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1 – Black holes

Classical Solutions of General Relativity
⇒ Black holes are the theoretical laboratory where to look for quantum

gravity phenomena

Microstate origin of black hole entropy
Information paradox
Relations to chaotic systems
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1 – String/M-Theory and holography

String Theory is a framework that provides a UV completion
of a unified theory of GR and QFT
AdS/CFT is a tool to investigate quantum gravity

Gravity solution in a space
with boundary and negative
cosmological constant

Holographic dictionary
relates fields in the bulk
with operators of a
(conformal) field theory

Fig. from McGreevy, 2009
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1 – Holographic applications

Black hole physics can teach about strongly coupled field theories
Investigate quantum critical phases of strongly coupled solid state systems

Hawking-Page transition for a
black hole in anti de Sitter spacetime [‘83]

⇒ Holographic interpretation
as confinement/deconfinement
phase transition
Witten [‘98]

Goal: construct an analytical example from black hole thermodynamics
In the dual field theory, states can undergo phase transitions
Study the phase space of the black hole solutions
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2 – Black holes in AdS - gauged Supergravity

Holography applied to black holes requires asymptotically AdS space

Solutions of gauged Supergravity theory -
obtained from a higher dimensional
String/M-theory.

Generically they are configurations of fields
gµν , φi , AΛ

µ:

S =

∫ √
−gd4x

(
R
2κ2
− 1

2κ2
∂µϕ∂

µϕ

−e
√
6ϕξ3F 0

µνF
0µν − 3

ξ
e−
√

2/3ϕF 1
µνF

1µν − Vg (ϕ)

κ2

)
+ SGH .

String/M-theory microscopic description
[Strominger-Vafa, Maldacena-Strominger-Witten,
Benini-Hristov-Zaffaroni]
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2 – Bulk solutions

Black holes have spherical horizon, which determines the topology of the
boundary of spacetime.

System in flat space: consider solutions with flat, R2, horizons “black branes”.

ds2 = −U2(r)dt2 + dr2
U2(r) + e−K r2

`2AdS
(dx2 + dy2) ,

e−K =
√

H0H3
1 ,

U2(r) = eK
(
c1
r

+
c2
r2

+
r2

`2AdS
e−2K

)
,

AΛ =
1
2
pΛ(xdy−ydx) , Λ = 0, 1 .

e
√

8/3ϕ =
H1

H0
=

r + b
r − 3b
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2 – Holographic analysis

r and r̃ related by r
` = e r̃/`, define an asymptotic metric

ds2 ∼ dr̃2 + e2r̃/`h(0)ij(x)dx idx j .

Field expansion at the boundary

ϕ ∼ e−∆−r/`(ϕ−(x) + ...) + e−∆+r/`(ϕ+(x) + ...) .

Scalr mass m2
ϕ = − 2

`2AdS

in the window −9/4 ≤ m2
ϕ`

2
AdS ≤ −9/4 + 1.

Dual operator conformal dimensions are ∆− = 1, ∆+ = 2, both modes
normalizable:

ϕ+ = λϕ2
− ,

The solutions of electric and magnetic black holes are dual to marginal
multitrace deformations

Corresponds to classically marginal deformation 〈T i
i 〉 = 0. [Papadimitriou, 2007]
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2 – Defining a thermodynamic ensemble

Euclidean path integral formulation of gravity at the semiclassical:
[Gibbons, Hawking ‘76 , York, ‘86]

Z =

∫
d [gµν ]d [φ] exp{iIe [gµν , φ]} .

For a system like black holes and black branes, exhibiting a thermodynamic
behaviour, the partition function defines a free energy, which, within a saddle point
approximation, corresponds to the Euclidean on-shell action

−βF = lnZ = iIe [g∗, φ∗] ,

with β = T−1.

⇒ What are the thermodynamic variables?

Black holes in AdS and holographic applications – A.Gnecchi



2 – Electric vs magnetic charges

Analyze which quantities are kept fixed at the boundary:

δI = (terms giving the equations of motion)

+ (gravitational boundary terms) +
1
4π

∫
Σ

d3x
√
hFµνnµδAν ,

In this case the ensemble that extremizes I has a fixed gauge field Aµ.
→ fixing the gauge potential fixes the charge of the black brane/black object.

Different meaning depending on the charges of the configuration:

electric gauge field → fix the chemical potential χ,

magnetic configuration → fix the charge p

p =
1
4π

∫
S2
∞

Fθφ
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2 – Thermodynamic potentials

[Hawking, Ross, ‘95]

Electric configuration: the bare the on-shell action corresponds to the free
energy for the
grand canonical ensemble F (T , χ). For a system with n charges qΛ (Λ = 1, .., n)

F (T , χ) = M − TS − qΛχ
Λ

Magnetic configuration: the on-shell action gives the free energy for the
canonical ensemble F (T , p):

F (T , pΛ) = M − TS

Adding boundary terms on the action change the boundary conditions: Légendre
transformations, change the ensemble.

In Supergravity, that corresponds to an electric-magnetic duality rotation
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2 – Changing ensemble for magnetic configurations

Start from magnetic black brane (p0, p1)

Full Legendre transform of the on-shell action:

Lon−shellp0,p1 → Lon−shellp0,p1 + pχ

In the gravity setup: electric-magnetic duality transformation on the black
brane solution.

Duality transformation that involves only the charge p0

(p0, p1) → (q0, p1) ≡ (q,B)

Em-duality is a symmetry of the equations of motion → new solution is
physically equivalent to the original one.

The on-shell action of the dual configuration now gives the free energy of the
grand ensemble wrt the charge q → mixed ensemble.

F = M − TS − qχ .
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3 – Good singularity

There exist competing solutions in phase space
Black brane limit in which the horizon
coincides with the singularity: ‘‘good”
singularity [Gubser,2000].

gtt(rh) = 0 , as rh → rs

gxx = gyy =
√

(r − 3b)(r + b)3

Family of black branes with horizon
rh = 3b + ε

gtt(3b + ε) = 0

For epsilon ε� 1

|B| = 8
√
2b2 +

(6b2 + χ2)ε√
2b

+O(ε2) .

[Gnecchi et al, ‘16]
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3 – Good singularity

Define the thermal gas as the subset in parameter space (B, b, χ) defined by

|B| = 8
√
2b2 , χ finite

This implies q = 0.

The thermal gas the dependence on χ drops
from the metric:

ds2TG = e−
√
6ϕ(r2 + 6br + 21b2)dt2 +

−e
√
6ϕdr2(r2 + 6br + 21b2)−1 +

−e
√
6ϕ(r − 3b)2(dx2 + dy2) ,

e
√
6φ =

(
r + b
r − 3b

)3/2

.

Set of parameters for the thermal gas:
(B, χ,T ),

Temperature T and electric potential χ are
moduli of the thermal gas solution. solution.
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3 – Good vs bad singularities

U2
good (r) =

(
r − 3b
r + b

)3/2 (
r2 + 6br + 21b2

)
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4 – Thermodynamics - mixed canonical ensemble

Black brane

Fbb = Mbb − TSbb + qbbχbb ,

M is the mass of the black brane,

M =
B2 − q2

4b
,

Thermodynamic potential

dFbb = −SbbdT + qbbdχbb + mbbdB

Thermal gas

bTG = +2−
7
4
√
|B| .

The free energy for the thermal gas
is a function of B only, at any
temperature

FTG = MTG =
B2

4bTG
= 2−

1
4 |B| 32 ,

dFTG = mTGdB

The magnetization is qualitatively different for BB and TG

mbb =
∂Fbb
∂B

∣∣∣∣
χ,T

= 3

√
3
2

B
|χ|

, mTG = 3 2−
5
4
√
|B| sgn(B) .
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4 – Phase transition

∆F = Fbb − FTG =
27B2 + 32χ4

24
√
6|χ|

− 2−
1
4 |B| 32 .

The critical point is given by

|B∗| =
4
√
2

3
χ2

⇒ for every value of χ (except χ = 0) there is a phase transition at a
constant magnetic field.

Second order phase transition:

∆F = 3

√
3
2

(B − B∗)2

|χ|
+O

(
(B − B∗)3

)
The solutions are completely specified by S , m and q, which become equal for TG
and BB at the critical point: non trivial check!
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4 – Phase transition

This is a second order phase transition hence it corresponds to an interesting
quantum critical point that should be described by a scale invariant conformal field
theory on the boundary.
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Figure: (L) Plot of the free energies of the black brane and the solitonic solution for χ0 = 1.98, as
functions of p1, the blue line is the black brane and the yellow line is the soliton. (R) Plot of the
difference of the the two free energies for χ0 = 1.98, as function of p1.
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4 – Holographic considerations

Quantum criticality emerges at the locus B = Bc(χ).

No confinement/deconfinement phase transition

String attached at the boundary of AdS4 into the bulk. The area of its
worldsheet can be connected or disconnected

Acon =
L

2GN4

∫ r∞

r∗
dr

h(r)3

h(r∗)2U(r)

1√
h(r)4

h(r∗)4
− 1

,

Adis =
L

2GN4

∫ r∞

r0
dr

h(r)

U(r)
.

→ Entanglement entropy is not the order parameter of the phase transition.
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4 – Phase transition

The spectrum of the dual theory can tell us information of what happens at
the critical point. [Gursoy, Kiritsis, Nitti ‘07]

The spectrum of fluctuations of the background: acting with a bosonic
operator O∆ on vacuum, holographically induce fluctuations of the
corresponding bosonic bulk field with mass m2

∆ on the vacuum background.

For m2 = 0 φ(r , x) = ξ(r)e−iωt+~k·~x , the effective action is

Sfluc =

∫
d4x
√
−ggµν∂µφ∂νφ∗ =

=

∫
drd3x

√
−g
{
g rr |∂rξω(r)|2 + ω2g00|ξω(r)|2

}
,

Look for eigenvalues ω of solutions, normalizable both in the UV, r →∞ and
in the IR r → rs .
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4 – Phase transition

Solve the fluctuation equation with normalizability condition:

ξ′′ω(r) +
d
dr

log(
√
−gg rr )ξ′ω(r)− ω2g00grrξω(r) = 0

The thermal gas has no normalizable modes for arbitrary small omega: gapped
system ξ0 ∼ ε−1, with ε = r − rs .
Notice: Releasing the condition |B| = 8

√
2b2 introduces normalizable modes!

The black brane has QNM with spectrum given by discrete frequencies, the
lowest being |ω| ∼ T . Lowering the temperature one can reach arbitrary small
energies |ω| ∝ ε, with separations also |∆ω| ∼ ε.
One can study the T = 0 identically in a separate calculation, one finds
(x = r − r−h)

ξω(x) ∼ De i
ω
f0x , f (r) = f0(B, χ)(r − rh)2 +O(r − rh)3

The near-Bc behaviour of TG and BB also match.
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5 – Conclusions and outlook

Analysis of black branes phase space in AdS4
Construction of a “thermal gas” configuration and identification of a
“good singularity” solution
Identification of a second order phase transition
Interpretation of the QCP as a gapless phase in the spectrum of
fluctuation of the BB.

To do:
Extensions to finite temperature.
Possible supersymmetry enhancement for the thermal gas solution
Resolution of the singularity by embedding in String/M-Theory
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Thank you!
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