Flavour anomalies

Sébastien Descotes-Genon

Laboratoire de Physique Théorique CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay, France

Louvain-La-Neuve, 17/6/16

S. Descotes-Genon (LPT-Orsay)

Flavour anomalies

Louvain-La-Neuve, 17/6/16

Outline

- The power of flavour physics
- 2 Interesting deviations in $b \rightarrow c \ell \bar{\nu}_{\ell}$
- **③** Remarkable deviations in $b \rightarrow s\ell\ell$
- Outlook

The power of flavour physics

Particle physics

Central question of QFT-based particle physics

 $\mathcal{L} = ?$

Particle physics

Central question of QFT-based particle physics

 $\mathcal{L} = ?$

i.e. which degrees of freedom, symmetries, scales ?

SM best answer up to now, but

- neutrino masses
- dark matter
- dark energy
- baryon asymmetry of the universe
- hierarchy problem

Quark flavour physics

Important, unexplained hierarchy among 10 of 19 params of $SM_{m_{\nu}=0}$

- Mass (6 params, a lot of small ratios of scales)
- CP violation (4 params, strong hierarchy between generations)
- Related to Yukawa couplings of the Higgs in SM

With phenomenological consequences for quark flavour dynamics

- Hierarchy of CP asymmetries according to generations
- Quantum sensitivity (via loops) to large range of scales
- GIM suppression of Flavour-Changing Neutral Currents
 Interesting probe of the Standard Model and beyond...

S. Descotes-Genon (LPT-Orsay)

Flavour-Changing Neutral Currents

Forbidden in SM at tree level, and suppressed by GIM at one loop so good place for NP to show up (tree or loops)

Experimental and theoretical effort on interesting FCNC transitions

S. Descotes-Genon (LPT-Orsay)

A multi-scale problem

- Tough multi-scale challenge with 3 interactions intertwined
- Several steps to separate/factorise scales BSM \rightarrow SM+1/ Λ_{NP} ($\Lambda_{EW}/\Lambda_{NP}$) $\rightarrow H_{eff}$ (m_b/Λ_{EW}) \rightarrow eff. theories (Λ_{QCD}/m_b)

A multi-scale problem

- Tough multi-scale challenge with 3 interactions intertwined
- Several steps to separate/factorise scales BSM \rightarrow SM+1/ Λ_{NP} ($\Lambda_{EW}/\Lambda_{NP}$) $\rightarrow H_{eff}$ (m_b/Λ_{EW}) \rightarrow eff. theories (Λ_{QCD}/m_b)
- Main theo problem from hadronisation of quarks into hadrons description/parametrisation in terms of QCD quantities decay constants, form factors, bag parameters...
- Long-distance non-perturbative QCD: source of uncertainties lattice QCD simulations, sum rules, effective theories...

S. Descotes-Genon (LPT-Orsay)

Effective approaches

Fermi-like approach (for decoupling th): separation of different scales

Short dist/Wilson coefficients and Long dist/local operator

Effective approaches

Fermi-like approach (for decoupling th): separation of different scales

Short dist/Wilson coefficients and Long dist/local operator

Fermi theory carries some info on the underlying theory

- G_F: scale of underlying physics
- O_i: interaction with left-handed fermions, through charged spin 1
- Losing some info (gauge structure, Z⁰...)

but a good start if no particle (=W) already seen

S. Descotes-Genon (LPT-Orsay)

Starting from the SM (or one of its extensions)

$$\mathcal{H}^{\text{eff}} = CKM \times \mathcal{C}_i \times \mathcal{O}_i$$

$$[M|\mathcal{H}^{\text{eff}}|B\rangle = CKM \times \mathcal{C}_i \times \langle M|\mathcal{O}_i|B\rangle$$

Starting from the SM (or one of its extensions)

$$\mathcal{H}^{\text{eff}} = CKM \times \mathcal{C}_i \times \mathcal{O}_i$$
$$\langle M | \mathcal{H}^{\text{eff}} | B \rangle = CKM \times \mathcal{C}_i \times \langle M | \mathcal{O}_i | B \rangle$$

Starting from the SM (or one of its extensions) $\mathcal{H}^{\text{eff}} = CKM \times \mathcal{C}_i \times \mathcal{O}_i$ $\langle M | \mathcal{H}^{\text{eff}} | B \rangle = CKM \times \mathcal{C}_i \times \langle M | \mathcal{O}_i | B \rangle$

involving hadronic quantities such as form factors

selecting processes for accurate predictions:

- semileptonic decays (form factors, not more complicated objects)
- ratios of branching ratios with different leptons
- ratios of observables with similar dependence on form factors

 ⇒observables with limited sensitivity to (ratio of form) factors

Starting from the SM (or one of its extensions) $\mathcal{H}^{\text{eff}} = CKM \times \mathcal{C}_i \times \mathcal{O}_i$ $\langle M | \mathcal{H}^{\text{eff}} | B \rangle = CKM \times \mathcal{C}_i \times \langle M | \mathcal{O}_i | B \rangle$

involving hadronic quantities such as form factors

selecting processes for accurate predictions:

- semileptonic decays (form factors, not more complicated objects)
- ratios of branching ratios with different leptons
- ratios of observables with similar dependence on form factors

 ⇒observables with limited sensitivity to (ratio of form) factors

Two possible uses of effective approaches

- fixing C_i , computing SM and comparing with the data
- determining short-distance C_i from the data and compare with SM

S. Descotes-Genon (LPT-Orsay)

B-meson form factors

For illustration, take $B \rightarrow V$ transitions, described in general by 7 form factors: V (vector), $A_{0,1,2}$ (axial) and $T_{1,2,3}$ (tensor), depending on $q^2 = (p - k)^2$

$$\langle V(k)|\bar{s}\gamma_{\mu}(1-\gamma_{5})|B(\epsilon,p)\rangle = -i\epsilon_{\mu}(m_{B}+m_{V})A_{1}(q^{2}) + i(p+k)_{\mu}(\epsilon^{*}\cdot q)\frac{A_{2}(q^{2})}{m_{B}+m_{V}} \\ + iq_{\mu}(\epsilon^{*}\cdot q)\frac{2m_{V}}{q^{2}}\tilde{A}_{0}(q^{2}) + \epsilon_{\mu\nu\rho\sigma}\epsilon^{*\nu}p^{\rho}k^{\sigma}\frac{2V(q^{2})}{m_{B}+m_{V}} \\ /(k)|\bar{s}\sigma_{\mu\nu}q^{\nu}(1+\gamma_{5})|B(\epsilon,p)\rangle = i\epsilon_{\mu\nu\rho\sigma}\epsilon^{*\nu}p^{\rho}k^{\sigma}2T_{1}(q^{2}) + \epsilon_{\mu}^{*}(m_{B}^{2}-m_{V}^{2})T_{2}(q^{2}) \\ - (p+k)_{\mu}(\epsilon^{*}\cdot q)\tilde{T}_{3}(q^{2}) + q_{\mu}(\epsilon^{*}\cdot q)T_{3}(q^{2})$$

with \tilde{A}_0 linear combination of $A_{0,1,2}$ and \tilde{T}_3 of $T_{2,3}$

Can these form factors be further simplified/factorised using $\Lambda \ll m_B$?

The last step of factorisation

For illustration, take $B \rightarrow V$ transitions, described in general by 7 form factors: V (vector), $A_{0,1,2}$ (axial) and $T_{1,2,3}$ (tensor), depending on $q^2 = (p_B - p_V)^2$

The last step of factorisation

For illustration, take $B \rightarrow V$ transitions, described in general by 7 form factors: V (vector), $A_{0,1,2}$ (axial) and $T_{1,2,3}$ (tensor), depending on $q^2 = (p_B - p_V)^2$

Large recoil of the meson

 $(\Lambda \ll E_V \sim m_B)$

- Light-cone sum rules (light V, parton language)
- Soft Collinear Effective Theory

[Charles et al., Beneke, Feldmann]

- in the limit $m_b o \infty$, two soft form factors $\xi_\perp(q^2)$ and $\xi_{||}(q^2)$
- corrections: $O(\alpha_s)$ from hard gluons + nonperturbative $O(\Lambda/m_B)$

The last step of factorisation

For illustration, take $B \rightarrow V$ transitions, described in general by 7 form factors: V (vector), $A_{0,1,2}$ (axial) and $T_{1,2,3}$ (tensor), depending on $q^2 = (p_B - p_V)^2$

[Neubert, Grinstein, Pirjol, Hiller, Bobeth, Van Dyk...]

Large recoil of the meson

- Light-cone sum rules (light V, parton language)
- Soft Collinear Effective Theory
 - in the limit $m_b \to \infty$, two soft form factors $\xi_{\perp}(q^2)$ and $\xi_{||}(q^2)$
 - corrections: $O(\alpha_s)$ from hard gluons + nonperturbative $O(\Lambda/m_B)$

Low recoil of the meson

- Lattice QCD simulations (discretised QCD)
- Heavy Quark Effective Theory
 - in the limit $m_b \to \infty$, three soft form factors $f_{\perp}(q^2), f_{||}(q^2), f_0(q^2)$
 - corrections: $O(\alpha_s)$ from hard gluons + nonperturbative $O(\Lambda/m_B)$

[Charles et al., Beneke, Feldmann]

 $(\Lambda \ll E_V \sim m_B)$

 $(E_V \sim \Lambda_{QCD} \ll m_B)$

Two transitions of interest

Two transitions exhibiting interesting patterns of deviations from SM

Interesting deviations in $b ightarrow c \ell ar{ u}_\ell$

$b ightarrow c \ell ar{ u}_\ell$: R_D and R_{D^*}

- different identification techniques of the τ for LHCb and B-factories
- R(D) and $R(D^*)$ exceed SM predictions by 1.9 σ and 3.3 σ
- p-value=5.2 \times 10⁻⁵, difference with SM preds at 4.0 σ level
- consistent with 15% enhancement for $b
 ightarrow c au ar{
 u}_{ au}$

What is the basis for these predictions ?

S. Descotes-Genon (LPT-Orsay)

$B ightarrow D \ell ar{ u}_\ell$ branching ratio

$$\begin{aligned} \frac{d\Gamma(B \to D\ell \bar{\nu}_{\ell})}{dq^2} &\propto |V_{cb}|^2 \left(1 - \frac{m_{\ell}^2}{q^2}\right)^2 |\vec{p}|^2 \\ &\left[\left(1 - \frac{m_{\ell}^2}{2q^2}\right)^2 M_B^2 |\vec{p}|^2 f_+^2(q^2) + \frac{3m_{\ell}^2}{8q^2} (M_B^2 + M_D^2)^2 f_0^2(q^2) \right] \end{aligned}$$

- \vec{p} *D*-momentum in *B*-frame, $q^2 = (p_B - p_D)^2$ lepton invariant mass
- Two form factors f₊(q²) (vector) and f₀(q²) (scalar) NP extension requires one more form factor f_T (tensor)
- From lattice QCD, extrapolated over whole kinematic range

[HPQCD collaboration]

S. Descotes-Genon (LPT-Orsay)

$B ightarrow D^* \ell ar u_\ell$ branching ratio

$$\begin{split} \frac{d\Gamma(B \to D^* \ell \bar{\nu}_\ell)}{dq^2} & \propto \quad |V_{cb}|^2 \left(1 - \frac{m_\ell^2}{q^2}\right)^2 |\vec{q}| q^2 \\ & \left[\left(1 + \frac{m_\ell^2}{2q^2}\right)^2 (|H_+|^2 + |H_-|^2 + |H_0|^2) + \frac{3m_\ell^2}{2q^2} |H_t|^2 \right] \end{split}$$

- H_{λ} describing $B \to D^* (\to D\pi) \ell \bar{\nu}_{\ell}$ with D^* helicity
- Interferences in principle accessible via angular analyses (but ν !)
- Four form factors $V, A_{0.1,2}$ (vector and axial)

NP extension requires 3 more form factors $T_{1,2,3}$ (tensor)

$B ightarrow D^* \ell ar{ u}_\ell$ branching ratio

$$\begin{split} \frac{d\Gamma(B \to D^* \ell \bar{\nu}_\ell)}{dq^2} & \propto \quad |V_{cb}|^2 \left(1 - \frac{m_\ell^2}{q^2}\right)^2 |\vec{q}| q^2 \\ & \left[\left(1 + \frac{m_\ell^2}{2q^2}\right)^2 (|H_+|^2 + |H_-|^2 + |H_0|^2) + \frac{3m_\ell^2}{2q^2} |H_t|^2 \right] \end{split}$$

- H_{λ} describing $B \to D^* (\to D\pi) \ell \bar{\nu}_{\ell}$ with D^* helicity
- Interferences in principle accessible via angular analyses (but ν !)
- Four form factors V, A_{0.1,2} (vector and axial)
 NP extension requires 3 more form factors T_{1.2,3} (tensor)
- No complete lattice determination, need other approaches !
 - HQET: Form factors related in the limit $m_b \rightarrow \infty$,

providing ratios of form factors up to $O(\Lambda/m_B)$ corrections

• Normalisation from Belle on $B \rightarrow D^* \ell \bar{\nu}_{\ell}$ ($\ell = e, \mu$)

assuming no NP for light leptons

[Fajfer, Kamenik, Nisandzic]

 \mathcal{H}^{eff} to determine short-distance couplings and look for NP model-independently

$$\begin{aligned} \mathcal{H}^{\text{eff}} &= \frac{4G_F}{\sqrt{2}} \, V_{cb} \, \sum_{\ell=e,\mu,\tau} \left(\bar{\ell} \gamma^{\mu} \mathcal{P}_L \nu_\ell \right) \\ &\times [\bar{c} \gamma^{\mu} \mathcal{P}_L b + g_V \bar{c} \gamma^{\mu} b + g_{SL} i \partial^{\mu} (\bar{c} \mathcal{P}_L b) + \ldots] \end{aligned}$$

[with $P_{L,R} = (1 \mp \gamma_5)/2$]

 \mathcal{H}^{eff} to determine short-distance couplings and look for NP model-independently

$$\begin{split} \mathcal{H}^{\text{eff}} &= \frac{4G_F}{\sqrt{2}} \; V_{cb} \; \sum_{\ell=e,\mu,\tau} \left(\bar{\ell} \gamma^{\mu} \mathcal{P}_L \nu_{\ell} \right) \\ &\times [\bar{c} \gamma^{\mu} \mathcal{P}_L b + g_V \bar{c} \gamma^{\mu} b + g_{SL} i \partial^{\mu} (\bar{c} \mathcal{P}_L b) + \ldots] \end{split}$$

[with $P_{L,R} = (1 \mp \gamma_5)/2$]

- Fit to R_D and R_{D^*} leading to viable explanation
- Scalar operators

 \mathcal{H}^{eff} to determine short-distance couplings and look for NP model-independently

$$\mathcal{H}^{\text{eff}} = \frac{4G_F}{\sqrt{2}} V_{cb} \sum_{\ell=e,\mu,\tau} \left(\bar{\ell} \gamma^{\mu} P_L \nu_{\ell} \right) \\ \times \left[\bar{c} \gamma^{\mu} P_I b + g_V \bar{c} \gamma^{\mu} b + g_{SI} i \partial^{\mu} (\bar{c} P_I b) + \ldots \right]$$

[with $P_{L,R} = (1 \mp \gamma_5)/2$]

- Fit to *R_D* and *R_{D^{*}*} leading to viable explanation
- Scalar operators or vector operators

 \mathcal{H}^{eff} to determine short-distance couplings and look for NP model-independently

$$\begin{split} \mathcal{H}^{\text{eff}} &= \frac{4G_F}{\sqrt{2}} \, V_{cb} \, \sum_{\ell=e,\mu,\tau} \left(\bar{\ell} \gamma^{\mu} \mathcal{P}_L \nu_{\ell} \right) \\ &\times \left[\bar{c} \gamma^{\mu} \mathcal{P}_L b + g_V \bar{c} \gamma^{\mu} b + g_{SL} i \partial^{\mu} (\bar{c} \mathcal{P}_L b) + \ldots \right] \end{split}$$

[with $P_{L,R} = (1 \mp \gamma_5)/2$]

- Fit to *R_D* and *R_{D^{*}*} leading to viable explanation
- Scalar operators or vector operators
- However only few observables measured (neutrino in final state)
- Improving on $B \rightarrow D^*$ form factors ?

[Fajfer, Kamenik, Nisandzic, Becirevic, Tayduganov,

Pokorski, Crivellin, Freytsis, Ligeti, Ruderman...]

S. Descotes-Genon (LPT-Orsay)

$b ightarrow c\ellar{ u}_\ell$: more observables on the way

3 observables for $B
ightarrow D \ell
u$

- differential decay rate $d\Gamma/dq^2$
- forward-backward asymmetry
- lepton-polarisation asymmetry

[Fajfer, Kamenik, Nisandzic, Becirevic, Tayduganov...]

S. Descotes-Genon (LPT-Orsay)

Flavour anomalies

Louvain-La-Neuve, 17/6/16 18

$b ightarrow c\ellar{ u}_\ell$: more observables on the way

- 11 observables for $B
 ightarrow D^* (
 ightarrow D\pi) \ell
 u$
 - differential decay rate $d\Gamma/dq^2$
 - forward-backward asymmetry
 - lepton-polarisation asymmetry
 - partial decay rate according to D^* polar $(d\Gamma_L/dq^2)/(d\Gamma_T/dq^2)$
 - angular observables (asymmetries with respect to two angles)

[Fajfer, Kamenik, Nisandzic, Becirevic, Tayduganov...]

Remarkable deviations in $b \rightarrow s \ell \ell$

 $b \rightarrow s\ell^+\ell^-$: $B \rightarrow K\ell\ell$

• $Br(B \rightarrow K \mu \mu)$ too low compared to SM

 $b \rightarrow s\ell^+\ell^-: B \rightarrow K\ell\ell$

• $Br(B \rightarrow K\mu\mu)$ too low compared to SM

•
$$R_{K} = \frac{Br(B \to K\mu\mu)}{Br(B \to Kee)}\Big|_{[1,6]} = 0.745^{+0.090}_{-0.074} \pm 0.036$$

- equals to 1 in SM (universality of lepton coupling), 2.6 σ dev
- would require NP coupling differently to μ and e

S. Descotes-Genon (LPT-Orsay)
$b \rightarrow s \ell^+ \ell^-$: $B \rightarrow K^* (\rightarrow K \pi) \mu \mu$ (1)

Rich kinematics

 differential decay rate in terms of 12 angular coeffs J_i(q²)

with $q^2 = (p_{\ell^+} + p_{\ell^-})^2$

 interferences between 8 transversity amplitudes for B → K*(→ Kπ)V*(→ ℓℓ)

[Ali, Hiller, Matias, Krüger, Mescia, SDG, Virto, Hofer, Bobeth, van Dyck, Buras, Altmanshoffer, Straub, Bharucha,

Zwicky, Gratrex, Hopfer, Becirevic, Sumensari, Zukanovic-Funchal ...]

 $b \rightarrow s \ell^+ \ell^-$: $B \rightarrow K^* (\rightarrow K \pi) \mu \mu$ (1)

Rich kinematics

 differential decay rate in terms of 12 angular coeffs J_i(q²)

with $q^2 = (p_{\ell^+} + p_{\ell^-})^2$

 interferences between 8 transversity amplitudes for B → K*(→ Kπ)V*(→ ℓℓ)

[Ali, Hiller, Matias, Krüger, Mescia, SDG, Virto, Hofer, Bobeth, van Dyck, Buras, Altmanshoffer, Straub, Bharucha,

Zwicky, Gratrex, Hopfer, Becirevic, Sumensari, Zukanovic-Funchal ...]

- Transversity amplitudes in terms of 7 form factors A_{0,1,2}, V, T_{1,2,3}
- Relations between form factors in limit m_B → ∞, either when K* very soft or very energetic (low/large-recoil)

 $b \rightarrow s \ell^+ \ell^-$: $B \rightarrow K^* (\rightarrow K \pi) \mu \mu$ (1)

Rich kinematics

 differential decay rate in terms of 12 angular coeffs J_i(q²)

with $q^2 = (p_{\ell^+} + p_{\ell^-})^2$

 interferences between 8 transversity amplitudes for B → K*(→ Kπ)V*(→ ℓℓ)

[Ali, Hiller, Matias, Krüger, Mescia, SDG, Virto, Hofer, Bobeth, van Dyck, Buras, Altmanshoffer, Straub, Bharucha,

Zwicky, Gratrex, Hopfer, Becirevic, Sumensari, Zukanovic-Funchal ...]

- Transversity amplitudes in terms of 7 form factors A_{0,1,2}, V, T_{1,2,3}
- Relations between form factors in limit m_B → ∞, either when K* very soft or very energetic (low/large-recoil)
- Build ratios of *J_i* where form factors cancel in these limits (corrections by hard gluons *O*(*α_s*), power corrs *O*(Λ/*m_B*))
- Optimised observables *P_i* with reduced hadronic uncertainties

$b ightarrow s\ell^+\ell^-$: $B ightarrow K^*\mu\mu$ (2)

S. Descotes-Genon (LPT-Orsay)

Flavour anomalies

Louvain-La-Neuve, 17/6/16 22

 $b \rightarrow s \ell^+ \ell^-$: $B \rightarrow K^* \mu \mu$ (3)

- Optimised observables P_i with reduced hadronic uncertainties at large recoil [Matias, Mescia, Virto, SDG, Ramon, Hurth, Hofer]
- Measured at LHCb with 1 fb⁻¹ (2013) and 3 fb⁻¹ (2015)
- Discrepancies for some (but not all) observables, in particular two bins for P'₅ deviating from SM by 2.8 σ and 3.0 σ

 $b \rightarrow s \ell^+ \ell^-$: $B \rightarrow K^* \mu \mu$ (3)

- Optimised observables P_i with reduced hadronic uncertainties at large recoil [Matias, Mescia, Virto, SDG, Ramon, Hurth, Hofer]
- Measured at LHCb with 1 fb⁻¹ (2013) and 3 fb⁻¹ (2015)
- Discrepancies for some (but not all) observables, in particular two bins for P'₅ deviating from SM by 2.8 σ and 3.0 σ
- ...confirmed by Belle last month

 $b \rightarrow s \ell^+ \ell^-$: $B \rightarrow K^* \mu \mu$ (3)

- Optimised observables P_i with reduced hadronic uncertainties at large recoil [Matias, Mescia, Virto, SDG, Ramon, Hurth, Hofer]
- Measured at LHCb with 1 fb⁻¹ (2013) and 3 fb⁻¹ (2015)
- Discrepancies for some (but not all) observables, in particular two bins for P'₅ deviating from SM by 2.8 σ and 3.0 σ
- ... confirmed by Belle last month
- Also deviations in $BR(B \rightarrow K^* \mu \mu)$ and $BR(B_s \rightarrow \phi \mu \mu)$ at low recoil

S. Descotes-Genon (LPT-Orsay)

$$b \rightarrow s\gamma(^*) : \mathcal{H}_{\Delta F=1}^{SM} \propto \sum V_{ts}^* V_{tb} \mathcal{C}_i \mathcal{O}_i + \dots$$

$$b \rightarrow s\gamma(^*)$$
: $\mathcal{H}^{SM}_{\Delta F=1} \propto \sum V_{ts}^* V_{tb} C_i \mathcal{O}_i + \dots$

$$b \rightarrow s\gamma(^*) : \mathcal{H}_{\Delta F=1}^{SM} \propto \sum V_{ts}^* V_{tb} \mathcal{C}_i \mathcal{O}_i + \dots$$

• $\mathcal{O}_7 = \frac{e}{g^2} m_b \, \bar{s} \sigma^{\mu\nu} (1 + \gamma_5) F_{\mu\nu} \, b$ [real or soft photon]

NP changes short-distance C_i for SM or new long-distance ops O_i

- Chirally flipped ($W \rightarrow W_R$)
- (Pseudo)scalar ($W \rightarrow H^+$)
- Tensor operators ($\gamma \rightarrow T$)

$$\begin{array}{l} \mathcal{O}_{7} \rightarrow \mathcal{O}_{7'} \propto \bar{\mathbf{s}} \sigma^{\mu\nu} (1 - \gamma_{5}) F_{\mu\nu} \, b \\ \mathcal{O}_{9}, \mathcal{O}_{10} \rightarrow \mathcal{O}_{S} \propto \bar{\mathbf{s}} (1 + \gamma_{5}) b \bar{\ell} \ell, \mathcal{O}_{P} \\ \mathcal{O}_{9} \rightarrow \mathcal{O}_{T} \propto \bar{\mathbf{s}} \sigma_{\mu\nu} (1 - \gamma_{5}) b \, \bar{\ell} \sigma_{\mu\nu} \ell \end{array}$$

Global analysis of $m{b} ightarrow m{s} \mu \mu$ anomalies

[SDG, Hofer, Matias, Virto]

96 observables in total (LHCb for exclusive, no CP-violating obs)

- $B \rightarrow K^* \mu \mu$ (BR, $P_{1,2}, P'_{4,5,6,8}, F_L$ in 5 large-rec. + 1 low-rec. bins)
- $B_s \rightarrow \phi \mu \mu$ (BR, $P_1, P'_{4,6}, F_L$ in 3 large-recoil + 1 low-recoil bins)

•
$$B^+
ightarrow K^+ \mu \mu$$
, $B^0
ightarrow K^0 \mu \mu$ (BR)

• $B \rightarrow X_s \gamma$, $B \rightarrow X_s \mu \mu$, $B_s \rightarrow \mu \mu$ (BR), $B \rightarrow K^* \gamma$ (A_I and $S_{K^* \gamma}$)

Global analysis of $m{b} ightarrow m{s} \mu \mu$ anomalies

[SDG, Hofer, Matias, Virto]

96 observables in total (LHCb for exclusive, no CP-violating obs)

- $B \rightarrow K^* \mu \mu$ (BR, $P_{1,2}, P'_{4,5.6.8}, F_L$ in 5 large-rec. + 1 low-rec. bins)
- $B_s \rightarrow \phi \mu \mu$ (BR, $P_1, P'_{4,6}, F_L$ in 3 large-recoil + 1 low-recoil bins)

•
$$B^+
ightarrow {\cal K}^+ \mu \mu, \, B^0
ightarrow {\cal K}^0 \mu \mu$$
 (BR)

•
$$B \to X_s \gamma, B \to X_s \mu \mu, B_s \to \mu \mu$$
 (BR), $B \to K^* \gamma$ (A_I and $S_{K^* \gamma}$)

Frequentist analysis

- $C_i(\mu_{ref}) = C_i^{SM} + C_i^{NP}$, with C_i^{NP} assumed to be real
- Experimental correlation matrix provided
- Theoretical correlation matrix treating all theo errors (form factors...) as Gaussian random variables
- Various hypotheses "NP in some C_i only" to be compared with SM

Some favoured scenarios (1)

• p-value=71% (goodness of fit), pull_{SM} = 4.5σ (metrology)

- BRs and angular obs both favour $C_9^{NP} \simeq -1$ in all "good" scenarios
- results in agreement with [Altmanshoffer, Straub] and [Hurth, Mahmoudi, Neshatpour]

Some favoured scenarios (2)

 Different processes and different kinematic ranges involving different theoretical tools

- $B \rightarrow K^* \mu \mu$ tighter than $B_s \rightarrow \phi \mu \mu$, tighter than $B \rightarrow K \mu \mu$
- Large recoil driving the discussion, but [1,6] bins already providing bulk of the effect, and low-recoil also in favour of C₉^{NP} < 0

[Horgan et al., Bouchard et al., Altmannshofer and Straub]

S. Descotes-Genon (LPT-Orsay)

Lepton-flavour (non) universality

- Adding LHCb $BR(B \rightarrow Kee)$ and large-recoil obs for $B \rightarrow K^*ee$
- For several favoured scenarios, SM pull increases by $\sim 0.5\sigma$
- Favours violation of LFU, compatible with no NP in $b \rightarrow see$

Form factors (local)

Charm loop (non-local)

Form factors (local)

Charm loop (non-local)

Uncertainties in form factors

[Camalich, Jäger;Matias,Virto,Hofer,Capdevilla,SDG]

- EFT with limit $m_b \rightarrow \infty$ useful to correlate form factors with $O(\Lambda/m_b)$ power corrections to this limit
- Corrections with large impact on optimised observables ?

Form factors (local)

Charm loop (non-local)

Uncertainties in form factors

[Camalich, Jäger;Matias,Virto,Hofer,Capdevilla,SDG]

- EFT with limit $m_b \to \infty$ useful to correlate form factors with $O(\Lambda/m_b)$ power corrections to this limit
- Corrections with large impact on optimised observables ?
- No, but accurate predictions require
 - appropriate definition of form factors in $m_b \rightarrow \infty$ limit
 - power corrections varied in agreement with info on form factors
 - proper propagation of correlations induced among form factors

S. Descotes-Genon (LPT-Orsay)

Form factors (local)

Charm loop (non-local)

Uncertainties from charm loops

[Ciuchini, Fedele, Franco, Mishima, Paul, Silvestrini, Valli; Matias, Virto, Hofer, Capdevilla, SDG]

- Effect well-known (loop process, charmonium resonances)
- Yields q^2 and hadron-dependent contrib with $\mathcal{O}_{7,9}$ -like structures
 - order of magnitude from [Khodjamirian et al.] Used in [SDG, Hofer, Matias, Virto]
 - other global fits use q^2 -dependent param. with $O(\Lambda/m_b)$ estimates

Form factors (local)

Charm loop (non-local)

Uncertainties from charm loops

[Ciuchini, Fedele, Franco, Mishima, Paul, Silvestrini, Valli; Matias, Virto, Hofer, Capdevilla, SDG]

- Effect well-known (loop process, charmonium resonances)
- Yields q^2 and hadron-dependent contrib with $\mathcal{O}_{7,9}$ -like structures
 - order of magnitude from [Khodjamirian et al.] Used in [SDG, Hofer, Matias, Virto]
 - other global fits use q^2 -dependent param. with $O(\Lambda/m_b)$ estimates
- Bayesian extraction from data performed by [Ciuchini et al.]
 - q²-dependence present, significant, following [Khodjamirian et al.]
 - actually not contradicting results of global fits, though less precise

Anomaly patterns

		R_K	$\langle P_5' angle_{ extsf{[4,6],[6,8]}}$	$BR(B_s \rightarrow \phi \mu \mu)$	low recoil BR	Best fit now
\mathcal{C}_9^{NP}	+					
	_	\checkmark	\checkmark	\checkmark	\checkmark	X
$\mathcal{C}_{10}^{\text{NP}}$	+	\checkmark		\checkmark	\checkmark	X
	_		\checkmark			
$\mathcal{C}^{NP}_{9'}$	+			\checkmark	\checkmark	X
	—	\checkmark	\checkmark			
$\mathcal{C}^{NP}_{10'}$	+	\checkmark	\checkmark			
	—			\checkmark	\checkmark	Х

- assuming no NP in $b \rightarrow see$
- $C_9^{\text{NP}} < 0$ consistent with all anomalies
- lower sensitivity to other C_i (cannot be mimicked by long dist), with C₁₀ most promising but no consistent picture yet
- global agreement with other fits performed

by [Altmanshoffer, Straub] and [Hurth, Mahmoudi, Neshatpour]

Quo vadis ?

NP interpretations

Improvement needed for form factors in $b \rightarrow c \ell \nu$,

- but no consistent global alternative from SM/long-dist. for $b
 ightarrow {\it s}\ell\ell$
- hadronic effects ($B \rightarrow K^* \mu \mu$, $B_s \rightarrow \phi \mu \mu$ at low and large recoils)
- statistical fluctuation (R_K)
- bad luck (C_9 can accomodate all discrepancies by chance)

NP interpretations

Improvement needed for form factors in $b \rightarrow c \ell \nu$,

- but no consistent global alternative from SM/long-dist. for $b
 ightarrow {\it s}\ell\ell$
- hadronic effects ($B \rightarrow K^* \mu \mu$, $B_s \rightarrow \phi \mu \mu$ at low and large recoils)
- statistical fluctuation (R_K)
- bad luck (C_9 can accomodate all discrepancies by chance)
- NP models with new scale around TeV often trying to connect $b \to s \ell^+ \ell^-$ and $b \to c \ell \bar{\nu}_\ell$ (3rd vs 2nd gen)
 - Z', W' bosons (larger gauge group)
 - Partial compositeness (mixing between known and extra fermions)
 - Leptoquarks (coupling to a quark and a lepton)
 - MSSM susy definitely not favoured

What next?

- $b
 ightarrow {\cal C} \ell ar
 u_\ell$ [Freytsis, Ligeti, Ruderman; Fajfer, Kamenik, Nisandzic, Becirevic, Tayduganov...]
 - Better control of form factors in $B \to D^* \ell \bar{\nu}_\ell$
 - More measurements from angular analyses

What next ?

 $b
ightarrow c \ell ar{
u}_\ell$

[Freytsis, Ligeti, Ruderman; Fajfer, Kamenik, Nisandzic, Becirevic, Tayduganov...]

- Better control of form factors in $B \to D^* \ell \bar{\nu}_\ell$
- More measurements from angular analyses

- Measurements (LHCb, Belle) of LFU-violating quantities R_{K*}, but also cleaner quantities like Q_i = P^μ_i P^e_i (null tests of the SM)
- cc dynamics from data (LFU ratios, non-res/resonant inters)
- Further lattice and LCSR determinations for the form factors

S. Descotes-Genon (LPT-Orsay)

Outlook

 $b
ightarrow s \ell^+ \ell^-$ and $b
ightarrow c \ell ar{
u}_\ell$

- Many observables, more or less sensitive to hadronic unc.
- Interesting deviations from SM expectations
- Global fit to $b
 ightarrow c \ell ar{
 u}$ still only limited amount of information
- $\bullet\,$ Global fit to $b\to s\ell^+\ell^-$ in favour of large deviation for \mathcal{C}_9 in
 - $b
 ightarrow s \mu \mu$ and does not seem to favour hadronic explanations
- Many models proposed for either or both sets of deviations

Where to go ?

- Measurements of q^2 and angular dependence
- Other LFU violating observables
- Charm-loop for $b \rightarrow s \mu \mu$ (estimates, or clean observables)
- Provide lattice form factors over larger range (large recoil ?)
- Look for new observables (CP-violation, time-dependence, LFUV and LFV observables...)

A lot of (interesting) work on the way !

S. Descotes-Genon (LPT-Orsay)

International Workshop on

Flavor Physics and New Physics Searches

26-30 September 2016, Fréjus, France

Information and Registration on http://indico.in2p3.fr/e/FlavorNewPhys

S. Descotes-Genon (LPT-Orsay)

S. Descotes-Genon (LPT-Orsay)

Flavour anomalies

Louvain-La-Neuve, 17/6/16 37

A few recent analyses

	[SDG, Hofer	[Straub &	[Hurth, Mahmoudi,	
	Matias, Virto]	Altmannshofer]	Neshatpour]	
Statistical	Frequentist	Frequentist	Frequentist	
approach	$\Delta \chi^2$	$\Delta\chi^2$	$\Delta\chi^2$ & χ^2	
Data	LHCb	Averages	LHCb	
${\it B} ightarrow {\it K}^* \mu \mu$ data	P _i , Max likelihood	S_i , Max likelihood	S_i , Max I.& moments	
Form	B-meson LCSR	[Bharucha, Straub, Zwicky]	[Bharucha, Straub, Zwicky]	
factors	[Khodjamirian et al.]	fit light-meson LCSR		
	+ lattice QCD	+ lattice QCD		
Theo approach	soft and full ff	full ff	soft and full ff	
cc large recoil	magnitude from	polynomial param	polynomial param	
	[Khodjamirian et al.]			
\mathcal{C}_{9}^{μ} 1D 1 σ	[-1.29,-0.87]	[-1.54,-0.53]	[-0.27,-0.13]	
pull _{SM}	4.5 σ	3.7 σ	4.2σ	
"good	see before	$\mathcal{C}_9^{NP}, \mathcal{C}_9^{NP} = -\mathcal{C}_{10}^{NP}$	$(\mathcal{C}_9^{NP}, \mathcal{C}_{9'}^{NP}), (\mathcal{C}_9^{NP}, \mathcal{C}_{10}^{NP})$	
scenarios"		$(\mathcal{C}_9^{NP},\mathcal{C}_{9'}^{NP}),(\mathcal{C}_9,\mathcal{C}_{10}^{NP})$		

 \Longrightarrow Good overall agreement for the results of the three fits

S. Descotes-Genon (LPT-Orsay)

$b \rightarrow s \mu \mu$: 1D hypotheses

SM pull: χ²(C_i = 0) - χ²_{min} (metrology, how far best fit from SM ?)
 p-value: χ²_{min} and N_{dof} (goodness of fit, how good is best fit ?)

Coefficient	Best Fit Point	3σ	$Pull_{SM}$	p-value (%)
SM	—	_	_	16.0
\mathcal{C}_7^{NP}	-0.02	[-0.07, 0.03]	1.2	17.0
\mathcal{C}_9^{NP}	-1.09	[-1.67, -0.39]	4.5	63.0
\mathcal{C}_{10}^{NP}	0.56	[-0.12, 1.36]	2.5	25.0
$C_9^{NP} = C_{10}^{NP}$	-0.22	[-0.74, 0.50]	1.1	16.0
$\mathcal{C}_{9}^{NP} = -\mathcal{C}_{10}^{NP}$	-0.68	[-1.22, -0.18]	4.2	56.0
$\mathcal{C}_{9'}^{NP} = \mathcal{C}_{10'}^{NP}$	-0.07	[-0.86, 0.68]	0.3	14.0
$\mathcal{C}_{9'}^{NP} = -\mathcal{C}_{10'}^{NP}$	0.19	[-0.17, 0.55]	1.6	18.0
$\mathcal{C}_9^{NP} = -\mathcal{C}_{9'}^{NP}$	-1.06	[-1.60, -0.40]	4.8	72.0
$\mathcal{C}_{9}^{NP} = -\mathcal{C}_{10}^{NP}$ $= -\mathcal{C}_{9}^{NP} = -\mathcal{C}_{10}^{NP}$	-0.69	[-1.37, -0.16]	4.1	53.0
$\mathcal{C}_{9}^{NP} = -\mathcal{C}_{10}^{NP}$ $= \mathcal{C}_{9'}^{NP} = -\mathcal{C}_{10'}^{NP}$	-0.19	[-0.55, 0.15]	1.7	19.0
$b \rightarrow s \mu \mu$: 2D hypotheses

- Pull for the SM point in each scenario from $\chi^2_{\min} \chi^2(C_i = C_j = 0)$
- *p*-value from χ^2_{\min} and N_{dof}
- several favoured scenarios, all with C_9^{NP} , hard to single out one

Coefficient	Best Fit Point	$Pull_{SM}$	p-value (%)
SM	_	_	16.0
$(\mathcal{C}_7^{NP}, \mathcal{C}_9^{NP})$	(-0.00, -1.07)	4.1	61.0
$(\mathcal{C}_{9}^{NP}, \mathcal{C}_{10}^{NP})$	(-1.08, 0.33)	4.3	67.0
$(\mathcal{C}_{9}^{NP}, \mathcal{C}_{7'}^{NP})$	(-1.09, 0.02)	4.2	63.0
$(\mathcal{C}_{9}^{NP},\mathcal{C}_{9'}^{NP})$	(-1.12,0.77)	4.5	72.0
$(\mathcal{C}_{9}^{NP}, \mathcal{C}_{10'}^{NP})$	(-1.17, -0.35)	4.5	71.0
$(\mathcal{C}_{9}^{NP} = -\mathcal{C}_{9'}^{NP}, \mathcal{C}_{10}^{NP} = \mathcal{C}_{10'}^{NP})$	(-1.15,0.34)	4.7	75.0
$\mathcal{C}_{9}^{NP} = -\mathcal{C}_{9'}^{NP}, \mathcal{C}_{10}^{NP} = -\mathcal{C}_{10'}^{NP})$	(-1.06, 0.06)	4.4	70.0
$(\mathcal{C}_{9}^{NP} = \mathcal{C}_{9'}^{NP}, \mathcal{C}_{10}^{NP} = \mathcal{C}_{10'}^{NP})$	(-0.64, -0.21)	3.9	55.0
$(\mathcal{C}_9^{NP} = -\mathcal{C}_{10}^{NP}, \mathcal{C}_{9'}^{NP} = \mathcal{C}_{10'}^{NP})$	(-0.72, 0.29)	3.8	53.0

$b ightarrow s \mu \mu$: 6D hypothesis

Letting all 6 Wilson coefficients vary (but only real)

Coefficient	1σ	2σ	3σ	Preference
C_7^{NP}	[-0.02, 0.03]	[-0.04, 0.04]	[-0.05, 0.08]	no pref
C_9^{NP}	[-1.4, -1.0]	[-1.7, -0.7]	[-2.2, -0.4]	negative
C_{10}^{NP}	[-0.0, 0.9]	[-0.3, 1.3]	[-0.5, 2.0]	positive
$\mathcal{C}_{7'}^{NP}$	[-0.02, 0.03]	[-0.04, 0.06]	[-0.06, 0.07]	no pref
$\mathcal{C}_{9'}^{NP}$	[0.3, 1.8]	[-0.5, 2.7]	[-1.3, 3.7]	positive
$\mathcal{C}_{10'}^{NP}$	[-0.3, 0.9]	[-0.7, 1.3]	[-1.0, 1.6]	no pref

- C_9 is consistent with SM only above 3σ
- All others are consistent with zero at 1 σ except for $C_{9'}$ at 2 σ
- $\mathrm{Pull}_{\mathrm{SM}}$ for the 6D fit is 3.6 σ

Sensitivity to form factors

- P_i designed to have limited sensitivity to form factors
- S_i CP-averaged version of J_i

$$P_1=rac{2S_3}{1-F_L} \qquad F_L=rac{J_{1c}+ar{J}_{1c}}{\Gamma+ar{\Gamma}} \qquad S_3=rac{J_3+ar{J}_3}{\Gamma+ar{\Gamma}}$$

Illustration for arbritrary NP point for two sets of LCSR form factors:

green [Ball, Zwicky] Versus gray [Khodjamirian et al.]

more or less easy to discriminate against yellow (SM prediction)

S. Descotes-Genon (LPT-Orsay)

- C_9^{NP} bin by bin assuming NP in C_9^{NP} , $C_9^{NP} = -C_{9'}^{NP}$ or $C_9^{NP} = -C_{10}^{NP}$
- Up: Assuming shift in C₉ only tests need for hadronic contrib:
 - NP in C_9 from short distances, q^2 -independent
 - Hadronic physics in C₉ is related to cc̄ dynamics, (likely) q²-dependent

• C_9^{NP} bin by bin assuming NP in C_9^{NP} , $C_9^{NP} = -C_{9'}^{NP}$ or $C_9^{NP} = -C_{10}^{NP}$ • Up: Assuming shift in C_9 only

- tests need for hadronic contrib:
 - NP in C_9 from short distances, q^2 -independent
 - Hadronic physics in C₉ is related to cc̄ dynamics, (likely) q²-dependent
- Mid, down: correlated shift in C₉ and other C_i (never q²-depend: are NP scenarios consistent ?)

• C_9^{NP} bin by bin assuming NP in C_9^{NP} , $C_9^{NP} = -C_{9'}^{NP}$ or $C_9^{NP} = -C_{10}^{NP}$

- Up: Assuming shift in C₉ only tests need for hadronic contrib:
 - NP in C_9 from short distances, q^2 -independent
 - Hadronic physics in C₉ is related to cc̄ dynamics, (likely) q²-dependent
- Mid, down: correlated shift in C₉ and other C_i (never q²-depend: are NP scenarios consistent ?)
- No indication of *q*²-dependent contribution

Louvain-La-Neuve, 17/6/16 43

Controversies: charm-loop contribution

 $c\bar{c}$ contributions to helicity ampl g_i as q^2 -polynomial, extracting params from Bayesian to data "fit" [Ciuchini, Fedele, Franco, Mishima, Paul, Silvestrini, Valli]

• constrained fit: imposing SM + $\Delta C_9^{BK(*)}$ [Khodjamirian et al.] at $q^2 < 1$ GeV² yields q^2 -dep $c\bar{c}$ contribution, with "large" coefs for q^4

Controversies: charm-loop contribution

$c\bar{c}$ contributions to helicity ampl g_i as q^2 -polynomial, extracting params from Bayesian to data "fit" [Ciuchini, Fedele, Franco, Mishima, Paul, Silvestrini, Valli]

- constrained fit: imposing SM + $\Delta C_9^{BK(*)}$ [Khodjamirian et al.] at $q^2 < 1$ GeV² yields q^2 -dep $c\bar{c}$ contribution, with "large" coefs for q^4
- unconstrained fit: polynomail agrees with $\Delta C_9^{BK(*)}$ + large cst C_9^{NP} \implies constr. fit forced at low q^2 , compensation skewing high q^2

Controversies: charm-loop contribution

$c\bar{c}$ contributions to helicity ampl g_i as q^2 -polynomial, extracting params from Bayesian to data "fit" [Ciuchini, Fedele, Franco, Mishima, Paul, Silvestrini, Valli]

- constrained fit: imposing SM + $\Delta C_9^{BK(*)}$ [Khodjamirian et al.] at $q^2 < 1$ GeV² yields q^2 -dep $c\bar{c}$ contribution, with "large" coefs for q^4
- unconstrained fit: polynomail agrees with $\Delta C_9^{BK(*)}$ + large cst C_9^{NP} \implies constr. fit forced at low q^2 , compensation skewing high q^2
- no explanation for R_K or deviations in low-recoil BRs
- data on $B \rightarrow K^* \mu \mu$ to fix q^2 -polynomial before any prediction

S. Descotes-Genon (LPT-Orsay)

More on very large power corrections (1)

• Scheme: choice of definition for the two soft form factors

$$\{\xi_{\perp},\xi_{\parallel}\} = \{V, a_1A_1 + a_2A_2\}, \{T_1, A_0\}, \dots$$

 Power corrections for the other form factors from dimensional estimates or fit to other determinations (LCSR)

$$F(q^2) = F^{ ext{soft}}(\xi_{\perp,\parallel}(q^2)) + \Delta F^{lpha_{\mathcal{S}}}(q^2) + rac{a_{\mathcal{F}}}{a_{\mathcal{F}}} + rac{q^2}{m_{\mathcal{B}}^2} + ...$$

 For some schemes, large(r) uncertainties found for some observables [Camalich, Jäger]

More on very large power corrections (1)

• Scheme: choice of definition for the two soft form factors

 $\{\xi_{\perp},\xi_{\parallel}\} = \{V, a_1A_1 + a_2A_2\}, \{T_1,A_0\}, \dots$

• Power corrections for the other form factors from dimensional estimates or fit to other determinations (LCSR)

$$\mathcal{F}(q^2) = \mathcal{F}^{ ext{soft}}(\xi_{\perp,\parallel}(q^2)) + \Delta \mathcal{F}^{lpha_{\mathcal{S}}}(q^2) + rac{a_{\mathcal{F}}}{a_{\mathcal{F}}} + rac{b_{\mathcal{F}}}{m_{\mathcal{B}}^2} + ...$$

 For some schemes, large(r) uncertainties found for some observables [Camalich, Jäger]

Observables are scheme independent, but

procedure to compute them can be either scheme dependent or not

- Option 1: Include all correlations among error power corrections
- Option 2: Assign 10% uncorrelated uncertainties for pc
- 1 hinges on detail of ff determination, 2 depends on scheme (a_i = b_i = 0 for different form factors in each scheme)

S. Descotes-Genon (LPT-Orsay)

More on very large power corrections (2)

More on very large power corrections (2)

NP interpretations: leptoquarks (1)

Vector leptoquark $(3, 2)_{2/3}$

- $g_{s\mu}, g_{b\mu}, g_{b au}$ only large couplings
- both $R_{\mathcal{K}}$ and $R_{D(*)}$ at tree level
- flavour constraints: $t \to b\tau^+\nu$, LFU tests for kaon, $B \to K^{(*)}\bar{\nu}\nu$, $B \to K\mu\tau$, $b \to c\mu^-\bar{\nu}\dots$

S. Descotes-Genon (LPT-Orsay)

Flavour anomalies

[Fajfer, Kosnik]

NP interpretations: leptoquarks (2)

Scalar leptoquark $(3, 1)_{-1/3}$

[Bauer, Neubert]

- near 1 TeV with O(1) generation-diagonal couplings
- tree-level $b \rightarrow c \tau \nu$, $b \rightarrow s \nu \nu$ (and other semileptonic decays)

• loop-level
$$b
ightarrow m{s} \mu \mu,\,(m{g}-2)_{\mu}$$

- need discrete symmetry to avoid proton decay
- bounds from ${\it B}
 ightarrow {\it K}(^*)
 u ar{
 u}, {\it D}^0
 ightarrow \mu \mu, {\it D}^+
 ightarrow \pi^+ \mu \mu$

NP interpretations: Z' coupling

Z' coupling to
$$\mu\mu$$
 and $\bar{b}s$: $\bar{f}_i\gamma^{\mu}[\Delta_L^{f_if_j}P_L + \Delta_R^{f_if_j}P_R]f_jZ'_{\mu}$

[Altmannshofer, Straub, Buras, Girrbach, Gauld, Goertz, Haish...]

- contributes to C_9 and C_{10} via $\Delta_L^{bs} \Delta_{L,R}^{\mu\mu}$
- Δ_L^{bs} constrained from B_s mixing
- Δ_L^{qq} for q = u, d constrained by $q_L \bar{q}_L o \mu \mu$ at ATLAS/CMS
- *M_{Z'}* ≥ 3 TeV with weak-interaction strength couplings to *u*, *d*, but strong coupling to muons Δ^{μμ}_L ≥ 1
- Same with vector-like coupling to muons

- blue shaded: excluded by $Z' \rightarrow \mu \mu$,
- above red: excluded by contact interactions
- upper axis: minimal Z' coupling to μ_Lμ_L for C₉, C₁₀

S. Descotes-Genon (LPT-Orsay)

NP interpretations: heavy gauge bosons

Heavy gauge bosons from G(221)

[Boucenna, Celis, Fuentes-Martin, Vicente, Virto]

- Gauge group symmetry breaking
 - L-breaking: $SU_L(2) \otimes SU_H(2) \otimes U(1)_H \rightarrow SU_L(2) \otimes U(1)_Y$
 - Y-breaking: $SU_1(2) \otimes SU_2(2) \otimes U(1)_Y \rightarrow \otimes SU_L(2) \otimes U(1)_Y$
- Non universality from
 - gauge coup. (non-univ. embedding of SM fermions in larger group)
 - Yukawas (non-universal mixing between SM fermions and extra particles coupled to new vector bosons)

NP interpretations: heavy gauge bosons

Heavy gauge bosons from G(221)

[Boucenna, Celis, Fuentes-Martin, Vicente, Virto]

- Gauge group symmetry breaking
 - L-breaking: $SU_L(2) \otimes SU_H(2) \otimes U(1)_H \rightarrow SU_L(2) \otimes U(1)_Y$
 - Y-breaking: $SU_1(2) \otimes SU_2(2) \otimes U(1)_Y \rightarrow \otimes SU_L(2) \otimes U(1)_Y$

Non universality from

- gauge coup. (non-univ. embedding of SM fermions in larger group)
- Yukawas (non-universal mixing between SM fermions and extra particles coupled to new vector bosons)

	L-breaking	Y-breaking
gauge coupling non univ	No left-handed current	Nonperturbativity
Yukawa non univ	No GIM	OK

NP interpretations: heavy gauge bosons

Heavy gauge bosons from G(221)

[Boucenna, Celis, Fuentes-Martin, Vicente, Virto]

- Gauge group symmetry breaking
 - L-breaking: $SU_L(2) \otimes SU_H(2) \otimes U(1)_H \rightarrow SU_L(2) \otimes U(1)_Y$
 - Y-breaking: $SU_1(2) \otimes SU_2(2) \otimes U(1)_Y \rightarrow \otimes SU_L(2) \otimes U(1)_Y$
- Non universality from
 - gauge coup. (non-univ. embedding of SM fermions in larger group)
 - Yukawas (non-universal mixing between SM fermions and extra particles coupled to new vector bosons)

	L-breaking	Y-breaking
gauge coupling non univ	No left-handed current	Nonperturbativity
Yukawa non univ	No GIM	OK

Explicit model (but no pheo analysis) with

- $SU_C(3)\otimes SU_1(2)\otimes SU_2(2)\otimes U(1)_Y$
- breaking through $\phi = (1, 1, 2)_{1/2}$ and $\Phi = (1, 2, \overline{2})_0$
- several generations of vector-like fermions
 - $Q_L, Q_R = (3, 2, 1)_{1/6}, L_L, L_R = (1, 2, 1)_{-1/2}$
- left-handed fermions: anomalous W, Z couplings + W', Z' coupl

S. Descotes-Genon (LPT-Orsay)

Flavour anomalies

50

NP interpretations: partial compositeness

[Niehoff, Stangl, Straub, Butazzo, Greljo, Isidori, Marzocca]

- SM-like elementary sector
- strongly interacting BSM sector with symmetry H
- elementary fermions mix with fermion composite operators (measured by s_L)
- several examples fitting both $R_{D(*)}$ and R_{K}

For instance

- new $SU(N_{TC})$
- vector-like techniquarks $(N_{TC}, 3, 2, Y_Q)$ and technileptons $(N_{TC}, 1, 2, Y_I)$

mixing between quarks and technibaryons
up to slight fine tuning

S. Descotes-Genon (LPT-Orsay)

$|V_{ub}|$ from semileptonic *B* decays

Two ways of getting $|V_{ub}|$:

• Inclusive : $b \rightarrow u \ell \nu$ + Operator Product Expansion

[HFAG BLNP]

• Exclusive : $B \rightarrow \pi \ell \nu$ + Form factors

[J. A. Bailey et al., Fermilab-MILC]

$$\begin{array}{rcl} |V_{ub}|_{inc} &=& 4.45 \pm 0.18 \pm 0.31 \\ |V_{ub}|_{exc} &=& 3.72 \pm 0.09 \pm 0.22 \end{array}$$

$$|V_{ub}|_{ave}$$
 = 4.01 ± 0.08 ± 0.22

with all values $\times 10^{-3}$

- HFAG, with theory errors added linearly
- systematics combined using Educated Rfit

Indirect det. from global fit: $|V_{ub}|_{fit} = 3.57^{+0.15}_{-0.14}$ (4%)

S. Descotes-Genon (LPT-Orsay)

Flavour anomalies

52

$|V_{cb}|$ from semileptonic *B* decays

Two ways of getting $|V_{cb}|$:

- Inclusive : $b \rightarrow c\ell\nu$ + OPE for moments
- Exclusive : $B \rightarrow D(^*)\ell\nu$ + Form factors

[HFAG, Gambino and Schwanda]

[J. A. Bailey et al., Fermilab-MILC]

$$|V_{cb}|_{inc} = 42.42 \pm 0.44 \pm 0.74$$

 $|V_{cb}|_{exc} = 38.99 \pm 0.49 \pm 1.17$

$$|V_{cb}|_{ave}$$
 = 41.00 ± 0.33 ± 0.74

with all values $\times 10^{-3}$

- HFAG, with theory errors added linearly
- systematics combined using Educated Rfit

Indirect det. from global fit: $|V_{cb}|_{fit} = 43.0^{+0.4}_{-1.4}$ (4%)

S. Descotes-Genon (LPT-Orsay)

Flavour anomalies

Louvain-La-Neuve, 17/6/16

53

 $|V_{ub}|, |V_{cb}|$

- Information on $|V_{ub}|$ from $Br(B \rightarrow \tau \nu)$
- New LHCb result on $|V_{ub}/V_{cb}|$ from $\Gamma(\Lambda_b \rightarrow p\mu\nu)/\Gamma(\Lambda_b \rightarrow \Lambda_c \mu \nu)$ at high q^2

[Detmold, Lehner and Meinel]

• Global fit favours exclusive |V_{ub}|_{SL} but inclusive |V_{cb}|_{SL}