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HIGGS BOSON

▸ 4th of July 2012: The begin of the precision physics age of Higgs boson 
phenomenology 

▸ Immediately after the discovery of the Higgs boson we started to ask 
questions about it’s nature: 
Couplings, spin, parity, mass, cross sections … 
 
 

▸ The basis for testing our understanding  
of nature is on the one side precise 
 measurements that are sensitive 
 to the Higgs boson properties. 

▸ LHC provides the input!  
Run 2: Data, data, data



HIGGS BOSON MEASUREMENTS

▸ Incredible agreement of data and 
theory 

▸ Triumph of SM predictions 

▸ Higgs production 
~10 sigma observed

ENTER THE AGE OF PRECISION HIGGS PHYSICS



DEMAND FOR PRECISION ON THEORY SIDE

▸ Testing our understanding of nature:  
Compare experiment and theory! 

▸ The key to theoretical predictions at the LHC:  
 
 
 

▸ Compute perturbativ corrections from first principle 
QFT: Standard Model 

▸ Allows for % - level predictions for - experimental 
precision will reach comparable levels!

HIGGS BOSON PREDICTIONS
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HIGGS BOSON PRODUCTION

4 WAYS TO PRODUCE A HIGGS

ggF Associated

VBF ttH

~88.2% ~4.1%

~6.8% ~0.9%



STATUS OF PERTURBATIVE COMPUTATIONS

DOMINANT QCD CORRECTIONS

▸ Inclusive cross section: N3LO 

▸ Differential cross section: NNLO 

▸ H+J: NNLO

▸ Inclusive cross section: N3LO 

▸ Differential cross section: NNLO



MOTIVATION FROM INCLUSIVE CROSS SECTION
COMPUTING PERTURBATIVELY
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▸ N3LO corrections 
stabilise perturbative 
expansion. 

▸ We would like to see a 
similar pattern for 
differential cross 
sections.



CHALLENGES OF PERTURBATIVE PREDICTIONS
▸ Analytic complexity of high order perturbative 

computation 

▸ Complicated mathematical structures: Elliptic / multiple 
polylogarithms, couple differential equations, algebraic complexity, …

▸ Numerical integration over complicated and 
“divergent” final state configurations: 

▸ Infrared subtraction at 2-loops and beyond. 

▸ Main challenge of the last couple of years. 

▸ Many methods available now.

• Sector decomposition 
• Non-Linear Mappings 
• qT 
• FKS+  
• N-Jettiness 
• Antenna 
• Colourful 
• Projection-To-Born 
• …

H+J

VBF

STATUS OF PERTURBATIVE COMPUTATIONS



HIGGS - DIFFERENTIAL CROSS SECTIONS

▸ Introduce a framework that allows to compute 
differential cross sections at N3LO. 

▸ Circumvent problems of NNLO infrared subtraction.  

▸ Applicable for real life observables at the LHC.

Specifically: Differential Higgs Production in QCD

P P ! H +X ! �� +X

P P ! H +X ! 4l +X

▸ Today: Recent Progress, NNLO, Obstacles, Method

COMPUTING PERTURBATIVELY



HIGGS - DIFFERENTIAL CROSS SECTIONS
▸ Focus on the degrees of freedom of the 

Higgs boson: 

▸ Entirely described in terms of pT and Y (and 
a trivial azimuthal angle). 
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HIGGS - DIFFERENTIAL CROSS SECTIONS
▸ Focus on the degrees of freedom of the 

Higgs boson: 

▸ Entirely described in terms of pT and Y (and 
a trivial azimuthal angle). 

▸ Higgs-differential cross section:
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HIGGS - DIFFERENTIAL CROSS SECTIONS
▸ Focus on the degrees of freedom of the 

Higgs boson:  

▸ Entirely described in terms of pT and Y (and 
a trivial azimuthal angle). 

▸ Higgs-differential cross section:
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HIGGS - DIFFERENTIAL CROSS SECTIONS
▸ Focus on the degrees of freedom of the 

Higgs boson:  

▸ Entirely described in terms of pT and Y (and 
a trivial azimuthal angle). 

▸ Higgs-differential cross section:
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Higgs degrees of freedom
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HIGGS - DIFFERENTIAL CROSS SECTIONS
▸ Focus on the degrees of freedom of the 

Higgs boson:  

▸ Entirely described in terms of pT and Y (and 
a trivial azimuthal angle). 

▸ Higgs-differential cross section:
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COMPUTING PERTURBATIVELY



HIGGS - DIFFERENTIAL CROSS SECTIONS
▸ Focus on the degrees of freedom of the 

Higgs boson:  

▸ Entirely described in terms of pT and Y (and 
a trivial azimuthal angle). 

▸ Higgs-differential cross section:
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PARTONIC HIGGS - DIFFERENTIAL CROSS SECTIONS
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PARTONIC HIGGS - DIFFERENTIAL CROSS SECTIONS

▸ Compute all required matrix elements of different final 
states X to a given order in perturbation theory. 

▸ Work in effective theory: Excellent approximation!
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PARTONIC HIGGS - DIFFERENTIAL CROSS SECTIONS

▸ Compute all required matrix elements of different final 
states X to a given order in perturbation theory.
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COMPUTING PERTURBATIVELY



PARTONIC HIGGS - DIFFERENTIAL CROSS SECTIONS

h

Z
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▸ Phase space integral over partonic final state phase space 
momenta 

▸ Integrate over as many partons as there are in X. 

▸ Integration over fixed multiplicity matrix elements is divergent! 
(KLN).
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PARTONIC HIGGS - DIFFERENTIAL CROSS SECTIONS

h

Z
d�n

▸ Perform integration over parton phase space analytically 

▸ Everything else effectively covered by H+J 

▸ Rely on tools to perform analytic computation learned from 
inclusive N3LO 

▸ Make singularities of final state parton integrations manifest 
using dimensional regularisation.

COMPUTING PERTURBATIVELY

d = 4� 2✏



COMPUTING PERTURBATIVELY

PARTONIC HIGGS - DIFFERENTIAL CROSS SECTIONS
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COMPUTING PERTURBATIVELY
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▸ Opens the door to large variety of loop integral technology! 

▸ IBPs + Differential equations

▸ Key observation: Cut propagators can be differentiated 
similar to usual propagators.



COMPUTING PERTURBATIVELY

REVERSE UNITARITY FRAMEWORK:
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▸ Coefficient: Rational function of remaining kinematic 
variables. 

▸ Master Integral: Integrated Feynman integrals: 
Polylogarithms, rational functions of remaining kinematic 
variables. 

▸ Explicit Laurent series in dimensional regulator.



COMPUTING PERTURBATIVELY

HIGGS - DIFFERENTIAL CROSS SECTIONS
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▸ UV - renormalisation (                             , etc.) 

▸ Initial state collinear singularities: Redefine parton distributions 
functions: 
 
Currently: Complete NNLO Higgs-differential cross section. 

↵S ! ↵R
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COMPUTING PERTURBATIVELY

HIGGS - DIFFERENTIAL CROSS SECTIONS: RAPIDITY
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▸ Inclusive rapidity 
distribution 

▸ Large K-factors 



COMPUTING PERTURBATIVELY

HIGGS - DIFFERENTIAL CROSS SECTIONS: PT

▸ Inclusive PT 
distribution 10�2
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COMPUTING PERTURBATIVELY

HIGGS - DIFFERENTIAL CROSS SECTIONS: PT

▸ Inclusive PT 
distribution - 
extreme regime



COMPUTING PERTURBATIVELY

HIGGS - DIFFERENTIAL CROSS SECTIONS: FIDUCIAL XS

▸ Decay of the Higgs boson to two photons  
(Narrow width approximation) 

▸ Employ realistic selection cuts (ATLAS) 

⌘� 62 [1.37, 1.52]

⌘� < 2.37

pT, �2 > 0.25mh

pT, �1 > 0.35mh



COMPUTING PERTURBATIVELY

HIGGS - DIFFERENTIAL CROSS SECTIONS: FIDUCIAL XS
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▸ Fiducial rapidity 
distribution. 

▸ Non-trivial features due 
to  
selection criteria. 

▸ Relatively flat K-factors 

▸ Similar perturbative 
behaviour as inclusive  
distribution 



COMPUTING PERTURBATIVELY

HIGGS - DIFFERENTIAL CROSS SECTIONS: FIDUCIAL XS
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▸ Distributions of the photon 
momenta: 

▸ Leading Photon pT 

▸ Pseudo - rapidity difference

�⌘ = |⌘�1 � ⌘�2 |



BEYOND NNLO



BEYOND NNLO

WHAT DID WE LEARN FROM NNLO
▸ Higgs-differential cross sections: fast and stable framework 

for fiducial cross sections. 

▸ Analytic computation at NNLO comparably simple.

MAIN CHALLENGES FOR N3LO

▸ Rapid growth in analytic complexity: Many more integrals 
to compute, large rational expressions as a result 

▸ Numerical stability vs. speed in evaluation of analytic 
coefficients.



BEYOND NNLO

UV RENORMALISATION AND IR FACTORISATION
▸ To derive UV counter terms and IR subtraction terms we 

require NNLO cross sections computed beyond the finite 
term in 

▸ Allow to derive complete N3LO scale variation from 
DGLAP
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BEYOND NNLO

FIXED ORDER MATRIX ELEMENTS

VVV RVV

RRR

RV^2 RRV100 000 diagrams
1000 @ NNLO

Rapid growth in complexity



BEYOND NNLO

FIXED ORDER MATRIX ELEMENTS

VVV RVV

RRR

RV^2 RRV100 000 diagrams
1000 @ NNLO

Rapid growth in complexity

Known already! (Inclusive / H+J  @NNLO)



BEYOND NNLO

FIXED ORDER MATRIX ELEMENTS

▸ Missing matrix elements with 2 or 3 final state partons. 

▸ Same strategy as for NNLO: Analytic computation using 
reverse unitarity, master integrals and differential 
equations. 

▸ Number of master integrals required: 100 x NNLO. 

▸ Solving differential equations for master integrals: 
Need boundary conditions = Master integrals evaluated at 
one single point.



THRESHOLD EXPANSION

EXPAND CROSS SECTION AROUND PRODUCTION THRESHOLD
▸ Inclusive Cross Section: Computed as a Threshold Expansion

z =
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H

▸ Served as an excellent approximation for inclusive cross section. 

▸ Reason Nr.1:  
Crucial analytic information a full calculation relies on - boundary conditions.  
+ checks, testing ground for technology, etc. 

▸ Reason Nr. 2: Can we use it for phenomenology?
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THRESHOLD EXPANSION

TRUNCATION ORDER @ N3LO: INCLUSIVE
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▸ How well did it work for N3LO inclusive?
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THRESHOLD EXPANSION

TRUNCATION ORDER @ NNLO: INCLUSIVE

▸ Let’s test at NNLO:

▸ Good approximation 
reached with only  
5-10 terms 

▸ ~3% off-set from full result 
for the NNLO correction -
> ~0.5 % on the total
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▸ How well does it work differentially?



THRESHOLD EXPANSION

▸ Rapidity distribution
THRESHOLD EXPANSION @ NNLO DIFFERENTIAL
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THRESHOLD EXPANSION

▸ Bulk of XS is described well with a couple of terms 

▸ Systematic improvement possible 
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THRESHOLD EXPANSION @ NNLO DIFFERENTIAL
▸ Rapidity distribution normalised to true value.



THRESHOLD EXPANSION

Full zb^-1 zb^0

zb^1 zb^2 zb^3

zb^4 zb^5 zb^6

zb^7 zb^8 zb^9
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THRESHOLD EXPANSION @ NNLO DIFFERENTIAL
▸ PT distribution

▸ Bad convergence 
at low pT

▸ On-set of 
distribution at NLO 
while threshold 
limit is tree level.



SOFT EXPANSION
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THRESHOLD EXPANSION @ NNLO DIFFERENTIAL
▸ PT distribution normalised to true value.

▸ Even with 10 
terms marginally 
within 20 % 

▸ Quality of 
expansion is 
subject to 
observable: 
Threshold 
sensitivity



THRESHOLD EXPANSION

THRESHOLD EXPANSION EXPANSION

▸ Systematically improvable approximation. 

▸ Soft expansion gives the opportunity to study differential 
distribution 

▸ Doing phenomenology in this approximation requires careful case 
by case analysis to see if the approximation is valid! 

▸ Ambiguity of higher  
order terms has to be  
controlled. 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THE ROAD TO N3LO

TOWARDS N3LO

▸ Extend analytic techniques  
for automatic soft amplitude expansions. 

▸ Apply reverse unitarity, differential equations,  
Multiple PolyLog, IBPs, Symbol tools, …. 

▸ Compute 110 new double differential soft master integrals. 

▸ Compute the first terms (Soft-Virtual SV) at N3LO 

▸ Put into code and look at  the N3LO corrections to the rapidity 
distribution and …



N3LO CORRECTIONS TO THE RAPIDITY DISTRIBUTION

SV @ N3LO
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BE CAREFUL WHEN YOU DO SOMETHING NEW

� ⇠
Z

dzLgg(z)


log

5(1� z)

1� z

�

+

LHAPDF
▸ LHAPDF: Grid of points for PDFs in x and Q 

▸ Interpolation between points with certain precision 

▸ Not meant to be precise enough for N3LO plus distributions yet 
…. 

▸ Improvements required: New interpolator, evolve from smooth 
PDF …. ? 

SV @ N3LO



N3LO CORRECTIONS TO THE RAPIDITY DISTRIBUTION
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SV @ N3LO
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Fit the PDF:

N3LO CORRECTIONS TO THE RAPIDITY DISTRIBUTION
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SV CORRECTIONS

INCLUDE RESCALED SV CORRECTIONS TO RAPIDITY AT N3LO

Very Preliminary!
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CONCLUSIONS

▸ Progress towards differential N3LO. 

▸ Higgs-differential framework for realistic final states looks 
promising. 

▸ Threshold expansions provide a key ingredient for analytic 
computation. 

▸ Threshold expansion can be used at the differential level to 
approximate differential cross section predictions. 

▸ Many interesting things to be encountered when going to 
higher order.

Thank you!


