The Di-photon excitement at the LHC: TH

IAP meeting 17-06-2016 UCL

What happened at 15-12-2015?

The DiPhoton Frenzy

Enormous amount of theory papers already in the first two weeks!

Now we have reached around 400 papers

Compatible with prediction of arXiv:1603.01204

How to explain the excess?

Basic features of the excess
Peak at 750 GeV

$\sigma(pp \to \gamma\gamma)$	$\sqrt{s} =$	$8\mathrm{TeV}$	$\sqrt{s} = 13 \mathrm{TeV}$		
	narrow	broad	narrow	broad	
CMS	$0.63 \pm 0.31\mathrm{fb}$	$0.99\pm1.05\mathrm{fb}$	$4.8 \pm 2.1\mathrm{fb}$	$7.7 \pm 4.8\mathrm{fb}$	
ATLAS	$0.21 \pm 0.22\mathrm{fb}$	$0.88\pm0.46\mathrm{fb}$	$5.5 \pm 1.5\mathrm{fb}$	$7.6\pm1.9\mathrm{fb}$	
			-		

WIDTH: inconclusive but ATLAS favours large $\frac{\Gamma}{m_S} \sim 6\%$

Simpler interpretation: new resonance at 750 GeV

Open questions?

Plan of today

Characterisation of the excess

- Production Modes at the LHC
- Spin 0 or Spin 2
- Elementary or not ...
- Not a resonance in diphotons ...

My personal choice out of the solution of the Model building aspects

- Hierarchy problem ...
- · SUSY
- PNGB ... composite models
- Dark matter portal

-channel production of a single spin 0/2 resonance -channel production of a single spin 0/2 resonance

Solution of a single spin 0/2 resonance

The production mode should be compatible with 8TeV (<1.5 fb)

Photon production

Summary on production modes

arXiv:1605.09401

Gluon fusion and heavy quarks are more promising ones

"Vanilla" Model for spin 0

Minimal Lagrangian to achieve gluon-fusion: —Majority of papers based on this effective theory—

$$\mathcal{L} \sim \frac{g_{BB}}{\Lambda} \phi B^{\mu\nu} B_{\mu\nu} + \frac{g_{WW}}{\Lambda} \phi W^{\mu\nu} W_{\mu\nu} + \frac{g_{GG}}{\Lambda} \phi G^{\mu\nu} G_{\mu\nu}$$

Implies new physics to generate dimension 5 operators Implies correlated signals in di-bosons

CHANNELS	$\gamma\gamma$	ZZ	$Z\gamma$	WW	jj
coupling	$g_{BB}c_w^2 + g_{WW}s_w^2$	$g_{BB}s_w^2 + g_{WW}c_w^2$	$s_{2w}(g_{BB} - g_{WW})$	g_{WW}	g_{GG}
8 TeV bounds	<2 fb	<12 fb	<4 fb	<40 fb	<2.5 pb

Can accommodate the signal and be compatible with 8TeV !

"Vanilla" Model for spin 0

Can accommodate the signal and be compatible with 8TeV !

What about the mixing?

Assume new resonance mixes with the SM scalar $h \to h \cos \alpha + S \sin \alpha$, $S \to -h \sin \alpha + S \cos \alpha$, Couplings with $\mathcal{L} \supset \frac{1}{v} \left(h \cos \alpha + S \sin \alpha \right) \left| 2m_W^2 W_\mu^+ W_\mu^- + m_Z^2 Z_\mu Z_\mu - \sum_f m_f \bar{f} f \right|$ EW bosons and fermions are induced Doublet+Singlet+T'; $sin(\alpha)=0.008$, $m_S=750$ GeV; small widt Doublet+Singlet+T', m_S =750 GeV, small width 0.020 Bound on Mixing angle from di-boson signal at LHC8 0.015 y_X -50.005 arXiv:1512.65777 0.000 0.00 -0.02-0.010.01 0.02 1000 1200 1400 1600 1800 800 2000 C_{sgg} m_X

Mixing will also induce extra BEH coupling to gluons and photons ! Generic tension with BEH coupling measurement for large mixing angle !

What about the mixing?

Assume new resonance mixes with the SM scalar $h \to h \cos \alpha + S \sin \alpha$, $S \to -h \sin \alpha + S \cos \alpha$, Couplings with $\mathcal{L} \supset \frac{1}{v} \left(h \cos \alpha + S \sin \alpha \right) \left| 2m_W^2 W_\mu^+ W_\mu^- + m_Z^2 Z_\mu Z_\mu - \sum_f m_f \bar{f} f \right|$ EW bosons and fermions are induced Doublet+Singlet+T'; $sin(\alpha)=0.008$, $m_S=750$ GeV; small widt Doublet+Singlet+T', m_S =750 GeV, small width 0.020 Bound on Mixing rale from di-boson The mixing issue favors odd scalar 0.015 $(\widetilde{\underline{\sigma}})$ 0.010 0.005 arXiv:1512.65777 0.000 0.00 -0.02-0.010.01 0.02 1000 1200 1400 1600 1800 2000 800 c_{sgg} m_X

Mixing will also induce extra BEH coupling to gluons and photons ! Generic tension with BEH coupling measurement for large mixing angle !

The width of the resonance ?

The width of the resonance ?

What if spin 2?

Spin 2 particle interacting with the SM via the Energy momentum tensor

Surely a resonance?

Parent resonance decaying into 750 GeV particle plus other stuff

arXiv:1512.04933

Collimated photons

Resonance decay into light scalars, decaying into collimated photons

Elementary or not?

Could be a QCD bound state of new particles!

Break ...

? What are the implications for BSM paradigms?

Another hierarchy problem?

Assume it is another fundamental scalar particle ...

Another hierarchy problem?

Assume it is another scalar particle ...

The heavier A/H state of MSSM?

Consider decoupling limit

Couplings to photons/gluons induced by coupling to SM quarks

 $\mathcal{L} \supset y'_f \bar{Q}_L (H^0 + iA^0) f_R$

Same coupling induces tree level decay of heavy Higgses

BR into gluons and photons will be suppressed

Maximum possible signal rate

 $(\sigma BR)(pp \to H \to \gamma\gamma) \lesssim (0.01/0.06/0.14) \,\mathrm{fb}$ $(\sigma BR)(pp \to A \to \gamma\gamma) \lesssim (0.01/0.07/0.18) \,\mathrm{fb}$

hal rate

$$\xi_t = \frac{y'_t}{y_t} = 1, 3, 5$$

arXiv:1512.07616

Constraints from ttbar and tautau searches

CP-Odd and CP-Even with

small mass splitting and

coupling mainly to fermions

 $m_{H^0}^2 - m_{A^0}^2 \sim v^2$

Way out

Add heavy vector like states to enhance gluon/photon couplings

: Enhance decay in $\gamma\gamma$ with threshold effects, e.g. $m_{ ilde{t}}\sim m_A/2$

arXiv:1605.01040

Goldstone of a symmetry

Why it is light? Goldstone of a global symmetry

1) Goldstone boson of a composite model responsible for the EW scale

- + Many Composite Higgs models have extra singlets emerging from cosets
- + Would related EWSB scale and new resonance mass in a unified picture!
- Difficult to embed in consistent model with fermion representations

2) Goldstone boson emerging from strong sector not related to EWSB

+ Easier to realize but still interesting phenomenology, e.g. Dark Matter

3) Goldstone boson of global symmetry in SUSY (R-axion)

Work in progress + Arise naturally in models with spontaneous/dynamical supersymmetry breaking

Strongly coupled models

η and H are PNGB of strongly coupled model

- Strongly coupled sector with SU(N) gauge group
- Global Symmetry breaking SO(6)/SO(5)
 - \blacksquare H + Extra singlet η

Strong scale and strong coupling

$$m_* \simeq g_* f = 4\pi f / \sqrt{N}$$

We can produce PNGB masses in the range $m_h \ll m_{PNGB} \ll m_{\star}$.

Issue of the total width

Large width (> O (1) GeV)?

What else could the new resonance decay to?

We haven't observed any charged states with mass of O(100) GeV...

Degenerate states?

Invisible particles?

Issue of the total width

Large width (> O (1) GeV)?

What else could the new resonance decay to?

We haven't observed any charged states with mass of O(100) GeV...

Degenerate states?

Invisible particles?

Dark Matter? Hidden Valleys? ??? Can it be a portal
to Dark Matter ???

arXiv:1512.04917 M.Backovic, A.M., D.Redigolo Large Width and DM

essentially fixes the DM parameters!

 M_{ψ} [GeV]

Compatibility with exp constraints

 g_{BB}

We can fit the di-photon signal and feature a large width!

If the di-photon signal is indeed real...

... and the large width is confirmed ...

... a possible consistent interpretation is a scalar mediator to dark matter with ~300 GeV DM mass and O(I) couplings ...

This scenario is compatible with existing experimental constraints

... signals correlated with such interpretation should appear in MET+j channel at LHC and in direct detection experiments ...

- Extrapolate existing bounds from LHC8 to LHC13
- · Explore parameter space imposing diphoton signal at 13 TeV

The End

- Di-Photon excess triggered a lot of activity (and hope ...)
 Most explanations predict other NP around the corner
 Correlated signatures in EW gauge bosons
 Production mechanism could suggest vector like matter
- Large width could be explained by invisible decay into DM
 Jet+MET
 If it is confirmed, and it's a scalar, we will have again

hierarchy problem to solve ...

The End

Thanks for your attention!

... let's see what the new data will tell us ...