Higgs self coupling determination from single Higgs production and decay

Ambresh Shivaji

CP3, UCL, Louvain-la-Neuve

In collaboration with Fabio Maltoni, Davide Pagani and Xiaoran Zhao

Based on 1607.04251 and its extension(ongoing...)

LHCTheory ERC Meeting,

March 22-24, 2017

Ambresh Shivaji (CP3 Louvain)

March 22-24, 2017 1 / 27

(日) (周) (三) (三)

Higgs potential and new physics

Higgs potential & EWSB in the SM,

$$V^{\rm SM}(\Phi) = -\mu^2 (\Phi^{\dagger} \Phi)^2 + \lambda (\Phi^{\dagger} \Phi)^4$$
(1)

$$\Rightarrow V(H) = \frac{m_H^2}{2}H^2 + \lambda_3 v H^3 + \lambda_4 H^4.$$
 (2)

The mass and the self-couplings of the Higgs boson depend only on λ and $v = (\sqrt{2}G_{\mu})^{-1/2}$,

$$m_H^2 = 2\lambda v^2; \ \lambda_3^{\rm SM} = \lambda; \ \lambda_4^{\rm SM} = \lambda/4.$$
 (3)

• $m_H = 125 \text{ GeV}$ and $\nu \sim 246 \text{ GeV}$, $\Rightarrow \lambda \simeq 0.13$.

(日) (周) (三) (三) (三) (000

- Presence of new physics at higher energy scales can contribute to the Higgs potential and modify the Higgs self couplings. Therefore, an independent determination of λ_3 and λ_4 is crucial.
- Deviations in Higgs self-couplings due to new physics,

$$\lambda_3 = \kappa_\lambda \lambda_3^{\text{SM}}, \ \lambda_4 = \kappa_4 \lambda_4^{\text{SM}}. \tag{4}$$

The Higgs mass and vev remain unchanged. In general, κ_λ and κ_4 are independent.

イロト イポト イヨト イヨト 二日

Contribution from Higher dim. operators: an example

• Dim-6:

$$V^{6}(\Phi) = V^{SM}(\Phi) + \frac{C_{6}}{v^{2}}(\Phi^{\dagger}\Phi)^{3}$$
(5)
$$\Rightarrow \kappa_{\lambda} = 1 + 2c_{6}\frac{v^{2}}{m_{H}^{2}}, \ \kappa_{4} = 1 + 12c_{6}\frac{v^{2}}{m_{H}^{2}}$$
(6)

The trilinear and the quartic Higgs self-couplings are still correlated $(\kappa_4 = 6\kappa_{\lambda})$.

• Dim-8:

$$V^{8}(\Phi) = V^{SM}(\Phi) + \frac{C_{6}}{v^{2}}(\Phi^{\dagger}\Phi)^{3} + \frac{C_{8}}{v^{4}}(\Phi^{\dagger}\Phi)^{4}$$
 (7)

$$\Rightarrow \kappa_{\lambda} = 1 + (2c_6 + 4c_8) \frac{v^2}{m_H^2}, \ \kappa_4 = 1 + (12c_6 + 32c_8) \frac{v^2}{m_H^2} \ (8)$$

The trilinear and the quartic Higgs self-couplings are no more correlated.

Ambresh Shivaji (CP3 Louvain)

Direct determination of Higgs self couplings

- Information on λ_3 and λ_4 can be extracted by studying multi-Higgs production processes.
- Higgs pair production is the standard channel for λ_3 measurement. Its SM cross section at 13 TeV LHC is about 35 fb. (Compare it with the single Higgs production cross section: ~ 50 pb.) Frederix et al. '14:

イロト 不得下 イヨト イヨト

Direct determination of Higgs self couplings

• Current experimental bounds on κ_{λ} are very weak. CMS in $2\gamma 2b$ final state with 8 TeV and 19.7 fb⁻¹ data (1603.06896) excludes κ_{λ} in the range,

$$\kappa_{\lambda} < -17.5$$
 and $\kappa_{\lambda} > 22.5$

Direct determination of Higgs self couplings

• The ATLAS data at 13 TeV in 4b final state and with 13.3 ${\rm fb}^{-1}$ excludes (ATLAS-CONF-2016-049),

 $\kappa_{\lambda} < -8$ and $\kappa_{\lambda} > \sim 12$

• Future prospects at HL-LHC with 3000 ${\rm fb}^{-1}$ data, (ATL-PHYS-PUB-2014-019,2015-046)

$$\kappa_{\lambda} < -1.3 ext{ and } \kappa_{\lambda} > 8.7 (2\gamma 2b) \ \kappa_{\lambda} < -4 ext{ and } \kappa_{\lambda} > 12 (2\tau 2b)$$

• No realistic hope of measuring λ_4 in $gg \rightarrow HHH$ production channel at the LHC due to a very small cross section: ~ 0.1 fb at 13 TeV.

Indirect determination of λ_3

- $\mathcal{O}(\lambda)$ corrections to single Higgs production and decay processes Matthew McCullough: 1312.3322, Chen Shen, Shou-hua Zhu: 1504.05626 ($e^+e^- \rightarrow ZH$) Martin Gorbahn, Ulrich Haisch: 1607.03773 ($gg \rightarrow H, H \rightarrow \gamma\gamma$) Giuseppe Degrassi, Pier Paolo Giardino, Fabio Maltoni, Davide Pagani: 1607.04251 (Relevant Higgs production and decay modes) Wojciech Bizon, Martin Gorbahn, Ulrich Haisch, Giulia Zanderighi: 1610.05771 (VH, VBF)
- $\mathcal{O}(\lambda)$ corrections in electroweak precision observables Giuseppe Degrassi, Marco Fedele, Pier Paolo Giardino: 1702.01737 Graham D. Kribs, Andreas Maier, Heidi Rzehak, Michael Spannowsky, Philip Waite: 1702.07678

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Master formula

$$\Sigma_{\rm NLO} = Z_H \Sigma_{\rm LO} (1 + \kappa_\lambda C_1); \ Z_H = \frac{1}{(1 - \kappa_\lambda^2 \delta Z_H)}$$
(9)
$$\delta \Sigma_{\lambda_3} = \frac{\Sigma_{\rm NLO} - \Sigma_{\rm NLO}^{\rm SM}}{\Sigma_{\rm LO}}$$

$$= (\kappa_\lambda - 1)C_1 + (\kappa_\lambda^2 - 1)C_2 + \mathcal{O}(\kappa_\lambda^3 \alpha^2)$$
(10)

$$\mathcal{O}(\kappa_{\lambda}^{3}\alpha^{2})\simeq\kappa_{\lambda}^{3}C_{1}\delta Z_{H}<10\%\Rightarrow|\kappa_{\lambda}|\lesssim20.$$

• C_2 , which arises from the wave function renormalization, is universal.

$$C_{2} = \frac{\delta Z_{H}}{(1 - \kappa_{\lambda}^{2} \delta Z_{H})}; \ \delta Z_{H} = -\frac{9}{16} \frac{G_{\mu} m_{H}^{2}}{\sqrt{2}\pi^{2}} \left(\frac{2\pi}{3\sqrt{3}} - 1\right)$$
(11)

- 3

(日) (周) (三) (三)

- The process-independent factor C_2 can range from $C_2 = -1.536 \cdot 10^{-3}$ for $\kappa_{\lambda} = 1$ up to $C_2 = -9.514 \cdot 10^{-4}$ for $\kappa_{\lambda} = \pm 20$.
- C_1 is process dependent and can have kinematic dependence. It arises from the interference between LO amplitude and $\mathcal{O}(\lambda)$ virtual corrections.

Figure: Diagrams contributing to $O(\lambda)$ virtual corrections to single Higgs production and decay channels.

• C₁ for decay modes:

$C_1^{\Gamma}[\%]$	$\gamma\gamma$	ZZ	WW	fŦ	gg
on-shell H	0.49	0.83	0.73	0	0.66

• *C*₁ for production modes:

C_1^{σ} [%]	ggF	VBF	WH	ZH	ttΗ
7 TeV	0.66	0.65	1.06	1.23	3.87
8 TeV	0.66	0.65	1.05	1.22	3.78
13 TeV	0.66	0.64	1.03	1.19	3.51
14 TeV	0.66	0.64	1.03	1.18	3.47

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Modifications in production cross sections and BRs:

Except *ttH*, for all other production channels large corrections are mostly -ve and for large $|\kappa_{\lambda}|$.

Corrections to BRs are much smaller, however, around SM predictions, the decay modes are more sensitive to κ_{λ} than the production modes.

イロト 不得下 イヨト イヨト

The most stringent bound comes using ggF + VBF 8 TeV data,

$$\kappa_{\lambda}^{\text{best}} = -0.24, \ \kappa_{\lambda}^{1\sigma} = [-5.6, 11.2], \ \kappa_{\lambda}^{2\sigma} = [-9.4, 17.0].$$

Ambresh Shivaji (CP3 Louvain)

Indirect determination of λ_3 : kinematic dependence

 O(λ) corrections have non-trivial dependence on external momenta, e.g., for the VVH vertex the correction is

$$i\mathcal{V}_{VVH}^{\mu_1\mu_2} = \frac{i\lambda}{16\pi^2} \frac{M_V^2}{v} [(-6B_0 - 24M_V^2C_0 + 24C_{00})g^{\mu_1\mu_2} - 24p_1^{\mu_2}p_2^{\mu_1}C_{12}].$$
(12)

- We calculate C_1 for kinematic distributions. Here we consider, Production (*VH*, *VBF* and *ttH* at 13 TeV) & Decay ($H \rightarrow 4I$).
- The O(λ) corrections for the production channels are computed via reweighting in MG5@MC_NLO. The results for H → 4I are obtained using the publicly available Hto41 code (1503.07394).

Preliminary results: ZH

Figure: LO distribution (left). Differential $C_1(\%)$ (right). Blue line: $C_1(\%)$ for total rate.

3

(日) (同) (三) (三)

Preliminary results: ZH

Figure: LO distribution (left). Differential $C_1(\%)$ (right). Blue line: $C_1(\%)$ for total rate.

< □ > < ---->

Preliminary results: WH

Figure: LO distribution (left). Differential $C_1(\%)$ (right). Blue line: $C_1(\%)$ for total rate.

3

(日) (同) (三) (三)

Preliminary results: WH

Figure: LO distribution (left). Differential $C_1(\%)$ (right). Blue line: $C_1(\%)$ for total rate.

< □ > < ---->

Preliminary results: VBF

Figure: LO distribution (left). Differential $C_1(\%)$ (right). Blue line: $C_1(\%)$ for total rate.

Preliminary results: ttH

Figure: LO distribution (left). Differential $C_1(\%)$ (right). Blue line: $C_1(\%)$ for total rate.

э

- ∢ ≣ →

Image: A math a math

Preliminary results: ttH

Figure: LO distribution (left). Differential $C_1(\%)$ (right). Blue line: $C_1(\%)$ for total rate.

3

< ∃⇒

-

Preliminary results: ttH

Figure: LO distribution (left). Differential $C_1(\%)$ (right). Blue line: $C_1(\%)$ for total rate.

э

∃ → (∃ →

Preliminary results: H4I ($e^+e^-\mu^+\mu^-$)

Figure: LO distribution (left). Differential $C_1(\%)$ (right). Blue line: $C_1(\%)$ for total rate.

< 🗇 🕨

- The indirect determination of Higgs self couplings via EW corrections to Higgs production and decay channels can complement its direct determination via multi-Higgs production at the LHC.
- The study of differential distributions which get affected in a non-trivial way can help in lifting the degeneracy due to modifications in other couplings and improve the bounds on Higgs self couplings (Work in progress...).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

C_1^{σ} [%]	$25~{ m GeV}$	$50 \mathrm{GeV}$	$100~{\rm GeV}$	$200 \ {\rm GeV}$	$500~{\rm GeV}$
WH	1.71 (0.11)	1.56 (0.34)	1.29 (0.72)	1.09 (0.94)	1.03 (0.99)
ZH	2.00 (0.10)	1.83 (0.33)	1.50 (0.71)	1.26 (0.94)	1.19 (0.99)
tŦΗ	5.44 (0.04)	5.14 (0.17)	4.66 (0.48)	3.95 (0.84)	3.54 (0.99)

Table: C_1^{σ} at 13 TeV obtained by imposing the cut $p_T(H) < p_{T,cut}$, for several values of $p_{T,cut}$. In parentheses the fraction of events left after the quoted cut is applied.

C_1^{σ} [%]	1.1	1.2	1.5	2	3
WH	1.78 (0.17)	1.60 (0.36)	1.32 (0.70)	1.15 (0.89)	1.06 (0.97)
ZH	2.08 (0.19)	1.86 (0.38)	1.51 (0.72)	1.31 (0.90)	1.22 (0.98)
tτΗ	8.57 (0.02)	7.02 (0.10)	5.11 (0.43)	4.12 (0.76)	3.64 (0.94)

Table: C_1^{σ} at 13 TeV obtained by imposing the cut $m_{tot} < K \cdot m_{thr}$, for severalvalues of K. In parentheses the fraction of events left after the quoted cut isMarch 22-24, 201726 / 27

Future projections: $\kappa_{\lambda}^{\mathrm{best}} = 1$

$$\begin{aligned} \kappa_{\lambda}^{1\sigma} &= [-1.8, 7.3], \ \kappa_{\lambda}^{2\sigma} = [-3.5, 9.6] \ (\text{CMS}, 300 \text{fb}^{-1}) \\ \kappa_{\lambda}^{1\sigma} &= [-0.7, 4.2], \ \kappa_{\lambda}^{2\sigma} = [-2.0, 6.8] \ (\text{CMS}, 3000 \text{fb}^{-1}) \end{aligned}$$