Merging and Matching with MG5_aMC and Herwig 7

Andreas Papaefstathiou

Université catholique de Louvain, 22nd March 2017.

introduction

why merging in 2017?

why merging in 2017?

Nokia 3310 mobile phone resurrected at MWC 2017

By Leo Kelion Technology desk editor

© 26 February 2017 | Technology

< Share

Nokia's 3310 phone has been relaunched nearly 17 years after its debut.

A. Papaefstathiou

why merging in 2017?

- merging of **multiple NLO**+parton shower calculations: "best of both worlds".
- merging of high-multiplicity (coloured) final states: technically difficult to get NLO+PS:

• e.g.:

$$pp \rightarrow b\bar{b}b\bar{b} + jets$$

 $pp \rightarrow b\bar{b}\gamma\gamma + jets$
etc.

Nikhef

contents:

- a brief introduction to multi-jet merging,
- results with Herwig 7,*
- some technical aspects,
- conclusions & outlook.

* formerly known as Herwig++.

multi-jet merging @ LO & NLO

multi-jet merging @ LO

- the aim: consistently **merge** tree-level Matrix Elements and parton showers.
- several approaches exist, mostly developed in the early 2000s, e.g. CKKW(-L), MLM.
- remove double-counting with the parton shower by vetoing.
- (combine with α_S /PDF/Sudakov reweighing).
- result: description of multi-jet processes @ tree level.

matching to NLO

- the aim: consistently **match** NLO Matrix Elements and parton showers.
- several approaches exist, mostly developed in the mid-2000/10s, e.g. MC@NLO, POWHEG, KrKNLO.
- MC@NLO: remove double-counting with the parton shower by subtraction of the PS contributions in the NLO.

multi-jet merging @ NLO

- the aim: consistently **merge** NLO Matrix Elements and parton showers.
- several approaches exist, mostly developed in the 2010s, e.g.:
 - MiNLO, [Hamilton, Nason, Zanderighi, 1206.3572, Frederix, Hamilton, 1512.0266]
 - MEPS@NLO (Sherpa), [Gehrmann, Hoche, Krauss, Schönherr, Siegert, 1207.5031, Hoeche, Krauss, Schönherr, Siegert, 1207.5030]
 - UNLOPS (Pythia 8), [Lönnblad, Prestel, 1211.7278]
 - Herwig 7 merging (similar to UNLOPS),

[Plätzer, 1211.5467, Bellm, PhD thesis + upcoming Herwig 7.1]

• FxFx (MG5_aMC + Pythia X/Herwig X).

[Frederix, Frixione, 1209.6215, Frederix, Frixione, AP, Prestel, Torrielli, 1511.00847]

multi-jet merging @ NLO

- the aim: consistently **merge** NLO Matrix Elements and parton showers.
- several approaches exist, mostly developed in the 2010s, e.g.:
 - MiNLO, [Hamilton, Nason, Zanderighi, 1206.3572, Frederix, Hamilton, 1512.0266]
 - MEPS@NLO (Sherpa), [Gehrmann, Hoche, Krauss, Schönherr, Siegert, 1207.5031, Hoeche, Krauss, Schönherr, Siegert, 1207.5030]
 - UNLOPS (Pythia 8), [Lönnblad, Prestel, 1211.7278]
 - Herwig 7 merging (similar to UNLOPS),

[Plätzer, 1211.5467, Bellm, PhD thesis + upcoming Herwig 7.1]

• FxFx (MG5_aMC + Pythia X/Herwig X).

[Frederix, Frixione, 1209.6215, Frederix, Frixione, AP, Prestel, Torrielli, 1511.00847]

the "FxFx" approach

[Frederix, Frixione, 1209.6215, Frederix, Frixione, AP, Prestel, Torrielli, 1511.00847]

- in a nutshell:
 - construct MC@NLO samples (MG5_aMC),
 - suppress hard emissions by means of a function (at ME level),
 - MEs also multiplied by appropriate Sudakov factors (à la CKKW),
 - showered Les Houches events get MLM-type rejection (Pythia X/Herwig X).

results

based on [Frederix, Frixione, AP, Prestel, Torrielli, 1511.00847]

Z+jets, W+jets, ATLAS & CMS analyses at 7 TeV [using Rivet analyses]

FxFx multiplicities: V+0, 1, 2,
MC@NLO: V+0 inclusive,

UNIVERSITEIT VAN AMSTERDAM

A. Papaefstathiou

"legend" for plots

ATLAS Z+jets @ 7 TeV, 1304.7098

- study of jet, Z, inclusive properties,
- based on an integrated luminosity of 4.6 fb⁻¹,
- using both e^+e^- and $\mu^+\mu^-$ pairs,
- with R = 0.4 anti-kT jets, pT (j) > 30 GeV and |y(j)| < 4.4,
- further cuts: $p_T(l) \ge 20 \text{ GeV}$, $66 \le M(ll) \le 116 \text{ GeV}$, $\Delta R(jl) \ge 0.5$, $\Delta R(ll) \ge 0.2$, $|\eta(\mu)| \le 2.4$, $|\eta(e)| \le 1.37$ and $1.52 \le |\eta(e)| \le 2.47$.

CMS, W+jets @ 7 TeV, 1406.7533

- study of jet, W, inclusive properties,
- based on an integrated luminosity of 5 fb⁻¹,
- using muon channel,
- with R = 0.5 anti-kT jets, pT (j) > 30 GeV and |y(j)| < 2.4,
- further cuts: $p_T(\mu) > 24 \text{ GeV}$, $|\eta(\mu)| < 2.1$, $\Delta R(j\mu) \ge 0.5$, $m_T(\mu\nu) > 50 \text{ GeV}$.

more results

(Z+jets: additional preliminary studies with Herwig 7)

include results for LO multi-jet merging via MLM-type rejection with Herwig 7 for validation.

UNIVERSITEIT VAN AMSTERDAM

A. Papaefstathiou

some comments

- same ATLAS **Z+jets** analysis as shown earlier (7 TeV, 1304.7098),
- low MC statistics,
- with merging scale = 25 GeV,
- includes MC@NLO curve as before.
- total cross sections after merging/matching:

sample	σ(7 TeV) [nb]
tree-level (0+1+2)	2.047(6)
FxFx (0+1+2)	2.04(2)
MC@NLO incl.	2.014(2)

Exclusive jet multiplicity

A. Papaefstathiou

UNIVERSITEIT VAN AMSTERDAM

Nikhef

Transverse momentum of 2nd jet

Nikhef

Rapidity of 4th jet

UNIVERSITEIT VAN AMSTERDAM

A. Papaefstathiou

 ΔR distance of leading jets

technical aspects

- LO and FxFx merging contained in a single library addon to Herwig 7: "ExternMerge".
 - currently available at:

https://bitbucket.org/andreasp/externmerge

- straightforward to compile,
- use via standard-type Heriwg 7 input files.

technical aspects

- ExternMerge handles MG5_aMC MLM and FxFx merging.
- [as well as AlpGen (this part: with K. Hamilton).]
- **MG5_aMC LO merging:** uses Les Houches file information on which partons to include in the merging.
- **FxFx:** detects heavy resonances (e.g. Z/W/H/top) and excludes their decay products from merging procedure (special treatment for *b*s from tops available).

conclusions & outlook

- samples constructed using the FxFx method describe a wide range of observables very well.
- it has been fully validated using Herwig 7 and Pythia 8, in:
 - Z/W+jets,
 - as well as V+Higgs [see Yellow Report 4, 1610.07922].
- future work:
 - automate the MG5_aMC interface with Herwig 7,
 - complement NLO merging with higher multiplicities.
 - further validation: examine top-anti-top/Higgs + comparison to 13 TeV data.

thanks!

A. Papaefstathiou