

Black holes in AdS and holographic applications

A. Gnecchi ITF, KU Leuven

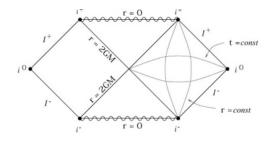
June 17th, 2016 @ IAP meeting, UCL

- 2 Black branes in AdS and thermodynamics
- Good singularity
- Phase transition
- **5** Conclusions

- 2 Black branes in AdS and thermodynamics
- 3 Good singularity
- Phase transition
- **5** Conclusions

1 – Black holes

- Classical Solutions of General Relativity
- $\Rightarrow\,$ Black holes are the theoretical laboratory where to look for quantum gravity phenomena
 - Microstate origin of black hole entropy
 - Information paradox
 - Relations to chaotic systems



1 – String/M-Theory and holography

- String Theory is a framework that provides a UV completion of a unified theory of GR and QFT
- AdS/CFT is a tool to investigate quantum gravity
- Gravity solution in a space with boundary and negative cosmological constant
- Holographic dictionary relates fields in the bulk with operators of a (conformal) field theory

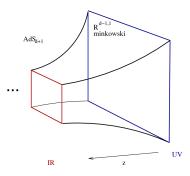


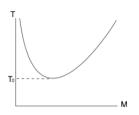
Fig. from McGreevy, 2009

1 – Holographic applications

• Black hole physics can teach about strongly coupled field theories

Investigate quantum critical phases of strongly coupled solid state systems

Hawking-Page transition for a black hole in anti de Sitter spacetime ['83]



⇒ Holographic interpretation as confinement/deconfinement phase transition Witten ['98]

• Goal: construct an analytical example from black hole thermodynamics

- In the dual field theory, states can undergo phase transitions
- Study the phase space of the black hole solutions

2 Black branes in AdS and thermodynamics

- Good singularity
- Phase transition
- 5 Conclusions

2 - Black holes in AdS - gauged Supergravity

- Holography applied to black holes requires asymptotically AdS space
- Solutions of *gauged* Supergravity theory obtained from a higher dimensional String/M-theory.
- Generically they are configurations of fields $g_{\mu\nu}$, ϕ^i , A^{Λ}_{μ} :

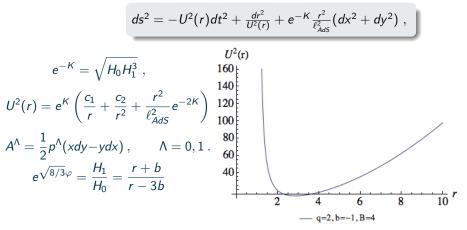
$$S = \int \sqrt{-g} d^4 x \left(\frac{R}{2\kappa^2} - \frac{1}{2\kappa^2} \partial_\mu \varphi \partial^\mu \varphi \right)^{\mu\nu} - e^{\sqrt{6}\varphi} \xi^3 F^0_{\mu\nu} F^{0\,\mu\nu} - \frac{3}{\xi} e^{-\sqrt{2/3}\varphi} F^1_{\mu\nu} F^{1\,\mu\nu} - \frac{V_g(\varphi)}{\kappa^2} + S_{GH}$$

• String/M-theory microscopic description [Strominger-Vafa, Maldacena-Strominger-Witten, Benini-Hristov-Zaffaroni]

0

2 - Bulk solutions

- Black holes have spherical horizon, which determines the topology of the boundary of spacetime.
- System in flat space: consider solutions with flat, \mathbb{R}^2 , horizons "black branes".



2 – Holographic analysis

• r and \tilde{r} related by $\frac{r}{\ell} = e^{\tilde{r}/\ell}$, define an asymptotic metric

$$ds^2 \sim d\tilde{r}^2 + e^{2\tilde{r}/\ell} h_{(0)ij}(x) dx^i dx^j$$
 .

• Field expansion at the boundary

$$\varphi \sim e^{-\Delta_- r/\ell}(\varphi_-(x) + ...) + e^{-\Delta_+ r/\ell}(\varphi_+(x) + ...)$$
.

- Scalr mass $m_{arphi}^2 = -rac{2}{\ell_{AdS}^2}$
- in the window $-9/4 \le m_{\varphi}^2 \ell_{AdS}^2 \le -9/4 + 1.$
- Dual operator conformal dimensions are $\Delta_{-} = 1$, $\Delta_{+} = 2$, both modes normalizable:

$$\varphi_+ = \lambda \varphi_-^2 \; ,$$

The solutions of electric and magnetic black holes are dual to marginal multitrace deformations

Corresponds to classically marginal deformation $\langle T_i^i \rangle = 0$. [Papadimitriou, 2007]

2 – Defining a thermodynamic ensemble

Euclidean path integral formulation of gravity at the semiclassical: [Gibbons, Hawking '76 , York, '86]

$$Z = \int d[g_{\mu
u}] d[\phi] \exp\{i l_e[g_{\mu
u},\phi]\} \;.$$

For a system like black holes and black branes, exhibiting a thermodynamic behaviour, the partition function defines a free energy, which, within a saddle point approximation, corresponds to the Euclidean on-shell action

$$-\beta F = \ln Z = i I_e[g^*, \phi^*] ,$$

with $\beta = T^{-1}$.

 \Rightarrow What are the thermodynamic variables?

2 – Electric vs magnetic charges

Analyze which quantities are kept fixed at the boundary:

$$\delta I = (\text{terms giving the equations of motion})$$

+ (gravitational boundary terms) +
$$\frac{1}{4\pi}\int_{\Sigma}d^3x\sqrt{h}F^{\mu\nu}n_{\mu}\delta A_{\nu}$$
,

In this case the ensemble that extremizes I has a fixed gauge field A_{μ} . \rightarrow fixing the gauge potential fixes the charge of the black brane/black object.

Different meaning depending on the charges of the configuration:

- electric gauge field \rightarrow fix the chemical potential χ ,
- magnetic configuration \rightarrow fix the charge p

$$p=rac{1}{4\pi}\int_{S^2_{\infty}}F_{ heta\phi}$$

2 - Thermodynamic potentials

[Hawking, Ross, '95]

 Electric configuration: the bare the on-shell action corresponds to the free energy for the grand canonical ensemble F(T, χ). For a system with n charges q_Λ (Λ = 1, ..., n)

$$F(T,\chi)=M-TS-q_{\Lambda}\chi^{\Lambda}$$

• **Magnetic configuration**: the on-shell action gives the free energy for the canonical ensemble F(T, p):

$$F(T, p^{\Lambda}) = M - TS$$

Adding boundary terms on the action change the boundary conditions: **Légendre transformations**, change the ensemble.

In Supergravity, that corresponds to an electric-magnetic duality rotation

2 – Changing ensemble for magnetic configurations

- Start from magnetic black brane (p^0, p^1)
 - Full Legendre transform of the on-shell action:

$$\mathcal{L}_{p^0,p^1}^{on-shell} \to \mathcal{L}_{p^0,p^1}^{on-shell} + p\chi$$

In the gravity setup: electric-magnetic duality transformation on the black brane solution.

• Duality transformation that involves only the charge p^0

$$(p^0,p^1) \hspace{1cm}
ightarrow (q_0,p^1) \equiv (q,B)$$

Em-duality is a symmetry of the equations of motion \to new solution is physically equivalent to the original one.

• The on-shell action of the dual configuration now gives the free energy of the grand ensemble wrt the charge $q \rightarrow \text{mixed ensemble.}$

$$F = M - TS - q\chi$$
.

- 2 Black branes in AdS and thermodynamics
- Good singularity
- Phase transition
- Conclusions

3 – Good singularity

There exist competing solutions in phase space

 Black brane limit in which the horizon coincides with the singularity: "good" singularity [Gubser,2000].

$$g_{tt}(r_h)=0 \;, \qquad as \quad r_h o r_s$$

•
$$g_{xx} = g_{yy} = \sqrt{(r-3b)(r+b)^3}$$

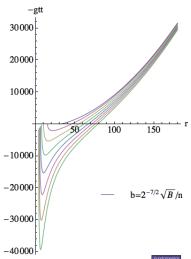
• Family of black branes with horizon $r_h = 3b + \epsilon$

$$g_{tt}(3b+\epsilon)=0$$

• For epsilon $\epsilon \ll 1$

$$|B| = 8\sqrt{2}b^2 + rac{(6b^2 + \chi^2)\epsilon}{\sqrt{2}b} + \mathcal{O}(\epsilon^2) \; .$$

[Gnecchi et al, '16]



3 – Good singularity

Define the thermal gas as the subset in parameter space (B, b, χ) defined by

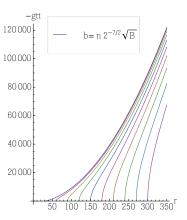
 $|B| = 8\sqrt{2}b^2 \ , \qquad \chi \quad \text{finite}$

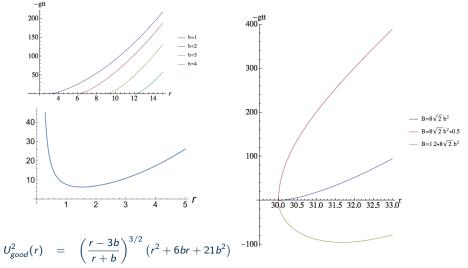
- This implies q = 0.
- The thermal gas the dependence on χ drops from the metric:

$$ds_{TG}^{2} = e^{-\sqrt{6}\varphi} (r^{2} + 6br + 21b^{2})dt^{2} + -e^{\sqrt{6}\varphi} dr^{2} (r^{2} + 6br + 21b^{2})^{-1} + -e^{\sqrt{6}\varphi} (r - 3b)^{2} (dx^{2} + dy^{2}) ,$$

$$e^{\sqrt{6}\phi} = \left(\frac{r+b}{r-3b}\right)^{3/2} .$$

- Set of parameters for the thermal gas: (B, χ, T) ,
- Temperature T and electric potential χ are **moduli** of the thermal gas solution. solution.





- 2 Black branes in AdS and thermodynamics
- 3 Good singularity
- Phase transition
- **5** Conclusions

4 – Thermodynamics - mixed canonical ensemble

Black brane

 $F_{bb} = M_{bb} - TS_{bb} + q_{bb}\chi_{bb} \,,$

• M is the mass of the black brane,

$$M=\frac{B^2-q^2}{4b}\,,$$

• Thermodynamic potential

 $dF_{bb} = -S_{bb}dT + q_{bb}d\chi_{bb} + m_{bb}dB$

Thermal gas

$$b_{TG} = +2^{-\frac{7}{4}}\sqrt{|B|}$$
.

• The free energy for the thermal gas is a function of B only, at any temperature

$$F_{TG} = M_{TG} = \frac{B^2}{4b_{TG}} = 2^{-\frac{1}{4}}|B|^{\frac{3}{2}},$$

$$dF_{TG} = m_{TG}dB$$

The magnetization is qualitatively different for BB and TG

$$m_{bb} = \frac{\partial F_{bb}}{\partial B}\Big|_{\chi,T} = 3\sqrt{\frac{3}{2}} \frac{B}{|\chi|} , \qquad m_{TG} = 32^{-\frac{5}{4}}\sqrt{|B|}\operatorname{sgn}(B) .$$

4 – Phase transition

$$\Delta F = F_{bb} - F_{TG} = \frac{27B^2 + 32\chi^4}{24\sqrt{6}|\chi|} - 2^{-\frac{1}{4}}|B|^{\frac{3}{2}}.$$

• The critical point is given by

$$|B_*| = \frac{4\sqrt{2}}{3}\chi^2$$

 \Rightarrow for every value of χ (except $\chi=$ 0) there is a phase transition at a constant magnetic field.

• Second order phase transition:

$$\Delta F = 3\sqrt{\frac{3}{2}} \frac{(B-B_*)^2}{|\chi|} + \mathcal{O}\left((B-B_*)^3\right)$$

The solutions are completely specified by S, m and q, which become equal for TG and BB at the critical point: non trivial check!

4 – Phase transition

This is a second order phase transition hence *it corresponds to an interesting quantum critical point that should be described by a scale invariant conformal field theory on the boundary.*

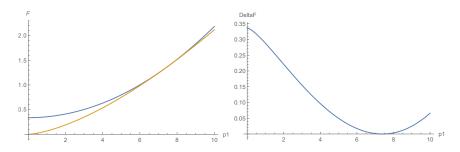
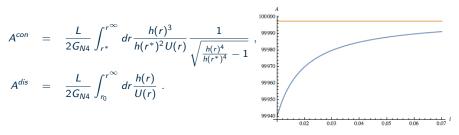


Figure: (L) Plot of the free energies of the black brane and the solitonic solution for $\chi_0 = 1.98$, as functions of p_1 , the blue line is the black brane and the yellow line is the soliton. (R) Plot of the difference of the the two free energies for $\chi_0 = 1.98$, as function of p_1 .

4 – Holographic considerations

- Quantum criticality emerges at the locus $B = B_c(\chi)$.
- No confinement/deconfinement phase transition
- $\bullet\,$ String attached at the boundary of AdS_4 into the bulk. The area of its worldsheet can be connected or disconnected



 \rightarrow Entanglement entropy is not the order parameter of the phase transition.

4 – Phase transition

- The spectrum of the dual theory can tell us information of what happens at the critical point. [Gursoy, Kiritsis, Nitti '07]
- The spectrum of fluctuations of the background: acting with a bosonic operator \mathcal{O}_{Δ} on vacuum, holographically induce fluctuations of the corresponding bosonic bulk field with mass m_{Δ}^2 on the vacuum background.
- For $m^2 = 0 \ \phi(r,x) = \xi(r) e^{-i\omega t + \vec{k}\cdot \vec{x}}$, the effective action is

$$\begin{split} S_{fluc} &= \int d^4 x \sqrt{-g} g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi^* = \\ &= \int dr d^3 x \sqrt{-g} \left\{ g^{rr} |\partial_r \xi_\omega(r)|^2 + \omega^2 g^{00} |\xi_\omega(r)|^2 \right\} \,, \end{split}$$

Look for eigenvalues ω of solutions, normalizable both in the UV, $r \to \infty$ and in the IR $r \to r_s$.

4 – Phase transition

Solve the fluctuation equation with normalizability condition:

$$\xi_{\omega}^{\prime\prime}(r) + \frac{d}{dr}\log(\sqrt{-g}g^{rr})\xi_{\omega}^{\prime}(r) - \omega^2 g^{00}g_{rr}\xi_{\omega}(r) = 0$$

- The thermal gas has no normalizable modes for arbitrary small omega: gapped system ξ₀ ~ ε⁻¹, with ε = r − r_s.
 Notice: Releasing the condition |B| = 8√2b² introduces normalizable modes!
- The black brane has QNM with spectrum given by discrete frequencies, the lowest being $|\omega| \sim T$. Lowering the temperature one can reach arbitrary small energies $|\omega| \propto \epsilon$, with separations also $|\Delta \omega| \sim \epsilon$. One can study the T = 0 identically in a separate calculation, one finds (x = r r h)

$$\xi_{\omega}(x) \sim De^{irac{\omega}{r_0x}}$$
, $f(r) = f_0(B,\chi)(r-r_h)^2 + \mathcal{O}(r-r_h)^3$

• The near- B_c behaviour of TG and BB also match.

- 2 Black branes in AdS and thermodynamics
- 3 Good singularity
- Phase transition
- **5** Conclusions

- Analysis of black branes phase space in AdS₄
- Construction of a "thermal gas" configuration and identification of a "good singularity" solution
- Identification of a second order phase transition
- Interpretation of the QCP as a gapless phase in the spectrum of fluctuation of the BB.
- To do:
 - Extensions to finite temperature.
 - Possible supersymmetry enhancement for the thermal gas solution
 - Resolution of the singularity by embedding in String/M-Theory

Thank you!

