HIGGS PRODUCTION AT NLO IN THE STANDARD MODEL EFT

Nicolas Deutschmann

Work in progress with

Claude Duhr, Fabio Maltoni and Eleni Vryonidou

LHCTheory meeting Wednesday, 22 March 2017

Constraining the Higgs boson at the LHC

Convincing evidence for the new LHC boson to be a CP-even scalar with SM-Higgs like properties.

Constraining the Higgs boson at the LHC

Convincing evidence for the new LHC boson to be a CP-even scalar with SM-Higgs like properties.

Measurements of signal strengths and κ parameters from Run I

The κ parameters are not the coefficients of a QFT, they are fit parameters:

$$\mathcal{N}_{\text{events}}(pp \to t\bar{t}H \to b\bar{b}) \xrightarrow{\text{fit}} \kappa_t^2 \kappa_b^2 (\sigma \times B) \epsilon \mathcal{L} + \dots$$

Scaling based on LO description

The κ parameters are not the coefficients of a QFT, they are fit parameters:

$$\mathcal{N}_{\text{events}}(pp \to t\bar{t}H \to b\bar{b}) \xrightarrow{\text{fit}} \kappa_t^2 \kappa_b^2 (\sigma \times B) \epsilon \mathcal{L} + \dots$$

Scaling based on LO description

• Good tools to test the SM

The κ parameters are not the coefficients of a QFT, they are fit parameters:

$$\mathcal{N}_{\text{events}}(pp \to t\bar{t}H \to b\bar{b}) \xrightarrow{\text{fit}} \kappa_t^2 \kappa_b^2 (\sigma \times B) \epsilon \mathcal{L} + \dots$$

Scaling based on LO description

- Good tools to test the SM
- Complex relation to BSM parameters

The κ parameters are not the coefficients of a QFT, they are fit parameters:

$$\mathcal{N}_{\text{events}}(pp \to t\bar{t}H \to b\bar{b}) \xrightarrow{\text{fit}} \kappa_t^2 \kappa_b^2 (\sigma \times B) \epsilon \mathcal{L} + \dots$$

Scaling based on LO description

- Good tools to test the SM
- Complex relation to BSM parameters

Fit parameters \rightarrow Model parameter: precise calculation for each channel, for each model

- Standard Model processes (no searches)
- Small deviations: $14 \text{ TeV}/\Lambda \ll 1$

The SMEFT framework

A consistent QFT for parametrizing small BSM effects using higher-dimensional operators with SM fields:

$$\mathcal{L}_{\mathsf{SMEFT}} = \mathcal{L}_{\mathsf{SM}} + \sum_{k=1}^{N} \frac{1}{\Lambda^k} \sum_i C_i \mathcal{O}_i^{[k+4]} \tag{I}$$

Consistent approach to radiative corrections: truncate $\mathcal{L}_{\text{SMEFT}}$ and observables at a finite order.

- Dimension 5: I operator (neutrino masses)
- Dimension 6: 59 operators or 63, or 84

[Weinberg] [Buchmuller, Wyler] [Grzadkowski, Iskrzynski, Misiak, Rosiek]

NLO corrections to SMEFT processes

The SMEFT parametrizes possible deviations on precision LHC measurements.

Need for NLO predictions:

- Better accuracy: SM Higgs cross-section changes by 100% from LO to NLO
- Better bounds: typically increased rates at NLO (e.g. bound on one operator involved in $\bar{t}t$ improved by $\times 1.5$ [Buarque Franzosi,Zhang])
- Better precision: reduction of scale uncertainties. SMEFT@LO for $gg \to H$: $15 \sim 25\%$ [Maltoni,Vryonidou,Zhang]

The top-Higgs sector of the SMEFT

Two unusual features:

- Mix of tree-level and one-loop
- UV divergence in loop contribution

[Degrande, Gérard, Grojean, Maltoni, Servant]

Two unusual features:

- Mix of tree-level and one-loop
- UV divergence in loop contribution

[Degrande, Gérard, Grojean, Maltoni, Servant]

Two unusual features:

- Mix of tree-level and one-loop
- UV divergence in loop contribution

[Degrande, Gérard, Grojean, Maltoni, Servant]

NLO correction to the amplitude

The NLO contribution to the cross-section is composed of

Real emissions

Virtual corrections

NLO correction to the amplitude

The NLO contribution to the cross-section is composed of

Real emissions

Virtual corrections

I-loop: automated

2-loop: by hand

Nicolas Deutschmann

/2

Divergence structure: operator mixing

The chromomagnetic operator requires counter-terms from both other operators:

Renormalization matrix: $C_i^0 = Z^{ij}C_j^R$ [Jenkins, Manohar, Trott]

Divergence structure: IR divergences

The Infrared divergences factorize:

$$\mathcal{A}_R^{(1)} = \mathcal{A}_{ extsf{finite}}^{(1)} + \hat{I}_1 \mathcal{A}_R^{(0)}$$

 \hat{I}_1 is a universal operator encapsulating the IR divergences.

For
$$gg o H$$
, $\hat{I}_1 = -\frac{e^{\epsilon\gamma}}{\Gamma(1-\epsilon)} \left(\frac{C_A}{\epsilon^2} + \frac{\beta_0}{\epsilon}\right) \left(\frac{\mu^2}{-s}\right)^{\epsilon}$

Our LO amplitude already has a pole so an unusual divergence appears :

Nicolas Deutschmann

Higgs production at NLO in the SMEFT

Simplest part of the amplitude: C_2

SM-like two-loop amplitude: C_1

SM-like two-loop amplitude: C_1

Two-loop and mixing: C_3

Nicolas Deutschmann

Higgs production at NLO in the SMEFT

Two-loop and mixing: C_3

Nicolas Deutschmann

Higgs production at NLO in the SMEFT

Introduction to modern multi-loop techniques

Workflow of a multi-loop calculation

Integral families

Multi-loop amplitudes contain thousands of loop integrals: need for an organisational principle

Definition: Family

A family of integrals is given by a set of propagators. Scalar integrals with arbitrary powers of this propagators are in the same family

$$I(a_1,\ldots,a_k) = \int d^d k_1 \ldots d^d k_l \frac{1}{D_1^{a_1} \ldots D_k^{a_k}}$$

Arbitrary numerators are included using negative powers

Family bases

Theorem: all integrals in a family can be expressed in terms of a finite basis (!) How can we reach it?

Integration-by-parts identities (IBP)

In dimensional regularization:

$$\int \prod d^d k_i \frac{\partial}{\partial k_{\hat{j}}^{\mu}} \frac{v_{\mu}}{D_1^{a_1} \dots D_k^{a_k}} = 0$$

Families are stable under differentiation: generates an infinite linear system

[Chetyrkin, Tkachov]

Going down the ladder

The IBP relation provide a way to reach a basis with low powers

Example: massless bubble integral

$$I(n_1, n_2) = \int d^d k \frac{1}{(k^2)^{n_1} ((k+p)^2)^{n_2}}$$

Two relations:

$$I(n_1, n_2) = \frac{n_1 + n_2 - d - 1}{p^2(n_2 - 1)} I(n_1, n_2 - 1) + \frac{1}{p^2} I(n_1 - 1, n_2)$$
$$= \frac{n_1 + n_2 - d - 1}{p^2(n_1 - 1)} I(n_1 - 1, n_2) + \frac{1}{p^2} I(n_1, n_2 - 1)$$

Going down the ladder

Starting from one integral, one can always go back to I(1, 1).

Nicolas Deutschmann

Higgs production at NLO in the SMEFT

 $^{6}/_{2}$

Our calculation in numbers: diagrams

21 diagrams for C_1 and 75 for C_3

21

Our calculation in numbers: integrals and masters

The integrals in our amplitude fall into three families:

Total number of master integrals : 17

Our calculation in numbers: integrals and masters

The integrals in our amplitude fall into three families:

Total number of master integrals : 17 All known from SM calculation

> [Anastasiou, Beerli, Bucherer, Daleo, Kunszt] [Aglietti, Bonciani, Degrassi, Vicini]

Master integrals in terms of polylogarithms

Many master integrals can be expressed in terms of iterated integrals called multiple polylogarithms:

$$G(a_1,\ldots,a_n;x) = \int_0^x \frac{dt}{t-a_1} G(a_2,\ldots,a_n,dt)$$
 With $G(a;x) = \log(1-x/a)$

Master integrals in terms of polylogarithms

Many master integrals can be expressed in terms of iterated integrals called multiple polylogarithms:

$$G(a_1,\ldots,a_n;x)=\int_0^x \frac{dt}{t-a_1}G(a_2,\ldots,a_n,dt)$$
 With $G(a;x)=\log(1-x/a)$

All our integrals are expressed in terms of MPLs with entries in $\{0,\pm1\}$, depending on the dimensionless variable

$$x = \frac{\sqrt{4m_t^2 - s} - \sqrt{s}}{\sqrt{4m_t^2 - s} + \sqrt{s}}$$

Conclusion and outlook

We have reached the final stages of the calculation of the NLO correction to the Higgs production cross-section by gluon fusion in the SMEFT

- Finished the calculation of the two-loop renormalized amplitude
- Obtained the new two-loop counter-term
- On our way to combine the virtuals with real emissions to compute the cross-section

Expected improvement on the precision and accuracy of the prediction, paving the way for future investigations of the Higgs boson properties.

Thank you for your attention

Precise definition of the families

The integrals in our amplitude fall into three families:

Integral families: example

One-loop triangle scalar integral family:

$$I(a_1, a_2, a_3) = \int d^d k \frac{1}{(k_1^2)^{a_1} ((k_1 + p_1)^2)^{a_2} ((k_1 + p_1 + p_2)^2)^{a_3}}$$

Numerator example:

$$\int d^{d}k \frac{k_{1} \cdot p_{1}}{(k_{1}^{2})(k_{1}+p_{1})^{2}(k_{1}+p_{1}+p_{2})^{2}} = \int d^{d}k \frac{1}{2} \frac{1}{(k_{1}^{2})(k_{1}+p_{1}+p_{2})^{2}} - \frac{1}{2} \frac{1}{(k_{1}+p_{1})^{2}(k_{1}+p_{1}+p_{2})^{2}}$$