An overview of $\mathcal{N}=4$ SYM

LHCTheory ERC Meeting

UCLouvain - Mar $23^{\text {rd }}$, 2017

Brenda Penante CERN

Aim

- What is $\mathcal{N}=4$ SYM?

■ Why study it?

Maximal supersymmetry in $d=4$

$$
Q^{I}, \quad \bar{Q}_{I} \quad I=1,2,3,4
$$

Field content

Maximal supersymmetry in $d=4$

$$
Q^{I}, \quad \bar{Q}_{I} \quad I=1,2,3,4
$$

$$
h=+1
$$

Field content

Maximal supersymmetry in $d=4$

$$
\begin{gathered}
Q^{I}, \quad \bar{Q}_{I} \quad I=1,2,3,4 \\
\psi^{1} \\
\psi^{2} \\
\psi^{3} \\
h=+1 \\
\psi^{3} \\
\\
\\
\\
\psi^{4} \\
\\
\end{gathered}
$$

Field content

Maximal supersymmetry in $d=4$

$$
\begin{array}{ccc}
Q^{I}, \quad \bar{Q}_{I} & I=1,2,3,4 \\
& \psi^{1} & \phi^{12} \\
g & \psi^{13} & \phi^{14} \\
& \psi^{3} & \phi^{23} \\
& \psi^{4} & \phi^{24} \\
& & \phi^{34} \\
h=+1 & +\frac{1}{2} & 0
\end{array}
$$

Maximal supersymmetry in $d=4$

$$
\begin{array}{cccc}
& Q^{I}, \quad \bar{Q}_{I} \quad I=1,2,3,4 \\
& Q^{I} & Q^{J} & Q^{K} \\
& \psi^{2} & \phi^{13} & \bar{\psi}^{123} \\
& \psi^{3} & \phi^{23} & \bar{\psi}^{124} \\
& \psi^{4} & \phi^{24} & \bar{\psi}^{234} \\
& & \phi^{34} & \\
h=+1 & +\frac{1}{2} & 0 & -\frac{1}{2}
\end{array}
$$

Maximal supersymmetry in $d=4$

$$
\begin{aligned}
& Q^{I}, \quad \bar{Q}_{I} \quad I=1,2,3,4 \\
& \begin{array}{cc}
Q^{I} \\
\psi^{1} & Q^{J} \\
\phi^{12} \\
\phi^{13}
\end{array} \\
& g \\
& \begin{array}{llll}
\psi^{2} & \phi^{14} & \bar{\psi}^{124} & \\
\psi^{3} & \phi^{23} & \bar{\psi}^{134} & g^{1234}
\end{array} \\
& \psi^{4} \\
& \begin{array}{ll}
\phi^{24} \\
\phi^{34}
\end{array} \quad \bar{\psi}^{234} \\
& h=+1 \quad+\frac{1}{2} \quad 0 \quad-\frac{1}{2} \quad-1
\end{aligned}
$$

$$
\Phi=g^{+}+\eta_{I} \psi^{I}+\frac{1}{2} \eta_{I} \eta_{J} \phi^{I J}+\frac{1}{3!} \eta_{I} \eta_{J} \eta_{K} \bar{\psi}^{I J K}+\eta_{1} \eta_{2} \eta_{3} \eta_{4} g^{1234}
$$

All particles combined into one superfield - Nair '88η_{I} is a fermionic variable

$$
A_{n}=A\left(p_{i}, \eta_{I}^{i}\right), \quad i=1, \ldots, n
$$

Properties

- Only one multiplet, $m^{2}=0$

■ Gauge group $S U(N)$, coupling constant g_{YM}

- $\beta_{g_{\mathrm{YM}}}=0$ to all loops \Rightarrow Quantum conformal symmetry

■ Conformal symmetry + SUSY $=$ Superconformal symmetry

Properties

■ "Planar limit" $N \rightarrow \infty$
■ AdS/CFT correspondence - Maldacena '97-

- Integrability

Hidden simplicity: - Parke, Taylor '86 / Mangano, Parke, Xu '88-

Recursion relations: - Britto, Cachazo, Feng, Witten '05 / Cachazo, Svrček and Witten '04-
BCFW: $\quad \mathrm{N}^{k}$ MHV amplitude in terms of A_{3}^{MHV} and $A_{3}^{\overline{\mathrm{MHV}}}$ CSW: $\quad \mathrm{N}^{k} \mathrm{MHV}$ amplitude in terms of A_{n}^{MHV}

Symmetries and Dualities

$$
p_{i}=x_{i+1}-x_{i}
$$

Symmetries and Dualities

$$
p_{i}=x_{i+1}-x_{i}
$$

Dual conformal symmetry - Drummond, Henn, Korchemsky, Sokatchev '08 -
superconformal + dual superconformal $=\infty$-dimensional symmetry algebra (Yangian)

- Drummond, Henn, Plefka '09 -

Symmetries and Dualities

$$
p_{i}=x_{i+1}-x_{i}
$$

Amplitude - Wilson loop duality - Drummond, Korchemsky, Sokatchev / Brandhuber, Heslop, Travaglini '07 -

$$
\log \frac{A_{n}^{\mathrm{MHV}}}{A_{n}^{\mathrm{MHV}, \text { tree }}} \leftrightarrow \log \mathcal{W}_{\mathcal{C}} \equiv \log \left\langle\operatorname{Tr} P \exp i g \oint_{\mathcal{C}} A_{\mu} d x^{\mu}\right\rangle
$$

Symmetries and Dualities

$$
p_{i}=x_{i+1}-x_{i}
$$

Amplitude - Wilson loop duality - Drummond, Korchemsky, Sokatchev / Brandhuber, Heslop, Travaglini '07-

IR divergences $\left(m^{2}=0\right) \quad \leftrightarrow \quad$ UV divergences (cusps)

Consequences: Integrands

Dual conformal symmetry is preserved at the integrand level \Rightarrow Definition of Integrand

Consequences: Integrands

Dual conformal symmetry is preserved at the integrand level \Rightarrow Definition of Integrand

Consequences: Integrands

Topologies are constrained \Rightarrow Generalised unitarity methods

Consequences: Integrands

- Integrand \rightarrow All-loop recursion relation
- Arkani-Hamed, Bourjaily, Cachazo, Caron-Huot, Trnka '10 -
- Alternative geometric representation:

■ Positive Grassmannian - Arkani-Hamed, Bourjaily, Cachazo, Goncharov, Postnikov, Trnka '12-

■ Amplituhedron - Arkani-Hamed, Trnka '13 -

- IR divergent part of the planar MHV amplitude resummed to all loops:
- Bern, Dixon, Smirnov / Anastasiou, Bern, Dixon, Kosower -

$$
\begin{gathered}
\mathcal{M}_{n}^{\mathrm{MHV}}=\exp \left[\sum_{L=1}^{\infty} a^{L}\left(f^{(L)}(\epsilon) M_{n}^{(1)}(L \epsilon)+C^{(L)}+\mathcal{O}(\epsilon)\right)\right] \\
M_{n}^{(L)} \equiv \frac{A_{n}^{\operatorname{MHV}(L)}}{A_{n}^{\operatorname{MHV}(0)}}, \quad d=4-2 \epsilon
\end{gathered}
$$

- $f^{(L)}$ function of cusp and collinear anomalous dimensions

Iterative structure at higher loops

$$
\mathcal{M}_{n}^{\mathrm{MHV}}=\exp \left[\sum_{L=1}^{\infty} a^{L}\left(f^{(L)}(\epsilon) M_{n}^{(1)}(L \epsilon)+C^{(L)}+\mathcal{O}(\epsilon)\right)\right]
$$

■ Captures all IR divergent behaviour

- Exact for $n=4,5 \Rightarrow$ Amplitudes constrained to all orders
- Starting at $n=6 \rightsquigarrow$ Remainder function R_{n}^{MHV}
- R_{6}^{MHV} is a function of 3 cross ratios:

$$
u=\frac{s_{12} s_{45}}{s_{123} s_{345}}, \quad v=\frac{s_{23} s_{56}}{s_{234} s_{456}}, \quad w=\frac{s_{45} s_{16}}{s_{345} s_{561}}
$$

Amplitude six-point two-loop remainder

$$
\begin{gathered}
\mathcal{R}_{6}^{(2)}=M_{6}^{(2)}-\underbrace{\left[\frac{1}{2}\left(M_{6}^{(1)}(\epsilon)\right)^{2}+f^{(2)}(\epsilon) M_{6}^{(1)}(2 \epsilon)+C^{(2)}\right]}_{\text {BDS ansatz }} \\
f^{(2)}(\epsilon)=-2\left(\zeta_{2}+\epsilon \zeta_{3}+\epsilon^{2} \zeta_{4}\right), \quad C^{(2)}=-\zeta_{2}^{2}
\end{gathered}
$$

Del Duca, Duhr and Smirnov $\rightsquigarrow 17$-page-long combination of transcendental functions

Goncharov, Spradlin, Vergu, Volovich \rightsquigarrow Identities and cancellations give a single line expression with only classical polylogs

Ex: 2 loops: $\operatorname{Li}_{4}(x), \log ^{4}(x),\left(\operatorname{Li}_{2}(x)\right)^{2}$
\rightarrow More hidden simplicity

Bypassing integrands and integrals: Bootstrap approach

Assumption: MHV remainder functions at L loops is a combination of transcendental functions of weight $2 L$

This + physical constraints \Rightarrow results up to $L=5, n=6$ and $L=4, n=7$

- Caron-Huot, Dixon, McLeod, von Hippel '16 /

Dixon, Drummond, Harrington, McLeod, Papathanasiou, Spradlin '17(also results beyond MHV)

Summary \& take home message

$\mathcal{N}=4 \mathrm{SYM}$ is a QFT with very special properties:

■ Simple enough so that analytical results are manageable, but not too simple to be trivial

■ Great context on which to test new ideas

- "Toy model" for QCD

■ Promote development of methods applicable for general field theories

- Interesting from mathematical perspective

