, giving9

Ptα,left(η) =
∑

i

ktie
ηi−ηΘ(η−ηi) . (14)

By adding the two measures, Pt,right(η) and Ptα,left(η)
for the beam scale, one obtains an overall beam hardness
measure,

ktB(η) =
∑

i

kti

(
Θ(ηi−η)+Θ(η−ηi)eηi−η

)
, (15)

that takes into account both emissions that have already
occurred at a certain rapidity (in the picture of ordering of
emissions) and those that will occur further on. Similarly
one defines a scale for the other beam

ktB̄(η) =
∑

i

kti

(
Θ(η−ηi)+Θ(ηi−η)eη−ηi

)
. (16)

In the same way that one updates the dij and diB after each
clustering, one should update also the ktB and ktB̄.

To illustrate the properties of ktB and ktB̄, Fig. 5 shows
these two quantities for a typical multi-jet LHC event (rep-
resented as a histogram of total transverse momentum per
bin of rapidity). Towards positive rapidities, ktB(η) de-
creases as e−η, while ktB̄(η) approaches a constant, so that
as is natural, positive-rapidity particles combine with B,
while negative-rapidity particles combine with B̄. At the
point where ktB and ktB̄ cross, they are of the same order

Fig. 5. Plot of ktB and ktB̄ for a multi-jet parton-level LHC
event, generated by Herwig; also shown is the histogram of the
rapidity distribution of transverse momenta
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distance is diB = 2E2

i (1− cos θiB). Replacing Ei with the ef-
fective beam energy 1

2Pα,left (i.e. taking the larger of Ei and the
effective beam energy) and taking the small-angle limit gives
precisely P 2

tα,left.
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where by “softer” we now mean that having lower kt and
where temporarily, for simplicity, we consider only the case
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It is less obvious how to modify the beam distance. The
problem is that diB involves just a single scale, k2

ti, and so
there is no “minimum” that one can replace with a “max-
imum”. However one could imagine that diB is actually the
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A first issue is that we will want to identify the flavour

of each of the incoming beams. So whereas for the normal
kt algorithm one recombines particles with “the beams”,
here we will need to specify which of the two beams a par-
ticle recombines with. Therefore we will need to define ktB

for the beam moving towards positive rapidities (right) and
ktB̄ for the other beam.

In line with the DGLAP idea [21] of logarithmic order-
ing, such that harder emissions are at successively larger
angles with respect to the beam that produced them, it
makes sense for the beam hardness to be a function of ra-
pidity, ktB(η). In the definition of diB , (11), one would then
use ktB(ηi). For the right-moving (positive rapidity) beam,
one scale that appears naturally is (with Θ(0)≡ 1/2),

Pt,right(η) =
∑
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ktiΘ(ηi−η) , (12)

i.e. the beam scale should be at least as hard as all emis-
sions that have already occurred from that beam (i.e. all
emissions that are at larger rapidity). Another scale that
arises is

Pα,left(η) =
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(1, 0, 0,−1)), in the massless approximation, this scale is
just the sum of the αi = ktieηi components of all particles
that are still to be emitted by this beam (i.e. are at smaller
rapidity). It is equivalent to the light-cone momentum still
left in the beam. This scale depends on the reference frame,

but can be transformed into a boost invariant, local “trans-
verse” hardness by multiplying it by e−η, giving9
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for the beam scale, one obtains an overall beam hardness
measure,
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In the same way that one updates the dij and diB after each
clustering, one should update also the ktB and ktB̄.

To illustrate the properties of ktB and ktB̄, Fig. 5 shows
these two quantities for a typical multi-jet LHC event (rep-
resented as a histogram of total transverse momentum per
bin of rapidity). Towards positive rapidities, ktB(η) de-
creases as e−η, while ktB̄(η) approaches a constant, so that
as is natural, positive-rapidity particles combine with B,
while negative-rapidity particles combine with B̄. At the
point where ktB and ktB̄ cross, they are of the same order

Fig. 5. Plot of ktB and ktB̄ for a multi-jet parton-level LHC
event, generated by Herwig; also shown is the histogram of the
rapidity distribution of transverse momenta

9 Another way of seeing how this scale arises naturally is to
recall that in the non-longitudinally invariant version of the kt

algorithm for DIS and hadron–hadron collisions [22], the beam
distance is diB = 2E2

i (1− cos θiB). Replacing Ei with the ef-
fective beam energy 1

2Pα,left (i.e. taking the larger of Ei and the
effective beam energy) and taking the small-angle limit gives
precisely P 2

tα,left.
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else gets called a jet, in the “inclusive” version of the algo-
rithm).

The modification of the dij needed to obtain a flavour-
safe jet algorithm is directly analogous to that used for the
e+e− algorithm:

d
(F )
ij =(∆η2ij +∆φ2

ij)

×

{
max(k2

ti, k
2
tj) , softer of i, j is flavoured,

min(k2
ti, k

2
tj) , softer of i, j is flavourless,

(10)

where by “softer” we now mean that having lower kt and
where temporarily, for simplicity, we consider only the case
α= 2.

It is less obvious how to modify the beam distance. The
problem is that diB involves just a single scale, k2

ti, and so
there is no “minimum” that one can replace with a “max-
imum”. However one could imagine that diB is actually the
minimum of k2

ti and some transverse scale associated with
the beam, k2

tB, which has never been explicitly needed so
far because it was always larger than any of the k2

ti. The
analogue of (10) would then be to take

d
(F )
iB =

{
max(k2

ti, k
2
tB) , i is flavoured,

min(k2
ti, k

2
tB) , i is flavourless.

(11)

The question that remains is how to define ktB .
A first issue is that we will want to identify the flavour

of each of the incoming beams. So whereas for the normal
kt algorithm one recombines particles with “the beams”,
here we will need to specify which of the two beams a par-
ticle recombines with. Therefore we will need to define ktB

for the beam moving towards positive rapidities (right) and
ktB̄ for the other beam.

In line with the DGLAP idea [21] of logarithmic order-
ing, such that harder emissions are at successively larger
angles with respect to the beam that produced them, it
makes sense for the beam hardness to be a function of ra-
pidity, ktB(η). In the definition of diB , (11), one would then
use ktB(ηi). For the right-moving (positive rapidity) beam,
one scale that appears naturally is (with Θ(0)≡ 1/2),

Pt,right(η) =
∑

i

ktiΘ(ηi−η) , (12)

i.e. the beam scale should be at least as hard as all emis-
sions that have already occurred from that beam (i.e. all
emissions that are at larger rapidity). Another scale that
arises is

Pα,left(η) =
∑

i

ktie
ηiΘ(η−ηi) . (13)

When one performs a Sudakov decomposition of all mo-
menta ki = αiP + βiP̄ + kti (P = (1, 0, 0, 1) and P̄ =
(1, 0, 0,−1)), in the massless approximation, this scale is
just the sum of the αi = ktieηi components of all particles
that are still to be emitted by this beam (i.e. are at smaller
rapidity). It is equivalent to the light-cone momentum still
left in the beam. This scale depends on the reference frame,

but can be transformed into a boost invariant, local “trans-
verse” hardness by multiplying it by e−η, giving9

Ptα,left(η) =
∑

i

ktie
ηi−ηΘ(η−ηi) . (14)

By adding the two measures, Pt,right(η) and Ptα,left(η)
for the beam scale, one obtains an overall beam hardness
measure,

ktB(η) =
∑

i

kti

(
Θ(ηi−η)+Θ(η−ηi)eηi−η

)
, (15)

that takes into account both emissions that have already
occurred at a certain rapidity (in the picture of ordering of
emissions) and those that will occur further on. Similarly
one defines a scale for the other beam

ktB̄(η) =
∑

i

kti

(
Θ(η−ηi)+Θ(ηi−η)eη−ηi

)
. (16)

In the same way that one updates the dij and diB after each
clustering, one should update also the ktB and ktB̄.

To illustrate the properties of ktB and ktB̄, Fig. 5 shows
these two quantities for a typical multi-jet LHC event (rep-
resented as a histogram of total transverse momentum per
bin of rapidity). Towards positive rapidities, ktB(η) de-
creases as e−η, while ktB̄(η) approaches a constant, so that
as is natural, positive-rapidity particles combine with B,
while negative-rapidity particles combine with B̄. At the
point where ktB and ktB̄ cross, they are of the same order

Fig. 5. Plot of ktB and ktB̄ for a multi-jet parton-level LHC
event, generated by Herwig; also shown is the histogram of the
rapidity distribution of transverse momenta

9 Another way of seeing how this scale arises naturally is to
recall that in the non-longitudinally invariant version of the kt

algorithm for DIS and hadron–hadron collisions [22], the beam
distance is diB = 2E2

i (1− cos θiB). Replacing Ei with the ef-
fective beam energy 1

2Pα,left (i.e. taking the larger of Ei and the
effective beam energy) and taking the small-angle limit gives
precisely P 2

tα,left.
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WH(bb)@NNLO in both production and decay
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ptW > 150GeVLHC13 with standard WH search cuts

Preliminary Preliminary

[G. Ferrera, G. Somogyi, FT(to appear)]



Conclusion
✴ Calculation of NNLO QCD corrections to VH production with nnlo QCD H → bb decay 

in hadron collision included in a fully-exclusive parton level Monte Carlo code:  HVNNLO

✴ Perturbative corrections are important

✴ first reliable estimate of perturbative uncertainty possible

Outlook/Work in progress
✴ Public release of the HVNNLO parton-level numerical code

✴ Inclusion of other Higgs boson decay channels, es. H → WW/ZZ → 2l2ν/4l decay

✴ Further comparisons among fixed order and computations matched to the PS

✴ Would be important to have a NLOPS event generator with both QCD and EW effects

✴ NNLOPS (?)



Backup



NNLO(pp → VH)      nlo(H → bb)⌦

LHC8 with standard WH search cuts and a jet veto


