Higgs self coupling determination from single Higgs production and decay

Ambresh Shivaji

CP3, UCL, Louvain-la-Neuve
In collaboration with
Fabio Maltoni, Davide Pagani and Xiaoran Zhao
Based on 1607.04251 and its extension(ongoing...)

LHCTheory ERC Meeting,
March 22-24, 2017

Higgs potential and new physics

- Higgs potential \& EWSB in the SM,

$$
\begin{align*}
V^{\mathrm{SM}}(\Phi) & =-\mu^{2}\left(\Phi^{\dagger} \Phi\right)^{2}+\lambda\left(\Phi^{\dagger} \Phi\right)^{4} \tag{1}\\
\Rightarrow V(H) & =\frac{m_{H}^{2}}{2} H^{2}+\lambda_{3} v H^{3}+\lambda_{4} H^{4} \tag{2}
\end{align*}
$$

The mass and the self-couplings of the Higgs boson depend only on λ and $v=\left(\sqrt{2} G_{\mu}\right)^{-1 / 2}$,

$$
\begin{equation*}
m_{H}^{2}=2 \lambda v^{2} ; \lambda_{3}^{\mathrm{SM}}=\lambda ; \lambda_{4}^{\mathrm{SM}}=\lambda / 4 \tag{3}
\end{equation*}
$$

- $m_{H}=125 \mathrm{GeV}$ and $v \sim 246 \mathrm{GeV}, \Rightarrow \lambda \simeq 0.13$.

Higgs potential and new physics

- Presence of new physics at higher energy scales can contribute to the Higgs potential and modify the Higgs self couplings. Therefore, an independent determination of λ_{3} and λ_{4} is crucial.
- Deviations in Higgs self-couplings due to new physics,

$$
\begin{equation*}
\lambda_{3}=\kappa_{\lambda} \lambda_{3}^{S M}, \lambda_{4}=\kappa_{4} \lambda_{4}^{S M} \tag{4}
\end{equation*}
$$

The Higgs mass and vev remain unchanged. In general, κ_{λ} and κ_{4} are independent.

Contribution from Higher dim. operators: an example

- Dim-6:

$$
\begin{align*}
V^{6}(\Phi) & =V^{S M}(\Phi)+\frac{C_{6}}{v^{2}}\left(\Phi^{\dagger} \Phi\right)^{3} \tag{5}\\
\Rightarrow \kappa_{\lambda} & =1+2 c_{6} \frac{v^{2}}{m_{H}^{2}}, \kappa_{4}=1+12 c_{6} \frac{v^{2}}{m_{H}^{2}} \tag{6}
\end{align*}
$$

The trilinear and the quartic Higgs self-couplings are still correlated $\left(\kappa_{4}=6 \kappa_{\lambda}\right)$.

- Dim-8:

$$
\begin{align*}
V^{8}(\Phi) & =V^{\mathrm{SM}}(\Phi)+\frac{C_{6}}{v^{2}}\left(\Phi^{\dagger} \Phi\right)^{3}+\frac{C_{8}}{v^{4}}\left(\Phi^{\dagger} \Phi\right)^{4} \tag{7}\\
\Rightarrow \kappa_{\lambda} & =1+\left(2 c_{6}+4 c_{8}\right) \frac{v^{2}}{m_{H}^{2}}, \kappa_{4}=1+\left(12 c_{6}+32 c_{8}\right) \frac{v^{2}}{m_{H}^{2}} \tag{8}
\end{align*}
$$

The trilinear and the quartic Higgs self-couplings are no more correlated.

Direct determination of Higgs self couplings

- Information on λ_{3} and λ_{4} can be extracted by studying multi-Higgs production processes.
- Higgs pair production is the standard channel for λ_{3} measurement. Its SM cross section at 13 TeV LHC is about 35 fb . (Compare it with the single Higgs production cross section: $\sim 50 \mathrm{pb}$.) Frederix et al. '14:

Direct determination of Higgs self couplings

- Current experimental bounds on κ_{λ} are very weak. CMS in $2 \gamma 2 b$ final state with 8 TeV and $19.7 \mathrm{fb}^{-1}$ data (1603.06896) excludes κ_{λ} in the range,

$$
\kappa_{\lambda}<-17.5 \text { and } \kappa_{\lambda}>22.5
$$

Direct determination of Higgs self couplings

- The ATLAS data at 13 TeV in $4 b$ final state and with $13.3 \mathrm{fb}^{-1}$ excludes (ATLAS-CONF-2016-049),

$$
\kappa_{\lambda}<-8 \text { and } \kappa_{\lambda}>\sim 12
$$

- Future prospects at HL-LHC with $3000 \mathrm{fb}^{-1}$ data, (ATL-PHYS-PUB-2014-019,2015-046)

$$
\begin{array}{r}
\kappa_{\lambda}<-1.3 \text { and } \kappa_{\lambda}>8.7(2 \gamma 2 b) \\
\kappa_{\lambda}<-4 \text { and } \kappa_{\lambda}>12(2 \tau 2 b)
\end{array}
$$

- No realistic hope of measuring λ_{4} in $g g \rightarrow H H H$ production channel at the LHC due to a very small cross section: $\sim 0.1 \mathrm{fb}$ at 13 TeV .

Indirect determination of λ_{3}

- $\mathcal{O}(\lambda)$ corrections to single Higgs production and decay processes Matthew McCullough: 1312.3322, Chen Shen, Shou-hua Zhu: $1504.05626\left(e^{+} e^{-} \rightarrow Z H\right)$ Martin Gorbahn, Ulrich Haisch: $1607.03773(\mathrm{gg} \rightarrow \mathrm{H}, \mathrm{H} \rightarrow \gamma \gamma)$ Giuseppe Degrassi, Pier Paolo Giardino, Fabio Maltoni, Davide Pagani: 1607.04251 (Relevant Higgs production and decay modes) Wojciech Bizon, Martin Gorbahn, Ulrich Haisch, Giulia Zanderighi: 1610.05771 (VH, VBF)
- $\mathcal{O}(\lambda)$ corrections in electroweak precision observables Giuseppe Degrassi, Marco Fedele, Pier Paolo Giardino: 1702.01737 Graham D. Kribs, Andreas Maier, Heidi Rzehak, Michael Spannowsky, Philip Waite: 1702.07678

Indirect determination of $\lambda_{3}(1607.04251)$

- Master formula

$$
\begin{align*}
\Sigma_{\mathrm{NLO}} & =Z_{H} \Sigma_{\mathrm{LO}}\left(1+\kappa_{\lambda} C_{1}\right) ; Z_{H}=\frac{1}{\left(1-\kappa_{\lambda}^{2} \delta Z_{H}\right)} \tag{9}\\
\delta \Sigma_{\lambda_{3}} & =\frac{\Sigma_{\mathrm{NLO}}-\Sigma_{\mathrm{NLO}}^{\mathrm{SM}}}{\Sigma_{\mathrm{LO}}} \\
& =\left(\kappa_{\lambda}-1\right) C_{1}+\left(\kappa_{\lambda}^{2}-1\right) C_{2}+\mathcal{O}\left(\kappa_{\lambda}^{3} \alpha^{2}\right) \tag{10}
\end{align*}
$$

$$
\mathcal{O}\left(\kappa_{\lambda}^{3} \alpha^{2}\right) \simeq \kappa_{\lambda}^{3} C_{1} \delta Z_{H}<10 \% \Rightarrow\left|\kappa_{\lambda}\right| \lesssim 20 .
$$

- C_{2}, which arises from the wave function renormalization, is universal.

$$
\begin{equation*}
C_{2}=\frac{\delta Z_{H}}{\left(1-\kappa_{\lambda}^{2} \delta Z_{H}\right)} ; \delta Z_{H}=-\frac{9}{16} \frac{G_{\mu} m_{H}^{2}}{\sqrt{2} \pi^{2}}\left(\frac{2 \pi}{3 \sqrt{3}}-1\right) \tag{11}
\end{equation*}
$$

Indirect determination of $\lambda_{3}(1607.04251)$

- The process-independent factor C_{2} can range from $C_{2}=-1.536 \cdot 10^{-3}$ for $\kappa_{\lambda}=1$ up to $C_{2}=-9.514 \cdot 10^{-4}$ for $\kappa_{\lambda}= \pm 20$.
- C_{1} is process dependent and can have kinematic dependence. It arises from the interference between LO amplitude and $\mathcal{O}(\lambda)$ virtual corrections.

Indirect determination of $\lambda_{3}(1607.04251)$

Figure: Diagrams contributing to $\mathcal{O}(\lambda)$ virtual corrections to single Higgs production and decay channels.

Indirect determination of $\lambda_{3}(1607.04251)$

- C_{1} for decay modes:

$C_{1}^{\lceil[\%]}$	$\gamma \gamma$	$Z Z$	$W W$	$f \bar{f}$	$g g$
on-shell H	0.49	0.83	0.73	0	0.66

- C_{1} for production modes:

$C_{1}^{\sigma}[\%]$	$g g F$	VBF	$W H$	$Z H$	$t t H$
7 TeV	0.66	0.65	1.06	1.23	3.87
8 TeV	0.66	0.65	1.05	1.22	3.78
13 TeV	0.66	0.64	1.03	1.19	3.51
14 TeV	0.66	0.64	1.03	1.18	3.47

Indirect determination of $\lambda_{3}(1607.04251)$

Modifications in production cross sections and BRs:
Except $t t H$, for all other production channels large corrections are mostly -ve and for large $\left|\kappa_{\lambda}\right|$.

Corrections to BRs are much smaller, however, around SM predictions, the decay modes are more sensitive to κ_{λ} than the production modes.

Indirect determination of $\lambda_{3}(1607.04251)$

$\chi^{2}\left(\kappa_{\lambda}\right)$ fit: present and future

The most stringent bound comes using ggF + VBF 8 TeV data,

$$
\kappa_{\lambda}^{\text {best }}=-0.24, \kappa_{\lambda}^{1 \sigma}=[-5.6,11.2], \kappa_{\lambda}^{2 \sigma}=[-9.4,17.0] .
$$

Indirect determination of λ_{3} : kinematic dependence

- $\mathcal{O}(\lambda)$ corrections have non-trivial dependence on external momenta, e.g., for the VVH vertex the correction is

$$
\begin{equation*}
i \mathcal{V}_{V V H}^{\mu_{1} \mu_{2}}=\frac{i \lambda}{16 \pi^{2}} \frac{M_{V}^{2}}{V}\left[\left(-6 B_{0}-24 M_{V}^{2} C_{0}+24 C_{00}\right) g^{\mu_{1} \mu_{2}}-24 p_{1}^{\mu_{2}} p_{2}^{\mu_{1}} C_{12}\right] \tag{12}
\end{equation*}
$$

- We calculate C_{1} for kinematic distributions. Here we consider, Production $(V H, V B F$ and $t t H$ at 13 TeV$)$ \& Decay $(H \rightarrow 4 I)$.
- The $\mathcal{O}(\lambda)$ corrections for the production channels are computed via reweighting in MG5@MC_NLO. The results for $H \rightarrow 4 /$ are obtained using the publicly available Hto4l code (1503.07394).

Preliminary results: ZH

Figure: LO distribution (left). Differential $C_{1}(\%)$ (right). Blue line: $C_{1}(\%)$ for total rate.

Preliminary results: $Z H$

Figure: LO distribution (left). Differential $C_{1}(\%)$ (right). Blue line: $C_{1}(\%)$ for total rate.

Preliminary results: WH

Figure: LO distribution (left). Differential $C_{1}(\%)$ (right). Blue line: $C_{1}(\%)$ for total rate.

Preliminary results: WH

Figure: LO distribution (left). Differential $C_{1}(\%)$ (right). Blue line: $C_{1}(\%)$ for total rate.

Preliminary results: VBF

Figure: LO distribution (left). Differential $C_{1}(\%)$ (right). Blue line: $C_{1}(\%)$ for total rate.

Preliminary results: $t t H$

Figure: LO distribution (left). Differential $C_{1}(\%)$ (right). Blue line: $C_{1}(\%)$ for total rate.

Preliminary results: $t t H$

Figure: LO distribution (left). Differential $C_{1}(\%)$ (right). Blue line: $C_{1}(\%)$ for total rate.

Preliminary results: $t t H$

Figure: LO distribution (left). Differential $C_{1}(\%)$ (right). Blue line: $C_{1}(\%)$ for total rate.

Preliminary results: $\mathrm{H} 4 /\left(e^{+} e^{-} \mu^{+} \mu^{-}\right)$

Figure: LO distribution (left). Differential $C_{1}(\%)$ (right). Blue line: $C_{1}(\%)$ for total rate.

Summary

- The indirect determination of Higgs self couplings via EW corrections to Higgs production and decay channels can complement its direct determination via multi-Higgs production at the LHC.
- The study of differential distributions which get affected in a non-trivial way can help in lifting the degeneracy due to modifications in other couplings and improve the bounds on Higgs self couplings (Work in progress...).

Backup

$C_{1}^{\sigma}[\%]$	25 GeV	50 GeV	100 GeV	200 GeV	500 GeV
$W H$	$1.71(0.11)$	$1.56(0.34)$	$1.29(0.72)$	$1.09(0.94)$	$1.03(0.99)$
$Z H$	$2.00(0.10)$	$1.83(0.33)$	$1.50(0.71)$	$1.26(0.94)$	$1.19(0.99)$
$t \bar{t} H$	$5.44(0.04)$	$5.14(0.17)$	$4.66(0.48)$	$3.95(0.84)$	$3.54(0.99)$

Table: C_{1}^{σ} at 13 TeV obtained by imposing the cut $p_{T}(H)<p_{T, \text { cut }}$, for several values of $p_{T, \text { cut }}$. In parentheses the fraction of events left after the quoted cut is applied.

$C_{1}^{\sigma}[\%]$	1.1	1.2	1.5	2	3
$W H$	$1.78(0.17)$	$1.60(0.36)$	$1.32(0.70)$	$1.15(0.89)$	$1.06(0.97)$
$Z H$	$2.08(0.19)$	$1.86(0.38)$	$1.51(0.72)$	$1.31(0.90)$	$1.22(0.98)$
$t \bar{t} H$	$8.57(0.02)$	$7.02(0.10)$	$5.11(0.43)$	$4.12(0.76)$	$3.64(0.94)$

Table: C_{1}^{σ} at 13 TeV obtained by imposing the cut $m_{\text {tot }}<K \cdot m_{\mathrm{thr}}$, for several values of K. In parentheses the fraction of events left after the quoted cut is

Backup

Future projections: $\kappa_{\lambda}^{\text {best }}=1$

$$
\begin{aligned}
\kappa_{\lambda}^{1 \sigma} & =[-1.8,7.3], \kappa_{\lambda}^{2 \sigma}=[-3.5,9.6]\left(\mathrm{CMS}, 300 \mathrm{fb}^{-1}\right) \\
\kappa_{\lambda}^{1 \sigma} & =[-0.7,4.2], \kappa_{\lambda}^{2 \sigma}=[-2.0,6.8]\left(\mathrm{CMS}, 3000 \mathrm{fb}^{-1}\right)
\end{aligned}
$$

