
Recent Developments in
MadGraph5_aMC@NLO

L H C T h e o r y  m e e t i n g

2 2 t h  M a r c h  2 0 1 7

Valent in  H irsch i



Valentin Hirschi, ETHZ Developments and plans for MG5aMC 22.03.2017LHCTheory meeting

Roadmap

‣ Loop-induced processes at NLO

‣ Interface to Pythia8 and MadAnalysis5

‣ COLLIER interface to MadLoop

‣ Automated mixed NLO QCD+EW

‣ SUSY @ NLO QCD, OS subtraction

‣ A particular take on long-term plans...

‣ Ad: Plugins in MG5_aMC
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Pythia8 interface
Pending publication (if ever :/): V.H., O. Mattelaer, S. Prestel

Pythia8 installation and use:
MG5_aMC > install pythia8
MG5_aMC > install mg5amc_py8_interface
ProcOuput > shower pythia8 run_01
[...]/ProcOuput/Cards/pythia8{

• Supports CKKW-L for LO merging

• Merging systematics weights propagated through HEPMC event files
• Ability easily output HEPMC events to a FIFO file

• Merging systematics computed on-the-fly
• Parallelization of Pythia8 runs

MLM  p p > Z + {0,1}j
• Do-it-all Pythia8 driver.

• No excuse anymore for sticking to Pythia6!



Valentin Hirschi, ETHZ Developments and plans for MG5aMC 22.03.2017LHCTheory meeting

MadAnalysis5 interface
V.H., B. Fuks

MA5 installation and use:

MG5_aMC > install madanalysis5  (no longer requires root){
• Implemented both for LO and NLO matched.
• Independent control on parton-level, hadron-level and recasting analysis
• One can bypass HEPMC and do the analysis directly from FIFO files.
• Analysis cards automatically generated and tailored to the process of interest
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COLLIER
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COLLIER in MadLoop
COLLIER from A. Denner, S. Dittmaier, L. Hofer [arXiv:1604.06792]

Automatic COLLIER installation and use:
MG5_aMC > install collier

#MLReductionLib
6|7|1

{
Reminder: list of other loop reduction tool interfaced:

CutTools, PJFry++, IREGI, Golem95, Samurai, NINJA

COLLIER is a mature code, featuring the following improvements:

• Improved stability by expansions around zero-Grams.

• Ability to numerically handle logs from small masses.
• Ability to provide separately IR and UV pole residues.

• Fastest algo. and implementation of tensor integral reduction.
• Unlimited number of loop propagators and integrand rank.

Interface validated, public and profiled too.

COLLIER was helpful for the EFT Spin-2 NLO computations presented in:
G. Das, C. Degrande, V.H., F. Maltoni, H-S Shao, [arXiv:1605.09359 ]

http://arxiv.org/abs/arXiv:1604.01363
http://arxiv.org/abs/arXiv:1604.01363
http://arxiv.org/abs/arXiv:1604.01363
http://arxiv.org/abs/arXiv:1604.01363
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COLLIER Stability
Related to V.H., T. Perraro [arXiv:1604.01363]

How much so mostly depends on:
  multiplicity
  loop numerator rank.

gg→ttgg

g-g-→z0z0z0z0

However still unclear how much 
more stable it is close to IR limits :
  Probably little improvements, if any.
  
Quad. prec. still necessary

Indeed the most 
stable option of all

http://arxiv.org/abs/arXiv:1604.01363
http://arxiv.org/abs/arXiv:1604.01363
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COLLIER Speed
Related to V.H., T. Perraro [arXiv:1604.01363]

COLLIER provides its 
own stability test.
  → Needs:
COLLIER/NINJA > 2

For Ninja to really be 
faster in production.

Integrand-level (Ninja) 
reduction faster for 
large multiplicities 

Difference in speed 
marginal for most 

processes.

#MLReductionLib
6|7|1→

http://arxiv.org/abs/arXiv:1604.01363
http://arxiv.org/abs/arXiv:1604.01363
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Loop-Induced at NLO
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Loop-Induced at NLO
Ongoing collaborative effort: V.H., O. Mattelaer, F. Maltoni, E.Vryonidou, N. Kauer, A. Shivaji, M.K.Mandal, ...  

Two avenues for simulating LI at NLO in MG5aMC

• Reweighting approach with O. Mattelaer’s module.
• Direct integration in MadFKS

Reweighting Pros and Cons:
• Easy implementation, development and public distribution
• Requires building an ad-hoc underlying model
• Never truly has systematics under control
• Potentially slower
• Color information corrupted (for matching)

Direct integration Pros and Cons:

• Directly benefits from the virt-tricks, so potentially fast enough.
• Requires deep improvements in our existing integrator

• None of the above drawbacks

• Feasibility study established.
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Loop-Induced at NLO
Feasibility study completed for diphoton decayed:

• 2-loop amplitudes from VVamp ( A.Manteuffel, L.Tancredi [arXiv:1503.08835] )

• Needed ad-hoc parallelization of MadFKS.
• Performed with ad-hoc linking/interface of 2-loop, Born and Reals MEs.

• Flexible implementation of the of 2-loop helicity amplitudes in 
their covariant form as a UFO vertex.

PRELIMINARY: Photons rapidity

LO
NLO

13 TeV. Rescaled curves. K-factor ~ 2

gg ! (� ! e+e�)(� ! µ+µ�)

• Threshold for the distance to IR singularities where reals are replaced 
by local counterterms had to be increased by two 10-folds.

http://arxiv.org/abs/arXiv:1604.01363
http://arxiv.org/abs/arXiv:1604.01363
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2-Loop Hel. Amplitude as a UFO vertex

≣

•Allows a tool like MG5_aMC to generate arbitrary 2-loop amplitudes 
containing this loop (with any decay or vector quantum numbers.)
•The above should be viewed as template for distributing two-loop 
computations analytical results. UFO extension?
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Mixed EW+QCD NLO
Computations
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Figure 1: Representative O(α1
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Figure 2: Representative O(α3/2) Born-level diagrams.
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Structure of NLO EW-QCD corrections
The ttH case:  S.Frixione, V.Hirschi, D. Pagani, H.-S. Shao, M. Zaro [arXiv:1504.03446]

http://arxiv.org/abs/arXiv:1604.01363
http://arxiv.org/abs/arXiv:1604.01363
http://arxiv.org/abs/arXiv:1504.03446
http://arxiv.org/abs/arXiv:1504.03446
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Born B0 = O(α1
sα

1/2) B1 = O(α3/2)

QCD
Virtual VQCD,0 = O(α2

sα
1/2) VQCD,1 = O(α1

sα
3/2)

Real RQCD,0 = O(α3/2
s α1/2) RQCD,1 = O(α1/2

s α3/2)

EW
Virtual VEW,0 = O(α1

sα
3/2) VEW,1 = O(α5/2)

Real REW,0 = O(α1
sα

1) REW,1 = O(α2)

Table 2: Coupling-constant factors relevant to Born, one-loop, and real-emission ampli-

tudes; see the text for more details.

in the context of a mixed QCD-EW expansion, the virtual or final-state particle mentioned

before must be chosen in a set larger than the one relevant to a single-coupling series. In

particular, for the case of tt̄H production with stable top quarks and Higgs, such a set is:
{

g, q, t, Z,W±,H, γ
}

, (2.5)

where the light quark q may also be a b quark, and the top quark enters only one-loop

contributions. In the case of such contributions, the particles in the set of eq. (2.5) are fully

analogous to the L-cut particles (see sect. 3.2.1 of ref. [50]), and we understand ghosts and

Goldstone bosons. When the extra particle added to the Born diagram (be it virtual or real)

is strongly interacting, it is then natural to classify the resulting one-loop or real-emission

diagram as a QCD-type contribution, and a EW-type contribution otherwise2. The idea

of this amplitude-level classification is that QCD-type and EW-type contributions will

generally lead to QCD and EW corrections at the amplitude-squared level, respectively.

However, this correspondence, in spite of being intuitively appealing, is not exact, as we

shall show in the following; this is one of the reasons why “QCD corrections” and “EW

corrections” must not be interpreted literally. The classification just introduced is used in

table 2: for a given Born-level amplitude Bi associated with a definite coupling-constant

factor, the corresponding one-loop and real-emission quantities are denoted by VQCD,i and

RQCD,i in the case of QCD-type contributions, and by VEW,i and REW,i in the case of EW-

type contributions. We can finally consider all possible combinations Bi·V∗,j, RQCD,i·RQCD,j,

and REW,i ·REW,j and associate them with the relevant amplitude-squared quantities Σ4,q.

Note that one must not consider the RQCD,i · REW,j combinations, owing to the fact that

the two amplitudes here are relevant to different final states3.

We now observe that this bottom-up construction leads to redundant results. Here,

the case in point is that of VQCD,1 and VEW,0: the one-loop diagram (which enters VQCD,1)

obtained by exchanging a gluon between the q̄ and t̄ legs of the diagram to the left of fig. 2

is the same diagram as that (which enters VEW,0) obtained by exchanging a Z between the

q and intermediate-t legs of the diagram to the right of fig. 1. This fact does not pose any

2An alternative classification (equivalent to that used here when restricted to tt̄H production and to pro-

cesses of similar characteristics, but otherwise more general) is one that determines the type of contribution

according to the nature of the vertex involved.
3For generic processes, this is not necessarily the case, the typical situation being that where some

massless particles in the set of eq. (2.5) are present at the Born level.
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Table 1: Born-level partonic processes relevant to tt̄H production. For each of them,

we report the coupling-constant factors in front of the non-null contributions, both at the

amplitude (middle column) and at the amplitude squared (rightmost column) level.

Figure 1: Representative O(α1
sα

1/2) Born-level diagrams.

Figure 2: Representative O(α3/2) Born-level diagrams.

tt̄H production, k = 3 at the LO (eq. (2.1)) and k = 4 at the NLO (eq. (2.2)). This

immediately shows that it is also convenient to write Σk,q ≡ Σk0+p,q, with p ≥ 0, for

the NpLO coefficients; k0 is then a fixed, process-specific integer associated with the Born

cross section, equal to 3 in tt̄H production. The integer q identifies the various terms of

eqs. (2.1) and (2.2). We have conventionally chosen to associate increasing values of q with

Σk0+p,q coefficients (at fixed p) which are increasingly suppressed in terms of the hierarchy

of the coupling constants, α ≪ αS. Thus, q = 0 corresponds to the coefficient with the

largest (smallest) power of αS (α), and conversely for q = qmax. This maximum value

qmax that can be assumed by q is process- and perturbative-order-dependent, and it grows

with the number of amplitudes that interfere and that factorise different coupling-constant

combinations; in the case of tt̄H production at the LO, this can be seen by comparing the

two rightmost columns of table 1.

We propose that the coefficient Σk0+p,q be called the leading (when q = 0), or the

(q + 1)th-leading (when q ≥ 1, i.e. second-leading, third-leading, and so forth), term of the

– 4 –

Process O(A) O(Σ)

gg → tt̄H α1
sα

1/2 α2
sα

1

qq̄ → tt̄H, q ̸= b α1
sα

1/2, α3/2 α2
sα

1, α3

qq̄ → tt̄H, q = b α1
sα

1/2, α3/2 α2
sα

1, α1
sα

2, α3

Table 1: Born-level partonic processes relevant to tt̄H production. For each of them,

we report the coupling-constant factors in front of the non-null contributions, both at the

amplitude (middle column) and at the amplitude squared (rightmost column) level.

Figure 1: Representative O(α1
sα

1/2) Born-level diagrams.

Figure 2: Representative O(α3/2) Born-level diagrams.

tt̄H production, k = 3 at the LO (eq. (2.1)) and k = 4 at the NLO (eq. (2.2)). This

immediately shows that it is also convenient to write Σk,q ≡ Σk0+p,q, with p ≥ 0, for

the NpLO coefficients; k0 is then a fixed, process-specific integer associated with the Born

cross section, equal to 3 in tt̄H production. The integer q identifies the various terms of

eqs. (2.1) and (2.2). We have conventionally chosen to associate increasing values of q with

Σk0+p,q coefficients (at fixed p) which are increasingly suppressed in terms of the hierarchy

of the coupling constants, α ≪ αS. Thus, q = 0 corresponds to the coefficient with the

largest (smallest) power of αS (α), and conversely for q = qmax. This maximum value

qmax that can be assumed by q is process- and perturbative-order-dependent, and it grows

with the number of amplitudes that interfere and that factorise different coupling-constant

combinations; in the case of tt̄H production at the LO, this can be seen by comparing the

two rightmost columns of table 1.

We propose that the coefficient Σk0+p,q be called the leading (when q = 0), or the

(q + 1)th-leading (when q ≥ 1, i.e. second-leading, third-leading, and so forth), term of the

– 4 –

Born B0 = O(α1
sα

1/2) B1 = O(α3/2)

QCD
Virtual VQCD,0 = O(α2

sα
1/2) VQCD,1 = O(α1

sα
3/2)

Real RQCD,0 = O(α3/2
s α1/2) RQCD,1 = O(α1/2

s α3/2)

EW
Virtual VEW,0 = O(α1

sα
3/2) VEW,1 = O(α5/2)

Real REW,0 = O(α1
sα

1) REW,1 = O(α2)

Table 2: Coupling-constant factors relevant to Born, one-loop, and real-emission ampli-

tudes; see the text for more details.

in the context of a mixed QCD-EW expansion, the virtual or final-state particle mentioned

before must be chosen in a set larger than the one relevant to a single-coupling series. In

particular, for the case of tt̄H production with stable top quarks and Higgs, such a set is:
{

g, q, t, Z,W±,H, γ
}

, (2.5)

where the light quark q may also be a b quark, and the top quark enters only one-loop

contributions. In the case of such contributions, the particles in the set of eq. (2.5) are fully

analogous to the L-cut particles (see sect. 3.2.1 of ref. [50]), and we understand ghosts and

Goldstone bosons. When the extra particle added to the Born diagram (be it virtual or real)

is strongly interacting, it is then natural to classify the resulting one-loop or real-emission

diagram as a QCD-type contribution, and a EW-type contribution otherwise2. The idea

of this amplitude-level classification is that QCD-type and EW-type contributions will

generally lead to QCD and EW corrections at the amplitude-squared level, respectively.

However, this correspondence, in spite of being intuitively appealing, is not exact, as we

shall show in the following; this is one of the reasons why “QCD corrections” and “EW

corrections” must not be interpreted literally. The classification just introduced is used in

table 2: for a given Born-level amplitude Bi associated with a definite coupling-constant

factor, the corresponding one-loop and real-emission quantities are denoted by VQCD,i and

RQCD,i in the case of QCD-type contributions, and by VEW,i and REW,i in the case of EW-

type contributions. We can finally consider all possible combinations Bi·V∗,j, RQCD,i·RQCD,j,

and REW,i ·REW,j and associate them with the relevant amplitude-squared quantities Σ4,q.

Note that one must not consider the RQCD,i · REW,j combinations, owing to the fact that

the two amplitudes here are relevant to different final states3.

We now observe that this bottom-up construction leads to redundant results. Here,

the case in point is that of VQCD,1 and VEW,0: the one-loop diagram (which enters VQCD,1)

obtained by exchanging a gluon between the q̄ and t̄ legs of the diagram to the left of fig. 2

is the same diagram as that (which enters VEW,0) obtained by exchanging a Z between the

q and intermediate-t legs of the diagram to the right of fig. 1. This fact does not pose any

2An alternative classification (equivalent to that used here when restricted to tt̄H production and to pro-

cesses of similar characteristics, but otherwise more general) is one that determines the type of contribution

according to the nature of the vertex involved.
3For generic processes, this is not necessarily the case, the typical situation being that where some

massless particles in the set of eq. (2.5) are present at the Born level.
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Table 1: Born-level partonic processes relevant to tt̄H production. For each of them,

we report the coupling-constant factors in front of the non-null contributions, both at the

amplitude (middle column) and at the amplitude squared (rightmost column) level.

Figure 1: Representative O(α1
sα

1/2) Born-level diagrams.

Figure 2: Representative O(α3/2) Born-level diagrams.

tt̄H production, k = 3 at the LO (eq. (2.1)) and k = 4 at the NLO (eq. (2.2)). This

immediately shows that it is also convenient to write Σk,q ≡ Σk0+p,q, with p ≥ 0, for

the NpLO coefficients; k0 is then a fixed, process-specific integer associated with the Born

cross section, equal to 3 in tt̄H production. The integer q identifies the various terms of

eqs. (2.1) and (2.2). We have conventionally chosen to associate increasing values of q with

Σk0+p,q coefficients (at fixed p) which are increasingly suppressed in terms of the hierarchy

of the coupling constants, α ≪ αS. Thus, q = 0 corresponds to the coefficient with the

largest (smallest) power of αS (α), and conversely for q = qmax. This maximum value

qmax that can be assumed by q is process- and perturbative-order-dependent, and it grows

with the number of amplitudes that interfere and that factorise different coupling-constant

combinations; in the case of tt̄H production at the LO, this can be seen by comparing the

two rightmost columns of table 1.

We propose that the coefficient Σk0+p,q be called the leading (when q = 0), or the

(q + 1)th-leading (when q ≥ 1, i.e. second-leading, third-leading, and so forth), term of the
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in the context of a mixed QCD-EW expansion, the virtual or final-state particle mentioned

before must be chosen in a set larger than the one relevant to a single-coupling series. In

particular, for the case of tt̄H production with stable top quarks and Higgs, such a set is:
{

g, q, t, Z,W±,H, γ
}

, (2.5)

where the light quark q may also be a b quark, and the top quark enters only one-loop

contributions. In the case of such contributions, the particles in the set of eq. (2.5) are fully

analogous to the L-cut particles (see sect. 3.2.1 of ref. [50]), and we understand ghosts and

Goldstone bosons. When the extra particle added to the Born diagram (be it virtual or real)

is strongly interacting, it is then natural to classify the resulting one-loop or real-emission

diagram as a QCD-type contribution, and a EW-type contribution otherwise2. The idea

of this amplitude-level classification is that QCD-type and EW-type contributions will

generally lead to QCD and EW corrections at the amplitude-squared level, respectively.

However, this correspondence, in spite of being intuitively appealing, is not exact, as we

shall show in the following; this is one of the reasons why “QCD corrections” and “EW

corrections” must not be interpreted literally. The classification just introduced is used in

table 2: for a given Born-level amplitude Bi associated with a definite coupling-constant

factor, the corresponding one-loop and real-emission quantities are denoted by VQCD,i and

RQCD,i in the case of QCD-type contributions, and by VEW,i and REW,i in the case of EW-

type contributions. We can finally consider all possible combinations Bi·V∗,j, RQCD,i·RQCD,j,

and REW,i ·REW,j and associate them with the relevant amplitude-squared quantities Σ4,q.

Note that one must not consider the RQCD,i · REW,j combinations, owing to the fact that

the two amplitudes here are relevant to different final states3.

We now observe that this bottom-up construction leads to redundant results. Here,

the case in point is that of VQCD,1 and VEW,0: the one-loop diagram (which enters VQCD,1)

obtained by exchanging a gluon between the q̄ and t̄ legs of the diagram to the left of fig. 2

is the same diagram as that (which enters VEW,0) obtained by exchanging a Z between the

q and intermediate-t legs of the diagram to the right of fig. 1. This fact does not pose any

2An alternative classification (equivalent to that used here when restricted to tt̄H production and to pro-

cesses of similar characteristics, but otherwise more general) is one that determines the type of contribution

according to the nature of the vertex involved.
3For generic processes, this is not necessarily the case, the typical situation being that where some

massless particles in the set of eq. (2.5) are present at the Born level.
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MG5_aMC> launch 
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What You See Is What You Get

20

LO QCD                    LO EW                    

NLO QCD                    
αs
2α2ααs

3 αsα
3 α4

α2αsαs
2α α3

NLO EW                    

MG5_aMC> define p = p b b~ a
MG5_aMC> generate p p > t t~ h [QCD QED]
MG5_aMC> output ttbarh_QCD_QED
MG5_aMC> launch 

Next step: compute all blobs
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COMPLETE DIJET QCD+EW NLO corrections
R. Frederix, S. Frixione, V. H., D. Pagani, H-S.Shao M.Zaro [arXiv:1612.06548]

Gµ

• All O(↵m
s ,↵n),m+ n = 2, 3

contributions to dijet. Use      -scheme 

• Use democratic jets and proposed a
   novel definition of (anti-)tagged photons
• Necessitated massive computing 
   resources O(weeks), 219 subprocesses
• Pheno conclusion: No significant Sudakov
   enhancement at LHC13, even at high Pt.

• This process involves the whole particle
   spectrum of the SM. Yes, even the Higgs!

http://arxiv.org/abs/arXiv:1604.01363
http://arxiv.org/abs/arXiv:1604.01363
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Complete SUSY 
MODEL @ NLO QCD
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i

Towards full MSSM@NLO

• Gluinos pair production...

• ... including the squark decay. 

Majorana flow, top quark mixing matrix renorm, SUSY restoring CT: Solved.

�

O

�

SUSY QCD for the QCD sector only is already available in 
C. Degrande, B. Fuks, V. H., J. Proudom, H-S.Shao [arXiv:1510.00391]

http://arxiv.org/abs/arXiv:1604.01363
http://arxiv.org/abs/arXiv:1604.01363
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Complete SUSY Model for NLO QCD

• A key component here is Onshell-Subtraction (OS) in aMC@NLO, 
   which is now available, and was introduced in

F. Demartin, B. Maier, F. Maltoni, K. Mawatari, M. Zaro [arXiv:1607.05862]

LO

NLO 
(reals)

⊃

⊃

✓X ✓

• Requires improvements in NLOCT and further validation of the
   complex mass scheme.

http://arxiv.org/abs/arXiv:1604.01363
http://arxiv.org/abs/arXiv:1604.01363


pp ! g̃g̃
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Onshell subtraction for SUSY

O.K, this is a legitimate 
QCD correction to the 
original Born process 

definition.

NO, this is simply the 
process                   in  

disguise! Should be 
removed.

pp ! g̃ũR

Similar problem occurring in, e.g. 
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Future Plans
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Plugins in MG5aMC
https://cp3.irmp.ucl.ac.be/projects/madgraph/wiki/Plugin

MG5_aMC is a framework to develop new ideas for HEP,

 Let people implement those themeselves!

Ideal projects for students
Dev. and maintenance independent from MG5_aMC
Also authorship of PLUGINS are more properly credited.
Flexible: can implement highly complicated tasks:
Ex: MadDM or shower evolution kernels generation

import madgraph.interface.master_interface as \
                               master_interface

class NewInterface(master_interface.MasterCmd):

    def do_helloworld(self, line):
        """print hello world"""
        print "hello world " + line

./bin/mg5_aMC --mode=helloworld

MG5_aMC > helloworld ciaoTutti

hello world ciatoTutti

Structure developed by O.Mattelaer

Simplest plugin implementation:

https://cp3.irmp.ucl.ac.be/projects/madgraph/wiki/Plugin
https://cp3.irmp.ucl.ac.be/projects/madgraph/wiki/Plugin
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Long term plans:  

Model

Matrix ElementMG5 / MadLoop

Partonic EventsMadEvent / MadFKS

Hadron levelPythia / Herwig

Detector levelPGS / DELPHES

Partonic Events

ModelFR + NLOCT
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Long term plans:  

Model

Oldest and “weakest” link of the chain:

MadEvent7?

Matrix ElementMG5 / MadLoop

Partonic EventsMadEvent / MadFKS

Hadron levelPythia / Herwig

Detector levelPGS / DELPHES

Partonic Events

ModelFR + NLOCT
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Objectives for MadEvent7
• Insist on modularity. Independent building blocks:

Phase-space samplerIntegrator Integrand(s)
Matrix elements Observable operator Mappings
Subtraction counterterms ... (structurally similar to sherpa)

• Organized so as to offer arbitrarily scalable parallelization and MPI-support.
• Implement various grid update strategies. Maybe account for correlations 
between a couple of dimensions. Implement better integrators for low dims.
• More generic support of various topologies: 
                                        t-channel enhancement, n-point interactions, etc...
• More systematic handling of zero contributions and numerical instabilities

• Offer a highly abstract integration framework to support the intricate book-
keeping of higher-order computations
• Keep RAM, disk-space and generation time under control.
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Objectives for MadEvent7

• Advanced profiling and real-time monitoring of the integration.

• Adaptative Multi-channeling weights.

• Grids pre-training on cuts.

• Easy implementation of on-the-fly reweighting / bias. Need a streamlined
   interface to other tools for these weights. Multi-loops libs, showers, etc...

• Would probably be full-fledged python, with the couple of time-consuming
   bits via C++/fortran imports and/or Numpy.

MadEvent and MadFKS current structures are a hinderance to many 
current projects and will be even more so in future ones. 

We need to seriously discuss about their successor.



Valentin Hirschi, ETHZ Developments and plans for MG5aMC 22.03.2017LHCTheory meeting

I now welcome your 
comments


