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Reached 3.8T on April 28, operational parameters stable in time

A warm thanks to colleagues from CERN-TE dept, technical support from other CERN 
depts, CERN-EN,EP, CERN Management, CMS Magnet team and integration office, 
contractors (particularly Altead, ZEC service), CMS members for support and advice
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CMS is efficiently taking data

Special thanks to the LHC team!!!
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Content

 A few physics highlights

 b jet identification
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Top quark production

 Cross section at 13 TeV 
measured with a precision 
of 5.5%

 Cross section measured 
at 5 TeV

 Single top t-channel: 15% 
uncertainty 

 Top quark mass measured 
with a precision of 0.3% 
(Run 1)

 W boson polarization
→ most precise 
measurements of helicity 
fractions to date (Run 1) 

TOP13008

TOP14022

TOP16003

TOP16005

Differential cross section measurements performed 
in all decay channels for Run 1 and Run 2 

TOP16015
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HIG15004

Higgs physics at 13 TeV

Large jump in sensitivity due to 
larger cross section at 13 TeV

ttH: 0.15+0.95
-0.81

(Run 1 ttH: 2.9
+1.0

-0.9) HIG15002

TTHCombMoriond2016
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Searching new “exotic” particles
 

Existence of Z'→ tt (10% width) excluded 
with masses between 1 and 3.3 TeV 
(Run 1 limit, all decay channels 
combined: 2.9TeV)

same-sign dilepton + single lepton all-hadronic

Existence of top quark partner X5/3 is 
excluded with masses below 0.96TeV 
(Run 1 limit: 0.8TeV)

B2G15006
B2G15003
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Searches for sparticles

Huge jump in sensitivity, for massless 
neutralino → limit on the gluino mass at 
least 200 GeV higher

The “stealth” region is probed by 
precision measurements of top 
quark pair production 
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Content

 A few physics highlights
 Accurate reconstruction algorithms are vital for the 

sensitivity of physics analyses
 All of the highlights shown before rely on b jet 

identification

 b jet identification
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Many measurements and searches 
rely on accurate b jet identification
 Top quark: BR(t → b W) ~ 100%  H-boson: BR(H → bb) ~ 60%

Searches for new physics with third generation quarks or H-bosons in 
the final state rely on b jet identification
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Particle trajectories are most 
important input for b jet identification

source: D0 Collaboration

 b jets arise from the hadronization of b quarks
and during the hadronization a B hadron is produced

 B hadron properties: 

 Relatively large mass [5-6 GeV]

 Long lifetime [c ~450 m]
decay displaced by ~5 mm 
(E=70 GeV)

 Semi-leptonic decays 
BR (B→  or e) ~ 40%

Accurate reconstruction of particle trajectories is essential!

Impact parameter (IP)

Flight distance

Displaced soft 
lepton (e or )
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source: D0 Collaboration

Impact parameter (IP)

Flight distance

Displaced soft 
lepton (e or )

The track impact parameter 
significance discriminates

IP significance = IP value / IP uncertainty

 For light jets the IP value distribution is 
symmetric around 0

 For b (and c) jets there is a tail towards high 
positive IP values

BTV15001
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We can also exploit the information 
from secondary vertices
 Optimization for Run 2 → 'inclusive' secondary vertex (SV) finding 

 Going beyond tracks associated to the jet 

 Cluster tracks nearby in space and fit the secondary vertex position 

 SV finding efficiency increases 
with:

 10% for b jets

 15% for c jets

 8% for d,u,s,g jets

 Exploit the properties of the 
secondary vertex for b-tagging

BTV15001
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The CombinedSecondaryVertex (CSV) 
discriminator
 Several variables are combined with a neural network

 Combines information of displaced tracks as well as fitted secondary vertex 

 Training performed in 
vertex categories 

 Combining 22 variables

 Flat jet pT and  spectrum

 Two trainings: 

 b jets against c jets

 b jets against d,u,s,g jets

 Linear combination of two 
discriminators

BTV15001
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We can also combine multiple 
discriminators into a single one
 Combined MVA (cMVA) = combination of various discriminators:

 Discriminators exploiting the presence of muons or electrons in the jet 

 Two types of JetProbability discriminator

 Two types of CSV

 Combining 6 discriminators 
with a Boosted Decision 
Tree

BTV15001
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The performance of the algorithms   
is quantified and compared
 For each cut on a discriminator 

we can determine:

 the b-tagging efficiency, b

 the probability to misidentify a 
non-b jet as a b jet, non-b 

 Perform a scan over all discriminator 
thresholds

 For each threshold, plot b vs non-b 
→ Receiver Operating Characteristic 
curve (ROC curve) 

non-b 

b

1

1

bad

good

Illustration ROC curve

BTV15001
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A clear improvement with respect to 
the performance in LHC Run 1! 

For the same misidentification probability (1% for u,d,s,g jets): 
a relative improvement of >10% in b jet identification efficiency

ROC curve
Log scale! BTV15001
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Impact of improved b jet identification 
on the observation of the ttH process 

 Number of jets identified 
as b is crucial ingredient!

 Categories with higher 
number of b jets are more 
sensitive

In general with four b-tagged jets, a 10% higher b-tagging efficiency 
corresponds to 60% more ttH signal

HIG16004
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Summary & Outlook
 About 10% better performing b 

jet identification algorithms

 We have also developed tools for 
b-tagging in boosted topologies
→ double-b tagger public 
material expected to be released 
next week 

 Charm identification algorithm 
has been developed
→ public material expected to be 
released in July

 Paper to be submitted this Fall 
with the latest greatest status for 
identification of b, c and boosted 
b jets

Season 2 expected soon

Lots of new developments are needed in the near and far future
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Additional material

 Efficiency measurements from data (scale factors)

 Examples of various methods

 b tagging in boosted topologies

 Scale factors measurements

 Double-b tagger

 Phase 1 and HL-LHC

 Systematic uncertainties
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Data and simulation does not agree 
perfectly→scale factors are needed

 Scale factor SF = X
data / X

MC

 Depends on jet flavour X

 Measured for 3 discriminator thresholds corresponding to a 
misidentification probability of 10% (loose), 1% (medium) and 0.1% (tight)

 Various methods to measure efficiency from data, general strategy

 SFb → select data events enriched in b jets

 SFl → select data events enriched in light jets
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PtRel method fits the distribution of 
muon pT relative to the jet axis
 Select multijet events with at least 1 jet containing a muon (muon-jet);

request 2nd jet in the event away from the first one passing a b-tag cut

 Muon-jet is either b-tagged or b-vetoed

 Distributions of muon pT for tagged and vetoed
jets are fitted to measure the efficiency 
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LifeTime (LT) method uses similar 
concept, fitting JP distribution
 Select multijet events with at least 1 jet containing a muon (muon-jet);

request 2nd jet in the event away from the first one 

 We consider all muon-jets and tagged muon-jets

 Distributions of the muon-jet JetProbability
are fitted to measure the efficiency:
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A simple and robust method, 
relying only on fractions of events
 Select top-quark pair events with 2 jets, 1 electron and 1 muon

 Efficiency obtained from the fraction of events with 2 b-tagged jets in 
data as:

After applying SF:
closure test!

Before

MC fraction of events with 2 true b jets
MC fraction of events with 2 tagged 
jets with at least 1 not a true b jet
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More ambitious technique aims to 
correct the discriminator distribution
 Tag & probe method, iterative procedure 

 SFb measured in dilepton ttbar events after subtracting non-b background
→ iterate until convergence

 SFl measured in Z→ ll + jets events after subtracting b and c background
→ iterate until convergence

dilepton ttbar Z→ll + jets
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The measured scale factors are 
stable after 3 iterations
 Closure test of this method performed in ttbar events with 1 lepton, 

exactly 4 jets of which 2 are b-tagged  

After applying SF:
agreement clearly better!

Before
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The various measurements agree; 
a combination is performed

The precision on the scale factor for b jets is 2 to 4% 

combination
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 Using only tracks with negative IP 
and negative decay length for the 
secondary vertex a negative tagger is 
defined

 Similarly for the positive tagger

 To first order, should be symmetric 
for light-flavour jets

→ derive l from negative-tagged jets:

l
data = neg,data Rl

Rl = lMC / neg,MC

 Rl corrects for asymmetry and 
contamination of non-l jets

Negative tag method is used to 
measure the mistag scale factors

LMT
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The mistag scale factor is typically > 1, 
i.e. more mistags in data

  SFl = l
data / l

MC

The precision on the mistag scale factor is 5 to 10% 
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 Scale factor SF = X
data / X

MC are 
derived with various methods

 Uncertainties of 2 – 4% achieved 
for SFb and 5 – 10% for SFl 

  Dominated by systematic 
uncertainties
→ precision measurements require 
careful assessment of these 
uncertainties

To apply b-tagging in physics analyses, scale factors are 
essential to correct for data/MC differences
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b jet identification in boosted 
topologies was already used in Run 1
 The produced particles may be 

boosted due to high energy

 Decay products are clustered in 
a single 'fat' jet

 b-tagging for boosted objects,  
two possibilities:

Subjet b-tagging 
used in Run 1

Fat jet b-tagging
 new algorithm developed!

top
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b-tagging in boosted topologies was 
optimized for Run 2
 Tracks used for b-tagging 

after subjet reconstruction

 Run 1: tracks in fixed cone-size
→ track can be shared resulting  
in ambiguities

 Run 2: PF particles clustered in 
the subjet

 Jet-flavour assignment

 Run 1: R matching with the 
parton

 Run 2: virtual clustering of b and c 
hadrons in the subjet

 Benefiting also from improvements 
for regular b jet identification



34

Optimized b-tagging algorithms 
perform better in boosted topologies

 Boosted hadronic top-quark 
jets in high-mass ttbar events

 Hadronic top quark identified 
by matching fat jet (R<1.5) 
with generator t→bqq decay

 HEPTopTagger using CA15 
jet clustering algorithm

 Subjet b-tagging works better 
than fatjet b-tagging for this 
topology

For the same misidentification probability (1% for u,d,s,g jets): 
a relative improvement of ~50% in b jet identification efficiency
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The discriminator for subjets in 
boosted topologies looks good
 The agreement between data and MC of the input variables is checked 

using muon-enriched multijet (g→bb) events and boosted hadronic top- 
quark jets
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The scale factors for the regular jets 
agree with those for subjets

 SFb measured with LifeTime 
method

 SFl measured with negative tag 
method

 Good agreement with SF for 
regular jets
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The double-b tagger is more efficient 
to identify boosted X → bb objects
 Double-b tagger aims to identify 

fat jets containing two b hadrons

 Boosted Decision Tree:

 Signal: spin-0 radion→HH→4b 
combining various mass points

 Background: inclusive multijet

 Input variables based on track 
information, secondary vertices, 
leptons and minimum subjet 
CSVv2 value

 Performance compared with 
CSVv2 for subjet and fat jet b-
tagging

Against multijet

50%
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The double-b tagger is more efficient 
to identify boosted X → bb objects

Against g→bb Against b

A new version of the double-b tagger will appear soon (BTV-15-002), 
with scale factors measured using g → bb jets 
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 With increasing centre of mass 
energy, objects containing b jets 
may be boosted → different 
strategies developed

 Scale factors derived for subjet 
b-tagging
→ consistent with scale factors 
for 'standard' b-tagging

 Double b-tagger is 50% more 
efficient compared to subjet b-
tagging

Dedicated tools are developed for the special case of b-
tagging in boosted event topologies

Against 
multijet

50%
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Upgrades to the CMS detector 
planned in the near and far future

 Run 2: just 
started

 In 2017: new 
pixel tracker

 100/fb 

 Run 3: 2020

 300/fb

 HL-LHC: 2026

 New tracker

 3000/fb
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Upgraded pixel tracker with 4 layers 
will result in increased performance
 From 2017 onwards: 

 4 layers in the pixel tracker

 First layer closer
to the beam pipe 

ttbar events
<PU>=50

Plots from CMS-TDR-011 → old CSV tagger, but clear improvement!
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The conditions at the HL-LHC will be 
extreme → special tracker device
 Tracker will be used already for L1 (=hardware) trigger

 Extension of the tracker towards higher pseudorapidity
→ precision studies of e.g. H production through vector boson fusion 

LHCC-P-008
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Several optimizations for primary 
vertex finding and b-tagging
 Primary vertex finding has been 

made more robust
 b jet identification close to what is 

expected for 2017 

Plots from LHCC-P-008 → old CSV tagger, but clear improvement!
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Precision measurements require 
reduced systematic uncertainties
 In Run 2 statistical uncertainty will become negligible, hence we need to 

reduce the systematic uncertainty of the scale factor measurements to 
improve the precision measurements relying on b jets

 Systematic uncertainties:

 Gluon splitting

 b/c quark fragmentation

 Muon pT 

 Away-jet requirement

 Ratio of c over light jets

 Selection on PtRel

 Pile up, JES, ...

 Difference between muon-jets and inclusive jets

 Generator uncertainties: PDF, parton showers, ISR and FSR, underlying 
event, B decay, …

 Starting to think about ways to reduce those
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Different efficiency for b jets in QCD 
and ttbar not fully understood 
 Explain 
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Tracking efficiency in high pt jets

The track reconstruction efficiency as function of the R between the track and the 
vertex is computed for different scenarios: standard tracking, jet core tracking with a 
cluster splitting based on MC truth, and jet core tracking with cluster splitting. 
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