

ATLAS MC strategies and work for Run II

Zach Marshall (LBNL) on behalf of the ATLAS Collaboration LHC Theory ERC Meeting 22 March 2017

Overview

- Some demographics
- How we use MG5_aMC
 - In searches and for the Standard Model
- Technical implementation and issues
- Future plans and wish list

Demographics

- ~15,000 samples made with MG5_aMC just in the current production campaign!
- 1,125 NLO samples with 761M events
 - 2:1 SM:BSM in terms of number of events
 - 1:6 SM:BSM in terms of number of datasets
- 13,609 LO samples with 1647M events
 - 3:2 SM:BSM in terms of number of events
 - 1:30 SM:BSM in terms of number of datasets!
- $\sim 17\%$ of the total ATLAS MC for the current campaign
- Very helpful interactions with the authors have made much of this production possible; thank you all for that!
 - Stefano Frixione is included in the ACE program, which allows generator authors more direct access to internal information.
 - We are always happy to talk about other projects that might benefit from such an arrangement!

Searches with MG5_aMC

- MG5_aMC entered heavy use in ATLAS for signal production, first for SUSY and later for exotics models
 - Exotics now making heavy use of (FeynRules) UFO models
- Almost every simplified model we use is made with MadGraph5
 - You can almost pick *any* ATLAS search paper and find a MadGraph5 model!

Searches Pushing Further

- A number of simplified models are adding MadSpin now
 Dealing with top and EWK spin correlations and compressed regions
- Two major papers using MG5_aMC for re-interpretation
 - Huge numbers of processes automatically generated to re-create O(300k) complete pMSSM model points

Searches with MG5_aMC (II)

- The Higgs group is using MadGraph5_aMC@NLO for:
 - Exotics Higgs searches (e.g. 2HDM), primarily with models from FeynRules, at both LO and NLO
 - Standard Model searches in new channels, like ttH
 - Standard Model measurements (more in a moment)

Z+Jets at 13 TeV

- We rely heavily on *slicing* of phase space to populate tails
- Still these samples are massive -O(1B) events for V+jets
 - Being used more often now in ATLAS; agreement with data looks good

ttbar Modeling

- Working hard to develop a MG5_aMC ttbar sample that could become the baseline sample, especially for analyses that are probing higher jet multiplicity/ H_T regions
 - Interplay with showering and tune here still need understanding

ttbar Modeling

- Starting work on WbWb at NLO (feedback will be soon)
- Also looking into how the functional for the scale affects the top p_T
 - Does appear to have significant impact

Higgs Modeling (Differential)

• No clear conclusions yet, but expect much higher statistics tests to come soon!

²² March 2017

MG5_aMC in ATLAS

Standard Model

- Scale and PDF uncertainties are taken as the envelope of of the varied samples (e.g. for inclusive NLO ttW)
- LHE3 weights are a huge breakthrough for evaluating uncertainties!
 - Starting to investigate reweighting module for better phase-space population and model parameter scans

Standard Model (II)

- Now beginning to integrate MG5_aMC into parton shower tunes directly
 - Currently a very heavy process; looking into ways to make it more efficient
 - Need to understand what parameters of MG5_aMC should be tuned per process, and where generic lessons can be used
 - Matching and merging scales and systematics are one example – should we tune these, use 70/30 GeV, evaluate systematics simply by varying up and down by a factor of two or....
- Learning some lessons about improper tune settings
 - Rapidity order off tunes are important!
 - ME does matter to tuning

Technical Configuration

- Our primary mode of operation is *generation on the fly*
- This means running MG5_aMC on the Grid
 - More efficient for generation with many model variations we don't burn time locally generating LHE files and uploading them
 - Also improves reproducibility the entire job runs in common software with a simple command, so anyone can reproduce the results
 - Can run multi-core jobs in the production system when efficient
- We also run integration for heavy jobs
 - Standard Model processes where integration takes significant time
 - Increasingly, searches with heavy final states (e.g. gluino + 2 jets)
 - As much as possible, this is running the same job as runs in the production system with a single flag set
 - These integrations can be run on local clusters or soon? HPC systems, as we do for other generators

Technical Configuration (II)

- Running MG5_aMC in the production system means using read-only, distributed installations of MG5_aMC
 - Lots of help with ensuring these central installations are as useful as possible – thank you for this!
 - Read-only continues to cause some problems, so it might be useful to ensure that this is tested thoroughly
 - These installations shouldn't "phone home"; >10GB/day of syslog messages from mounting /cvmfs/cp3.uclouvain.be/madgraph
 - Our installations are done by Genser and can be used by *anyone*
- Using cvmfs for distribution of external models
 - The use of **PYTHONPATH** has made this *very* straightforward!!
 - Anticipating similar ways to use extensions like plugins in the future
- Running O(100) event weights per job (thanks to LHE3)
 - This has massively reduced our production load and made analyses easier and more thorough
 - Using these also for many signal models

Technical Hurdles

- The thing that has caused the most technical frustration is the use of lhapdf-config for configuration of the LHAPDF libraries to use in compilation
 - We relocate LHAPDF after installation to cvmfs (installed on afs), so this sometimes points back to afs
 - This also manifested itself differently between LO and NLO jobs
 - Our understanding from the LHAPDF authors is that this could be avoided on the MG5_aMC side worth discussing with them?
- In the beginning, this caused some grid jobs to rely on afs connections back to CERN (**VERY SLOW**)

Our To Do List

- We are still working on advances in our setup
- Moving more searches to NLO generation, using MadSpin more
- Ability to save and re-shower LHE files directly on the grid
- Wider usage of FxFx and more exploration of UNLOPS
- Integration of a 'top up service' to our production system
 - Generate 100k events, shower with Pythia8, if we have not reached a sufficient number of events call back to MG5_aMC and generate more events
 - Would help with low filter efficiency samples, particularly to ensure job completion and reduce transient disk space use

Our Wish List

- There are some things that would make our lives a bit easier
- Production-style workflow improvements.
 - We don't need to generate web pages most of the time. Skipping the generation of webpages, diagram pictures, and so on, saves time and energy.

• Configuration sanity checking.

 We were bitten recently by some inconsistent configurations that could have been caught (by us as well!)

• Clear warnings when changing defaults and interfaces.

- That previous issue was due to a change in a default parameter in the run card that we had not noticed. Switching to process-driven defaults in the cards was great, but caused some teething problems as we adapted.
- More thorough technical validation.
- More efficient integration with H7 and Py8
 - Particularly as we explore VINCIA, DIRE, etc and showering systematics