Flavour anomalies

Sébastien Descotes-Genon

Laboratoire de Physique Théorique
CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay, France

Louvain-La-Neuve, 17/6/16

Outline

(0) The power of flavour physics
(2) Interesting deviations in $b \rightarrow c \ell \bar{\nu}_{\ell}$
(3) Remarkable deviations in $b \rightarrow s \ell \ell$
(c) Outlook

The power of flavour physics

Particle physics

Central question of QFT-based particle physics

$$
\mathcal{L}=\text { ? }
$$

Particle physics

Central question of QFT-based particle physics

$$
\mathcal{L}=?
$$

i.e. which degrees of freedom, symmetries, scales ?

SM best answer up to now, but

- neutrino masses
- dark matter
- dark energy
- baryon asymmetry of the universe
- hierarchy problem

Quark flavour physics

Important, unexplained hierarchy among 10 of 19 params of $\mathrm{SM}_{m_{\nu}=0}$

- Mass (6 params, a lot of small ratios of scales)
- CP violation (4 params, strong hierarchy between generations)
- Related to Yukawa couplings of the Higgs in SM

With phenomenological consequences for quark flavour dynamics

- Hierarchy of CP asymmetries according to generations
- Quantum sensitivity (via loops) to large range of scales
- GIM suppression of Flavour-Changing Neutral Currents
\Longrightarrow Interesting probe of the Standard Model and beyond...

Flavour-Changing Neutral Currents

Forbidden in SM at tree level, and suppressed by GIM at one loop so good place for NP to show up (tree or loops)

Experimental and theoretical effort on interesting FCNC transitions

A multi-scale problem

- Tough multi-scale challenge with 3 interactions intertwined
- Several steps to separate/factorise scales BSM $\rightarrow \mathrm{SM}+1 / \Lambda_{N P}\left(\Lambda_{E W} / \Lambda_{N P}\right) \rightarrow \mathcal{H}_{\text {eff }}\left(m_{b} / \Lambda_{E W}\right) \rightarrow$ eff. theories $\left(\Lambda_{Q C D} / m_{b}\right)$

A multi-scale problem

- Tough multi-scale challenge with 3 interactions intertwined
- Several steps to separate/factorise scales BSM $\rightarrow \mathrm{SM}+1 / \Lambda_{N P}\left(\Lambda_{E W} / \Lambda_{N P}\right) \rightarrow \mathcal{H}_{\text {eff }}\left(m_{b} / \Lambda_{E W}\right) \rightarrow$ eff. theories $\left(\Lambda_{Q C D} / m_{b}\right)$
- Main theo problem from hadronisation of quarks into hadrons description/parametrisation in terms of QCD quantities decay constants, form factors, bag parameters. . .
- Long-distance non-perturbative QCD: source of uncertainties lattice QCD simulations, sum rules, effective theories. . .

Effective approaches

Fermi-like approach (for decoupling th): separation of different scales
Short dist/Wilson coefficients and Long dist/local operator

Effective approaches

Fermi-like approach (for decoupling th): separation of different scales
Short dist/Wilson coefficients and Long dist/local operator

$$
V_{u d} V_{c b}^{*} \frac{G_{F}}{\sqrt{2}} \bar{u} \gamma_{\mu}\left(1-\gamma_{5}\right) d \bar{b} \gamma^{\mu}\left(1-\gamma_{5}\right) c+O\left(1 / M_{W}^{2}\right)
$$

Fermi theory carries some info on the underlying theory

- G_{F} : scale of underlying physics
- \mathcal{O}_{i} : interaction with left-handed fermions, through charged spin 1
- Losing some info (gauge structure, $Z^{0} \ldots$)
but a good start if no particle $(=W)$ already seen

Looking for interesting processes

$$
\begin{aligned}
& \text { Starting from the } \mathrm{SM} \\
& \qquad \begin{aligned}
& \text { (or one of its extensions) } \\
& \mathcal{H}^{\text {eff }}=C K M \times \mathcal{C}_{i} \times \mathcal{O}_{i} \\
&\langle M| \mathcal{H}^{\text {eff }}|B\rangle=C K M \times \mathcal{C}_{i} \times\langle M| \mathcal{O}_{i}|B\rangle
\end{aligned}
\end{aligned}
$$

Looking for interesting processes

Starting from the SM
(or one of its extensions)
\[\begin{aligned} \mathcal{H}^{eff} \& =C K M \times \mathcal{C}_{i} \times \mathcal{O}_{i}
\langle M| \mathcal{H}^{eff}|B\rangle \& =C K M \times \mathcal{C}_{i} \times\langle M| \mathcal{O}_{i}|B\rangle \end{aligned} \]

Looking for interesting processes

Starting from the SM
(or one of its extensions)

$$
\begin{aligned}
\mathcal{H}^{\text {eff }} & =C K M \times \mathcal{C}_{i} \times \mathcal{O}_{i} \\
\langle M| \mathcal{H}^{\text {eff }}|B\rangle & =C K M \times \mathcal{C}_{i} \times\langle M| \mathcal{O}_{i}|B\rangle
\end{aligned}
$$

involving hadronic quantities such as form factors selecting processes for accurate predictions:

- semileptonic decays (form factors, not more complicated objects)
- ratios of branching ratios with different leptons
- ratios of observables with similar dependence on form factors
\Longrightarrow observables with limited sensitivity to (ratio of form) factors

Looking for interesting processes

Starting from the SM
(or one of its extensions)

$$
\begin{aligned}
\mathcal{H}^{\text {eff }} & =C K M \times \mathcal{C}_{i} \times \mathcal{O}_{i} \\
\langle M| \mathcal{H}^{\text {eff }}|B\rangle & =C K M \times \mathcal{C}_{i} \times\langle M| \mathcal{O}_{i}|B\rangle
\end{aligned}
$$

involving hadronic quantities such as form factors selecting processes for accurate predictions:

- semileptonic decays (form factors, not more complicated objects)
- ratios of branching ratios with different leptons
- ratios of observables with similar dependence on form factors \Longrightarrow observables with limited sensitivity to (ratio of form) factors

Two possible uses of effective approaches

- fixing \mathcal{C}_{i}, computing SM and comparing with the data
- determining short-distance \mathcal{C}_{i} from the data and compare with SM

B-meson form factors

For illustration, take $B \rightarrow V$ transitions, described in general by 7 form factors: V (vector), $A_{0,1,2}$ (axial) and $T_{1,2,3}$ (tensor), depending on $q^{2}=(p-k)^{2}$

$$
\begin{aligned}
\langle V(k)| \bar{s} \gamma_{\mu}\left(1-\gamma_{5}\right)|B(\epsilon, p)\rangle= & -i \epsilon_{\mu}\left(m_{B}+m_{V}\right) A_{1}\left(q^{2}\right)+i(p+k)_{\mu}\left(\epsilon^{*} \cdot q\right) \frac{A_{2}\left(q^{2}\right)}{m_{B}+m_{V}} \\
& +i q_{\mu}\left(\epsilon^{*} \cdot q\right) \frac{2 m_{V}}{q^{2}} \tilde{A}_{0}\left(q^{2}\right)+\epsilon_{\mu \nu \rho \sigma} \epsilon^{* \nu} p^{\rho} k^{\sigma} \frac{2 V\left(q^{2}\right)}{m_{B}+m_{V}} \\
\langle V(k)| \bar{s} \sigma_{\mu \nu} q^{\nu}\left(1+\gamma_{5}\right)|B(\epsilon, p)\rangle= & i \epsilon_{\mu \nu \rho \sigma \epsilon^{* \nu} \rho^{\circ} k^{\sigma} 2 T_{1}\left(q^{2}\right)+\epsilon_{\mu}^{*}\left(m_{B}^{2}-m_{V}^{2}\right) T_{2}\left(q^{2}\right)} \\
& -(p+k)_{\mu}\left(\epsilon^{*} \cdot q\right) \tilde{T}_{3}\left(q^{2}\right)+q_{\mu}\left(\epsilon^{*} \cdot q\right) T_{3}\left(q^{2}\right) \\
& \text { with } \tilde{A}_{0} \text { linear combination of } A_{0,1,2} \text { and } \tilde{T}_{3} \text { of } T_{2,3}
\end{aligned}
$$

Can these form factors be further simplified/factorised using $\Lambda \ll m_{B}$?

The last step of factorisation

For illustration, take $B \rightarrow V$ transitions, described in general by 7 form factors: V (vector), $A_{0,1,2}$ (axial) and $T_{1,2,3}$ (tensor), depending on $q^{2}=\left(p_{B}-p_{V}\right)^{2}$

The last step of factorisation

For illustration, take $B \rightarrow V$ transitions, described in general by 7 form factors: V (vector), $A_{0,1,2}$ (axial) and $T_{1,2,3}$ (tensor), depending on $q^{2}=\left(p_{B}-p_{V}\right)^{2}$

Large recoil of the meson

- Light-cone sum rules (light V, parton language)
- Soft Collinear Effective Theory
[Charles et al., Beneke, Feldmann]
- in the limit $m_{b} \rightarrow \infty$, two soft form factors $\xi_{\perp}\left(q^{2}\right)$ and $\xi_{\|}\left(q^{2}\right)$
- corrections: $\boldsymbol{O}\left(\alpha_{s}\right)$ from hard gluons + nonperturbative $O\left(\Lambda / m_{B}\right)$

The last step of factorisation

For illustration, take $B \rightarrow V$ transitions, described in general by
7 form factors: V (vector), $A_{0,1,2}$ (axial) and $T_{1,2,3}$ (tensor), depending on $q^{2}=\left(p_{B}-p_{V}\right)^{2}$

Large recoil of the meson

- Light-cone sum rules (light V, parton language)
- Soft Collinear Effective Theory
[Charles et al., Beneke, Feldmann]
- in the limit $m_{b} \rightarrow \infty$, two soft form factors $\xi_{\perp}\left(q^{2}\right)$ and $\xi_{\|}\left(q^{2}\right)$
- corrections: $O\left(\alpha_{s}\right)$ from hard gluons + nonperturbative $O\left(\Lambda / m_{B}\right)$

Low recoil of the meson
$\left(E_{V} \sim \Lambda_{Q C D} \ll m_{B}\right)$

- Lattice QCD simulations (discretised QCD)
- Heavy Quark Effective Theory [Neubert, Grinstein, Piriol, Hiller, Bobeth, Van Dyk...]
- in the limit $m_{b} \rightarrow \infty$, three soft form factors $f_{\perp}\left(q^{2}\right), f_{\| \mid}\left(q^{2}\right), f_{0}\left(q^{2}\right)$
- corrections: $\boldsymbol{O}\left(\alpha_{s}\right)$ from hard gluons + nonperturbative $O\left(\Lambda / m_{B}\right)$

Two transitions of interes \dagger

$$
\begin{aligned}
& b \rightarrow c \ell \bar{\nu}_{\ell} \\
& b \rightarrow s \ell^{+} \ell^{-} \\
& \text {SM } \\
& \text { Spin } 0 \\
& \text { Spin } 1 \\
& \text { Observables } \\
& \text { with } \\
& \text { Tensions } \\
& \text { tree (charged) }(V-A) \\
& \bar{B} \rightarrow D \ell \bar{\nu}_{\ell} \\
& \bar{B} \rightarrow D^{*} \ell \bar{\nu}_{\ell} \\
& \text { Total } \mathrm{Br} \\
& \ell=\tau, \mu, \boldsymbol{e} \\
& R_{D\left({ }^{*}\right)}=\frac{\operatorname{Br}\left(B \rightarrow D\left(^{*}\right) \tau \nu\right)}{\operatorname{Br}\left(B \rightarrow D\left({ }^{*}\right) \ell \bar{\nu}_{\ell}\right)} \\
& \text { loop (neutral) } \\
& B \rightarrow K \ell \ell \\
& B \rightarrow K^{*} \ell \ell, B_{s} \rightarrow \phi \ell \ell \\
& d \Gamma / d q^{2}+\text { Angular obs } \\
& \ell=\mu, e \\
& R_{K}=\frac{\operatorname{Br}(B \rightarrow K \mu \mu)}{\operatorname{Br}(B \rightarrow K e e)} \\
& \operatorname{Br}\left(K, K^{*}, \phi+\mu \mu\right) \\
& \text { angular obs (e.g., } P_{5}^{\prime} \text {) }
\end{aligned}
$$

Two transitions exhibiting interesting patterns of deviations from SM

Interesting deviations in $b \rightarrow c \ell \bar{\nu}_{\ell}$

$b \rightarrow c \ell \bar{\nu}_{\ell}: R_{D}$ and $R_{D^{*}}$

- different identification techniques of the τ for LHCb and B-factories
- $R(D)$ and $R\left(D^{*}\right)$ exceed SM predictions by 1.9σ and 3.3σ
- p-value=5.2 $\times 10^{-5}$, difference with SM preds at 4.0σ level
- consistent with 15% enhancement for $b \rightarrow c \tau \bar{\nu}_{\tau}$

What is the basis for these predictions ?

$B \rightarrow D \ell \bar{\nu}_{\ell}$ branching ratio

$$
\begin{aligned}
\frac{d \Gamma\left(B \rightarrow D \ell \bar{\nu}_{\ell}\right)}{d q^{2}} \propto & \left|V_{c b}\right|^{2}\left(1-\frac{m_{\ell}^{2}}{q^{2}}\right)^{2}|\vec{p}|^{2} \\
& {\left[\left(1-\frac{m_{\ell}^{2}}{2 q^{2}}\right)^{2} M_{B}^{2}|\vec{p}|^{2} f_{+}^{2}\left(q^{2}\right)+\frac{3 m_{\ell}^{2}}{8 q^{2}}\left(M_{B}^{2}+M_{D}^{2}\right)^{2} f_{0}^{2}\left(q^{2}\right)\right] }
\end{aligned}
$$

- $\vec{p} D$-momentum in B-frame, $q^{2}=\left(p_{B}-p_{D}\right)^{2}$ lepton invariant mass
- Two form factors $f_{+}\left(q^{2}\right)$ (vector) and $f_{0}\left(q^{2}\right)$ (scalar) NP extension requires one more form factor f_{T} (tensor)
- From lattice QCD, extrapolated over whole kinematic range
[HPQCD collaboration]

$B \rightarrow D^{*} \ell \bar{\nu}_{\ell}$ branching ratio

$$
\begin{aligned}
\frac{d \Gamma\left(B \rightarrow D^{*} \ell \bar{\nu}_{\ell}\right)}{d q^{2}} \propto & \left|V_{c b}\right|^{2}\left(1-\frac{m_{\ell}^{2}}{q^{2}}\right)^{2}|\vec{q}| q^{2} \\
& {\left[\left(1+\frac{m_{\ell}^{2}}{2 q^{2}}\right)^{2}\left(\left|H_{+}\right|^{2}+\left|H_{-}\right|^{2}+\left|H_{0}\right|^{2}\right)+\frac{3 m_{\ell}^{2}}{2 q^{2}}\left|H_{t}\right|^{2}\right] }
\end{aligned}
$$

- H_{λ} describing $B \rightarrow D^{*}(\rightarrow D \pi) \ell \bar{\nu}_{\ell}$ with D^{*} helicity
- Interferences in principle accessible via angular analyses (but ν !)
- Four form factors $V, A_{0.1,2}$ (vector and axial)

NP extension requires 3 more form factors $T_{1,2,3}$ (tensor)

$B \rightarrow D^{*} \ell \bar{\nu}_{\ell}$ branching ratio

$$
\begin{aligned}
\frac{d \Gamma\left(B \rightarrow D^{*} \ell \bar{\nu}_{\ell}\right)}{d q^{2}} \propto & \left|V_{c b}\right|^{2}\left(1-\frac{m_{\ell}^{2}}{q^{2}}\right)^{2}|\vec{q}| q^{2} \\
& {\left[\left(1+\frac{m_{\ell}^{2}}{2 q^{2}}\right)^{2}\left(\left|H_{+}\right|^{2}+\left|H_{-}\right|^{2}+\left|H_{0}\right|^{2}\right)+\frac{3 m_{\ell}^{2}}{2 q^{2}}\left|H_{t}\right|^{2}\right] }
\end{aligned}
$$

- H_{λ} describing $B \rightarrow D^{*}(\rightarrow D \pi) \ell \bar{\nu}_{\ell}$ with D^{*} helicity
- Interferences in principle accessible via angular analyses (but ν !)
- Four form factors $V, A_{0.1,2}$ (vector and axial)

NP extension requires 3 more form factors $T_{1,2,3}$ (tensor)

- No complete lattice determination, need other approaches !
- HQET: Form factors related in the limit $m_{b} \rightarrow \infty$, providing ratios of form factors up to $O\left(\Lambda / m_{B}\right)$ corrections
- Normalisation from Belle on $B \rightarrow D^{*} \ell \bar{\nu}_{\ell}(\ell=e, \mu)$
assuming no NP for light leptons

$b \rightarrow c \ell \bar{\nu}_{\ell}$: effective Hamiltonian

$b \rightarrow c \ell \bar{\nu}_{\ell}:$ effective Hamiltonian

$b \rightarrow c \ell \bar{\nu}_{\ell}:$ effective Hamiltonian

$\mathcal{H}^{\text {eff }}$ to determine short-distance couplings and look for NP model-independently

$$
\begin{aligned}
& \mathcal{H}^{\mathrm{eff}}=\frac{4 G_{F}}{\sqrt{2}} V_{c b} \sum_{\ell=e, \mu, \tau}\left(\bar{\ell} \gamma^{\mu} P_{L} \nu_{\ell}\right) \\
& \times\left[\bar{c} \gamma^{\mu} P_{L} b+g_{V} \bar{c} \gamma^{\mu} b+g_{S L} i \partial^{\mu}\left(\bar{c} P_{L} b\right)+\ldots\right]
\end{aligned}
$$

[with $P_{L, R}=\left(1 \mp \gamma_{5}\right) / 2$]

$b \rightarrow c \ell \bar{\nu}_{\ell}$: effective Hamiltonian

$\mathcal{H}^{\text {eff }}$ to determine short-distance couplings and look for NP model-independently

$$
\begin{aligned}
& \mathcal{H}^{\mathrm{eff}}=\frac{4 G_{F}}{\sqrt{2}} V_{c b} \sum_{\ell=e, \mu, \tau}\left(\bar{\ell} \gamma^{\mu} P_{L} \nu_{\ell}\right) \\
& \times\left[\bar{c} \gamma^{\mu} P_{L} b+g_{V} \bar{c} \gamma^{\mu} b+g_{S L} i \partial^{\mu}\left(\bar{c} P_{L} b\right)+\ldots\right]
\end{aligned}
$$

[with $\left.P_{L, R}=\left(1 \mp \gamma_{5}\right) / 2\right]$

- Fit to R_{D} and $R_{D^{*}}$ leading to viable explanation
- Scalar operators

$b \rightarrow c \ell \bar{\nu}_{\ell}:$ effective Hamiltonian

$b \rightarrow c \ell \bar{\nu}_{\ell}:$ effective Hamiltonian

$\mathcal{H}^{\text {eff }}$ to determine short-distance couplings and look for NP model-independently

$$
\begin{aligned}
& \mathcal{H}^{\mathrm{eff}}=\frac{4 G_{F}}{\sqrt{2}} V_{c b} \sum_{\ell=e, \mu, \tau}\left(\bar{\ell} \gamma^{\mu} P_{L} \nu_{\ell}\right) \\
& \times\left[\bar{c} \gamma^{\mu} P_{L} b+g_{V} \bar{c} \gamma^{\mu} b+g_{S L} i \partial^{\mu}\left(\bar{c} P_{L} b\right)+\ldots\right]
\end{aligned}
$$

$$
\text { [with } P_{L, R}=\left(1 \mp \gamma_{5}\right) / 2 \text {] }
$$

- Fit to R_{D} and $R_{D^{*}}$ leading to viable explanation
- Scalar operators or vector operators
- However only few observables measured (neutrino in final state)
- Improving on $B \rightarrow D^{*}$ form factors ?
[Fajfer, Kamenik, Nisandzic, Becirevic, Tayduganov,
Pokorski, Crivellin, Freytsis, Ligeti, Ruderman. ..]

$b \rightarrow c \ell \bar{\nu}_{\ell}:$ more observables on the way

3 observables for $B \rightarrow D \ell \nu$

- differential decay rate $d \Gamma / d q^{2}$
- forward-backward asymmetry
- lepton-polarisation asymmetry

[Fajfer, Kamenik, Nisandzic, Becirevic, Tayduganov...]

$b \rightarrow c \ell \bar{\nu}_{\ell}:$ more observables on the way

11 observables for $B \rightarrow D^{*}(\rightarrow D \pi) \ell \nu$

- differential decay rate $d \Gamma / d q^{2}$
- forward-backward asymmetry
- lepton-polarisation asymmetry
- partial decay rate according to D^{*} polar $\left(d \Gamma_{L} / d q^{2}\right) /\left(d \Gamma_{T} / d q^{2}\right)$
- angular observables (asymmetries with respect to two angles)

[Fajfer, Kamenik, Nisandzic, Becirevic, Tayduganov...]

Remarkable deviations in $b \rightarrow$ s ℓ

$b \rightarrow s \ell^{+} \ell^{-}: B \rightarrow K \ell \ell$

- $\operatorname{Br}(B \rightarrow K \mu \mu)$ too low compared to SM
$b \rightarrow s \ell^{+} \ell^{-}: B \rightarrow K \ell \ell$

- $\operatorname{Br}(B \rightarrow K \mu \mu)$ too low compared to SM
- $R_{K}=\left.\frac{\operatorname{Br}(B \rightarrow K \mu \mu)}{\operatorname{Br}(B \rightarrow K e e)}\right|_{[1,6]}=$

$$
0.745_{-0.074}^{+0.090} \pm 0.036
$$

- equals to 1 in SM (universality of lepton coupling), 2.6σ dev
- would require NP coupling differently to μ and e

$$
b \rightarrow s \ell^{+} \ell^{-}: B \rightarrow K^{*}(\rightarrow K \pi) \mu \mu(1)
$$

Rich kinematics

- differential decay rate in terms of 12 angular coeffs $J_{i}\left(q^{2}\right)$

$$
\text { with } q^{2}=\left(p_{\ell^{+}}+p_{\ell^{-}}\right)^{2}
$$

- interferences between 8 transversity amplitudes for $B \rightarrow K^{*}(\rightarrow K \pi) V^{*}(\rightarrow \ell)$
[Ali, Hiller, Matias, Krüger, Mescia, SDG, Virto, Hofer, Bobeth, van Dyck, Buras, Altmanshoffer, Straub, Bharucha,
Zwicky, Gratrex, Hopfer, Becirevic, Sumensari, Zukanovic-Funchal ...]

$$
b \rightarrow s \ell^{+} \ell^{-}: B \rightarrow K^{*}(\rightarrow K \pi) \mu \mu(1)
$$

Rich kinematics

- differential decay rate in terms of 12 angular coeffs $J_{i}\left(q^{2}\right)$

$$
\text { with } q^{2}=\left(p_{\ell^{+}}+p_{\ell^{-}}\right)^{2}
$$

- interferences between 8 transversity amplitudes for $B \rightarrow K^{*}(\rightarrow K \pi) V^{*}(\rightarrow \ell \ell)$
[Ali, Hiller, Matias, Krüger, Mescia, SDG, Virto, Hofer, Bobeth, van Dyck, Buras, Altmanshoffer, Straub, Bharucha,
Zwicky, Gratrex, Hopfer, Becirevic, Sumensari, Zukanovic-Funchal ...]
- Transversity amplitudes in terms of 7 form factors $A_{0,1,2}, V, T_{1,2,3}$
- Relations between form factors in limit $m_{B} \rightarrow \infty$, either when K^{*} very soft or very energetic (low/large-recoil)

$$
b \rightarrow s \ell^{+} \ell^{-}: B \rightarrow K^{*}(\rightarrow K \pi) \mu \mu(1)
$$

Rich kinematics

- differential decay rate in terms of 12 angular coeffs $J_{i}\left(q^{2}\right)$

$$
\text { with } q^{2}=\left(p_{\ell^{+}}+p_{\ell^{-}}\right)^{2}
$$

- interferences between 8 transversity amplitudes for $B \rightarrow K^{*}(\rightarrow K \pi) V^{*}(\rightarrow \ell)$
[Ali, Hiller, Matias, Krüger, Mescia, SDG, Virto, Hofer, Bobeth, van Dyck, Buras, Altmanshoffer, Straub, Bharucha,
- Transversity amplitudes in terms of 7 form factors $A_{0,1,2}, V, T_{1,2,3}$
- Relations between form factors in limit $m_{B} \rightarrow \infty$,
either when K^{*} very soft or very energetic (low/large-recoil)
- Build ratios of J_{i} where form factors cancel in these limits (corrections by hard gluons $O\left(\alpha_{s}\right)$, power corrs $O\left(\Lambda / m_{B}\right)$)
- Optimised observables P_{i} with reduced hadronic uncertainties

$b \rightarrow s \ell^{+} \ell^{-}: B \rightarrow K^{*} \mu \mu(2)$

- Very large K^{*}-recoil $\left(4 m_{\ell}^{2}<q^{2}<1 \mathrm{GeV}^{2}\right) \quad \gamma$ almost real
- Large K^{*}-recoil $\left(q^{2}<9 \mathrm{GeV}^{2}\right) \quad$ energetic $K^{*}\left(E_{K^{*}} \gg \Lambda_{Q C D}\right)$

LCSR, SCET, QCD factorisation

- Charmonium region $\left(q^{2}=m_{\psi, \psi^{\prime} \ldots}^{2}\right.$ between 9 and $\left.14 \mathrm{GeV}^{2}\right)$
- Low K^{*}-recoil $\left(q^{2}>14 \mathrm{GeV}^{2}\right)$

$b \rightarrow s \ell^{+} \ell^{-}: B \rightarrow K^{*} \mu \mu$ (3)

- Optimised observables P_{i} with reduced hadronic uncertainties at large recoil
[Matias, Mescia, Virto, SDG, Ramon, Hurth, Hofer]
- Measured at LHCb with $1 \mathrm{fb}^{-1}$ (2013) and $3 \mathrm{fb}^{-1}$ (2015)
- Discrepancies for some (but not all) observables, in particular two bins for P_{5}^{\prime} deviating from SM by 2.8σ and 3.0σ

$$
b \rightarrow s \ell^{+} \ell^{-}: B \rightarrow K^{*} \mu \mu(3)
$$

- Optimised observables P_{i} with reduced hadronic uncertainties at large recoil
[Matias, Mescia, Virto, SDG, Ramon, Hurth, Hofer]
- Measured at LHCb with $1 \mathrm{fb}^{-1}$ (2013) and $3 \mathrm{fb}^{-1}$ (2015)
- Discrepancies for some (but not all) observables, in particular two bins for P_{5}^{\prime} deviating from SM by 2.8σ and 3.0σ - ... confirmed by Belle last month

$b \rightarrow s \ell^{+} \ell^{-}: B \rightarrow K^{*} \mu \mu(3)$

- Optimised observables P_{i} with reduced hadronic uncertainties at large recoil
[Matias, Mescia, Virto, SDG, Ramon, Hurth, Hofer]
- Measured at LHCb with $1 \mathrm{fb}^{-1}$ (2013) and $3 \mathrm{fb}^{-1}$ (2015)
- Discrepancies for some (but not all) observables,
in particular two bins for P_{5}^{\prime} deviating from SM by 2.8σ and 3.0σ
- ... confirmed by Belle last month
- Also deviations in $B R\left(B \rightarrow K^{*} \mu \mu\right)$ and $B R\left(B_{s} \rightarrow \phi \mu \mu\right)$ at low recoil

$b \rightarrow s \mu \mu$ effective hamiltonian

$$
b \rightarrow \boldsymbol{s} \gamma\left(^{*}\right): \mathcal{H}_{\Delta F=1}^{S M} \propto \sum V_{t s}^{*} V_{t b} \mathcal{C}_{i} \mathcal{O}_{i}+\ldots
$$

$b \rightarrow s \mu \mu$ effective hamiltonian

$$
b \rightarrow \boldsymbol{s} \gamma\left(^{*}\right): \mathcal{H}_{\Delta F=1}^{S M} \propto \sum V_{t s}^{*} V_{t b} \mathcal{C}_{i} \mathcal{O}_{i}+\ldots
$$

$b \rightarrow s \mu \mu$ effective hamiltonian

$b \rightarrow s \mu \mu$ effective hamiltonian

- $\mathcal{O}_{7}=\frac{e}{g^{2}} m_{b} \overline{\mathbf{s}} \sigma^{\mu \nu}\left(1+\gamma_{5}\right) F_{\mu \nu} b \quad$ [real or soft photon]
- $\mathcal{O}_{9}=\frac{e^{2}}{g^{2}} \overline{\boldsymbol{s}} \gamma_{\mu}\left(1-\gamma_{5}\right) b \bar{\ell} \gamma^{\mu} \ell[b \rightarrow \boldsymbol{s} \mu \mu$ via $Z /$ hard $\gamma \ldots]$
- $\mathcal{O}_{10}=\frac{e^{2}}{g^{2}} \overline{\boldsymbol{s}} \gamma_{\mu}\left(1-\gamma_{5}\right) b \bar{\ell} \gamma^{\mu} \gamma_{5} \ell \quad[b \rightarrow \boldsymbol{s} \mu \mu$ via $Z]$

$b \rightarrow s \mu \mu$ effective hamiltonian

- $\mathcal{O}_{7}=\frac{e}{g^{2}} m_{b} \overline{\mathbf{s}} \sigma^{\mu \nu}\left(1+\gamma_{5}\right) F_{\mu \nu} b \quad$ [real or soft photon]
- $\mathcal{O}_{9}=\frac{e^{2}}{g^{2}} \overline{\boldsymbol{s}} \gamma_{\mu}\left(1-\gamma_{5}\right) b \bar{\ell} \gamma^{\mu} \ell[b \rightarrow \boldsymbol{s} \mu \mu$ via $Z /$ hard $\gamma \ldots]$
- $\mathcal{O}_{10}=\frac{e^{2}}{g^{2}} \overline{\boldsymbol{s}} \gamma_{\mu}\left(1-\gamma_{5}\right) b \bar{\ell} \gamma^{\mu} \gamma_{5} \ell \quad[b \rightarrow s \mu \mu$ via $Z]$
$\mathcal{C}_{7}^{S M}=-0.29, \mathcal{C}_{9}^{S M}=4.1, \mathcal{C}_{10}^{S M}=-4.3 @ \mu_{b}=m_{b}$

$b \rightarrow s \mu \mu$ effective hamiltonian

- $\mathcal{O}_{7}=\frac{e}{g^{2}} m_{b} \overline{\mathbf{s}} \sigma^{\mu \nu}\left(1+\gamma_{5}\right) F_{\mu \nu} b \quad$ [real or soft photon]
- $\mathcal{O}_{9}=\frac{e^{2}}{g^{2}} \overline{\boldsymbol{s}} \gamma_{\mu}\left(1-\gamma_{5}\right) b \bar{\ell} \gamma^{\mu} \ell[b \rightarrow \boldsymbol{s} \mu \mu$ via $Z /$ hard $\gamma \ldots]$
- $\mathcal{O}_{10}=\frac{e^{2}}{g^{2}} \overline{\boldsymbol{s}} \gamma_{\mu}\left(1-\gamma_{5}\right) b \bar{\ell} \gamma^{\mu} \gamma_{5} \ell \quad[b \rightarrow \boldsymbol{s} \mu \mu$ via $Z]$
$\mathcal{C}_{7}^{S M}=-0.29, \mathcal{C}_{9}^{S M}=4.1, \mathcal{C}_{10}^{S M}=-4.3 @ \mu_{b}=m_{b}$

NP changes short-distance \mathcal{C}_{i} for SM or new long-distance ops \mathcal{O}_{i}

- Chirally flipped ($W \rightarrow W_{R}$)
- (Pseudo)scalar $\left(W \rightarrow H^{+}\right)$
- Tensor operators $(\gamma \rightarrow T)$

$$
\mathcal{O}_{7} \rightarrow \mathcal{O}_{7^{\prime}} \propto \bar{s} \sigma^{\mu \nu}\left(1-\gamma_{5}\right) F_{\mu \nu} b
$$

$$
\mathcal{O}_{9}, \mathcal{O}_{10} \rightarrow \mathcal{O}_{S} \propto \bar{s}\left(1+\gamma_{5}\right) b \bar{\ell} \ell, \mathcal{O}_{P}
$$

$$
\mathcal{O}_{9} \rightarrow \mathcal{O}_{T} \propto \bar{s} \sigma_{\mu \nu}\left(1-\gamma_{5}\right) b \bar{\ell} \sigma_{\mu \nu} \ell
$$

Global analysis of $b \rightarrow s \mu \mu$ anomalies

[SDG, Hofer, Matias, Virto]
96 observables in total (LHCb for exclusive, no CP-violating obs)

- $B \rightarrow K^{*} \mu \mu$ (BR, $P_{1,2}, P_{4,5,6,8}^{\prime}, F_{L}$ in 5 large-rec. +1 low-rec. bins)
- $B_{s} \rightarrow \phi \mu \mu\left(\mathrm{BR}, P_{1}, P_{4,6}^{\prime}, F_{L}\right.$ in 3 large-recoil + 1 low-recoil bins)
- $B^{+} \rightarrow K^{+} \mu \mu, B^{0} \rightarrow K^{0} \mu \mu(\mathrm{BR})$
- $B \rightarrow X_{s} \gamma, B \rightarrow X_{s} \mu \mu, B_{s} \rightarrow \mu \mu(\mathrm{BR}), B \rightarrow K^{*} \gamma\left(A_{/}\right.$and $\left.S_{K^{*} \gamma}\right)$

Global analysis of $b \rightarrow s \mu \mu$ anomalies

96 observables in total (LHCb for exclusive, no CP-violating obs)

- $B \rightarrow K^{*} \mu \mu$ (BR, $P_{1,2}, P_{4,5,6,8}^{\prime}, F_{L}$ in 5 large-rec. +1 low-rec. bins)
- $B_{s} \rightarrow \phi \mu \mu\left(\mathrm{BR}, P_{1}, P_{4,6}^{\prime}, F_{L}\right.$ in 3 large-recoil + 1 low-recoil bins)
- $B^{+} \rightarrow K^{+} \mu \mu, B^{0} \rightarrow K^{0} \mu \mu(\mathrm{BR})$
- $B \rightarrow X_{s} \gamma, B \rightarrow X_{s} \mu \mu, B_{s} \rightarrow \mu \mu(\mathrm{BR}), B \rightarrow K^{*} \gamma\left(A_{/}\right.$and $\left.S_{K^{*} \gamma}\right)$

Frequentist analysis

- $\mathcal{C}_{i}\left(\mu_{\text {ref }}\right)=\mathcal{C}_{i}^{S M}+\mathcal{C}_{i}^{N P}$, with $\mathcal{C}_{i}^{N P}$ assumed to be real
- Experimental correlation matrix provided
- Theoretical correlation matrix treating all theo errors (form factors...) as Gaussian random variables
- Various hypotheses "NP in some \mathcal{C}_{i} only" to be compared with SM

Some favoured scenarios (1)

- p-value $=71 \%$ (goodness of fit), pull ${ }_{S M}=4.5 \sigma$ (metrology)
- BRs and angular obs both favour $\mathcal{C}_{9}^{N P} \simeq-1$ in all "good" scenarios
- results in agreement with [Altmanshoffer, Straub] and [Hurth, Mahmoudi, Neshatpour]

Some favoured scenarios (2)

- Different processes and different kinematic ranges
involving different theoretical tools
- $B \rightarrow K^{*} \mu \mu$ tighter than $B_{s} \rightarrow \phi \mu \mu$, tighter than $B \rightarrow K \mu \mu$
- Large recoil driving the discussion, but $[1,6]$ bins already providing bulk of the effect, and low-recoil also in favour of $\mathcal{C}_{9}^{\mathrm{NP}}<0$
[Horgan et al., Bouchard et al., Altmannshofer and Straub]

Lepton-flavour (non) universality

- Adding LHCb $B R(B \rightarrow K e e)$ and large-recoil obs for $B \rightarrow K^{*} e e$
- For several favoured scenarios, SM pull increases by $\sim 0.5 \sigma$
- Favours violation of LFU, compatible with no NP in $b \rightarrow$ see

Controversies (1)

Controversies (1)

Controversies (1)

Uncertainties in form factors
[Camalich, Jäger;Matias, Virto,Hofer,Capdevilla,SDG]

- EFT with limit $m_{b} \rightarrow \infty$ useful to correlate form factors with $O\left(\Lambda / m_{b}\right)$ power corrections to this limit
- Corrections with large impact on optimised observables ?

Controversies (1)

Uncertainties in form factors
[Camalich, Jäger;Matias,Virto,Hofer,Capdevilla,SDG]

- EFT with limit $m_{b} \rightarrow \infty$ useful to correlate form factors with $O\left(\Lambda / m_{b}\right)$ power corrections to this limit
- Corrections with large impact on optimised observables ?
- No, but accurate predictions require
- appropriate definition of form factors in $m_{b} \rightarrow \infty$ limit
- power corrections varied in agreement with info on form factors
- proper propagation of correlations induced among form factors

Controversies (2)

Controversies (2)

Form factors (local)

Charm loop (non-local)

Uncertainties from charm loops
[Ciuchini, Fedele, Franco, Mishima, Paul, Silvestrini, Valli; Matias,Virto,Hofer,Capdevilla,SDG]

- Effect well-known (loop process, charmonium resonances)
- Yields q^{2} - and hadron-dependent contrib with $\mathcal{O}_{7,9}$-like structures
- order of magnitude from [Khodjamirian et al.] used in [SDG, Hofer, Matias, virto]
- other global fits use q^{2}-dependent param. with $O\left(\Lambda / m_{b}\right)$ estimates

Controversies (2)

Form factors (local)

Charm loop (non-local)

Uncertainties from charm loops
[Ciuchini, Fedele, Franco, Mishima, Paul, Silvestrini, Valli; Matias,Virto,Hofer,Capdevilla,SDG]

- Effect well-known (loop process, charmonium resonances)
- Yields q^{2} - and hadron-dependent contrib with $\mathcal{O}_{7,9}$-like structures
- order of magnitude from [Khodjamirian et al.] used in [SDG, Hofer, Matias, virto]
- other global fits use q^{2}-dependent param. with $O\left(\Lambda / m_{b}\right)$ estimates
- Bayesian extraction from data performed by [ciuchini et al.]
- q^{2}-dependence present, significant, following [khodjamirian et al.]
- actually not contradicting results of global fits, though less precise

Anomaly patterns

		R_{K}	$\left\langle P_{5}^{\prime}\right\rangle_{[4,6],[6,8]}$	$B R\left(B_{s} \rightarrow \phi \mu \mu\right)$	low recoil $B R$	Best fit now
$\mathcal{C}_{9}^{\mathrm{NP}}$	+					
$\mathcal{C}_{10}^{\mathrm{NP}}$	+	\checkmark	\checkmark		\checkmark	\checkmark
$\mathcal{C}_{9^{\prime}}^{\mathrm{NP}}$	+		-	\checkmark	\checkmark	\checkmark

- assuming no NP in $b \rightarrow$ see
- $\mathcal{C}_{9}^{\mathrm{NP}}<0$ consistent with all anomalies
- lower sensitivity to other \mathcal{C}_{i} (cannot be mimicked by long dist), with \mathcal{C}_{10} most promising but no consistent picture yet
- global agreement with other fits performed
by [Altmanshoffer, Straub] and [Hurth, Mahmoudi, Neshatpour]

Quo vadis ?

NP interpretations

Improvement needed for form factors in $b \rightarrow c \ell \nu$, but no consistent global alternative from SM/long-dist. for $b \rightarrow$ s $\ell \ell$

- hadronic effects ($B \rightarrow K^{*} \mu \mu, B_{s} \rightarrow \phi \mu \mu$ at low and large recoils)
- statistical fluctuation $\left(R_{K}\right)$
- bad luck (\mathcal{C}_{9} can accomodate all discrepancies by chance)

NP interpretations

Improvement needed for form factors in $b \rightarrow c \neq \nu$, but no consistent global alternative from SM/long-dist. for $b \rightarrow s \ell$

- hadronic effects ($B \rightarrow K^{*} \mu \mu, B_{s} \rightarrow \phi \mu \mu$ at low and large recoils)
- statistical fluctuation $\left(R_{K}\right)$
- bad luck (\mathcal{C}_{9} can accomodate all discrepancies by chance)

NP models with new scale around TeV
often trying to connect $b \rightarrow s \ell^{+} \ell^{-}$and $b \rightarrow c \ell \bar{\nu}_{\ell}$ (3rd vs 2nd gen)

- Z^{\prime}, W^{\prime} bosons (larger gauge group)
- Partial compositeness (mixing between known and extra fermions)
- Leptoquarks (coupling to a quark and a lepton)
- MSSM susy definitely not favoured ...

[Buras, De Fazio, Girrbach, Blanke, Altmannshofer, Straub, Crivellin, D’Ambrosio, Becirevic, Sumensari, Isidori, Greljo...]

What next?

$b \rightarrow c \ell \bar{\nu}_{\ell} \quad$ [Freytsis, Ligeti,Ruderman; Fajfer, Kamenik, Nisandzic, Becirevic, Tayduganov...]

- Better control of form factors in $B \rightarrow D^{*} \ell \bar{\nu}_{\ell}$
- More measurements from angular analyses

What next?

$b \rightarrow c \ell \bar{\nu}_{\ell}$
[Freytsis, Ligeti,Ruderman; Fajfer, Kamenik, Nisandzic, Becirevic, Tayduganov...]

- Better control of form factors in $B \rightarrow D^{*} \ell \bar{\nu}_{\ell}$
- More measurements from angular analyses

- Measurements (LHCb, Belle) of LFU-violating quantities $R_{K^{*}}$, but also cleaner quantities like $Q_{i}=P_{i}^{\mu}-P_{i}^{e}$ (null tests of the SM)
- cc̄ dynamics from data (LFU ratios, non-res/resonant inters)
- Further lattice and LCSR determinations for the form factors

Outlook

$b \rightarrow s \ell^{+} \ell^{-}$and $b \rightarrow c \ell \bar{\nu}_{\ell}$

- Many observables, more or less sensitive to hadronic unc.
- Interesting deviations from SM expectations
- Global fit to $b \rightarrow c \ell \bar{\nu}$ still only limited amount of information
- Global fit to $b \rightarrow s \ell^{+} \ell^{-}$in favour of large deviation for \mathcal{C}_{9} in $b \rightarrow s \mu \mu$ and does not seem to favour hadronic explanations
- Many models proposed for either or both sets of deviations

Where to go ?

- Measurements of q^{2} and angular dependence
- Other LFU violating observables
- Charm-loop for $b \rightarrow \boldsymbol{s} \mu \mu$ (estimates, or clean observables)
- Provide lattice form factors over larger range (large recoil ?)
- Look for new observables (CP-violation, time-dependence, LFUV and LFV observables...)

> A lot of (interesting) work on the way !

Flavor Physics and New Physics Searches

26-30 Sentember 2016, Fréus, France

Information and Registration on http://indico.in2p3.fr/e/FlavorNewPhys

UNIVERSITE

A few recent analyses

Statistical approach	[SDG, Hofer Matias, Virto] Frequentist $\Delta \chi^{2}$	Straub \& Altmannshofer] Frequentist $\Delta \chi^{2}$	[Hurth, Mahmoudi, Neshatpour] Frequentist $\Delta \chi^{2} \& \chi^{2}$
Data	LHCb	Averages	LHCb
$B \rightarrow K^{*} \mu \mu$ data	P_{i}, Max likelihood	S_{i}, Max likelihood	S_{i}, Max I.\& moments
Form	B-meson LCSR	[Bharucha, Straub, Zwicky]	[Bharucha, Straub, Zwicky]
factors	[Khodjamirian et al.] + lattice QCD	fit light-meson LCSR + lattice QCD	
Theo approach	soft and full ff	full ff	soft and full ff
cc̄ large recoil	magnitude from [Khodjamirian et al.]	polynomial param	polynomial param
$\mathcal{C}_{9}^{\mu} 1 \mathrm{D} 1 \sigma$	[-1.29,-0.87]	[-1.54,-0.53]	[-0.27,-0.13]
pull ${ }_{\text {SM }}$	4.5 \%	3.7 \%	4.2σ
$\begin{gathered} \text { "good } \\ \text { scenarios" } \end{gathered}$	see before	$\begin{gathered} \mathcal{C}_{9}^{\mathbb{N P}}, \mathcal{C}_{9}^{\mathbb{N P}}=-\mathcal{C}_{10}^{\mathrm{NP}} \\ \left(\mathcal{C}_{9}^{\mathrm{NP}}, \mathcal{C}_{9^{\prime}}^{N P}\right),\left(\mathcal{C}_{9}, \mathcal{C}_{10}^{\mathrm{NP}}\right) \end{gathered}$	$\left(\mathcal{C}_{9}^{N P}, \mathcal{C}^{\text {NP }}{ }^{\text {NP }}\right),\left(\mathcal{C}_{9}^{\mathrm{NP}}, \mathcal{C}_{10}^{\mathrm{NP}}\right)$

\Longrightarrow Good overall agreement for the results of the three fits

$b \rightarrow s \mu \mu:$ 1D hypotheses

- SM pull: $\chi^{2}\left(\mathcal{C}_{i}=0\right)-\chi_{\text {min }}^{2}$ (metrology, how far best fit from SM ?)
- p-value: $\chi_{\text {min }}^{2}$ and $N_{\text {dof }}$ (goodness of fit, how good is best fit?)

Coefficient	Best Fit Point	3σ	Pull ${ }_{\text {SM }}$	p-value (\%)
SM	-	-	-	16.0
$\mathcal{C}_{7}^{\mathrm{NP}}$	-0.02	[-0.07, 0.03]	1.2	17.0
$\mathcal{C}_{9}^{\text {NP }}$	-1.09	[-1.67, -0.39]	4.5	63.0
$\mathcal{C}_{10}^{\mathrm{NP}}$	0.56	[-0.12, 1.36]	2.5	25.0
$\mathcal{C}_{9}^{\mathrm{NP}}=\mathcal{C}_{10}^{\mathrm{NP}}$	-0.22	[-0.74, 0.50]	1.1	16.0
$\mathcal{C}_{9}^{\mathrm{NP}}=-\mathcal{C}_{10}^{\mathrm{NP}}$	-0.68	[-1.22, -0.18]	4.2	56.0
$\mathcal{C}_{9^{\prime}}{ }^{\mathrm{NP}}=\mathcal{C}_{10^{\prime}}^{\mathrm{NP}}$	-0.07	[-0.86, 0.68]	0.3	14.0
$\mathcal{C}_{9^{\prime}}^{\mathrm{NP}}=-\mathcal{C}_{10^{\prime}}^{\mathrm{NP}}$	0.19	[-0.17, 0.55]	1.6	18.0
$\mathcal{C}_{9}^{\mathrm{NP}}=-\mathcal{C}_{9}{ }^{\mathrm{NP}}$	-1.06	[-1.60, -0.40]	4.8	72.0
$\begin{aligned} & \mathcal{C}_{9}^{\mathrm{NP}}=-\mathcal{C}_{10}^{\mathrm{NP}} \\ & =-\mathcal{C}^{\mathrm{NP}}=-\mathcal{C}^{\mathrm{NP}} \end{aligned}$	-0.69	[-1.37, -0.16]	4.1	53.0
	-0.19	[-0.55, 0.15]	1.7	19.0

$b \rightarrow s \mu \mu:$ 2D hypotheses

- Pull for the SM point in each scenario from $\chi_{\text {min }}^{2}-\chi^{2}\left(\mathcal{C}_{i}=\mathcal{C}_{j}=0\right)$
- p-value from $\chi_{\text {min }}^{2}$ and $N_{\text {dof }}$
- several favoured scenarios, all with $\mathcal{C}_{9}^{N P}$, hard to single out one

Coefficient	Best Fit Point	Pull ${ }_{\text {SM }}$	p-value (\%)
SM	-	-	16.0
$\left(\mathcal{C}_{7}{ }^{\mathrm{NP}}, \mathcal{C}_{9}^{\mathrm{NP}}\right)$	$(-0.00,-1.07)$	4.1	61.0
$\left(\mathcal{C}_{9}^{\mathrm{NP}}, \mathcal{C}_{10}^{\mathrm{NP}}\right)$	$(-1.08,0.33)$	4.3	67.0
$\left(\mathcal{C}_{9}^{\mathrm{NP}}, \mathcal{C}_{7 \prime}^{\mathrm{NP}}\right)$	(-1.09, 0.02)	4.2	63.0
$\left(\mathcal{C}_{9}^{\mathrm{NP}}, \mathcal{C}_{9^{\prime}}{ }^{\text {PP }}\right.$)	($-1.12,0.77$)	4.5	72.0
$\left(\mathcal{C}_{9}^{\text {NP }}, \mathcal{C}_{10^{\prime}}{ }^{\text {NP }}\right.$)	$(-1.17,-0.35)$	4.5	71.0
$\left(\mathcal{C}_{9}^{\mathrm{NP}}=-\mathcal{C}_{9^{\prime}}^{\mathrm{NP}}, \mathcal{C}_{10}^{\mathrm{NP}}=\mathcal{C}_{10^{\prime}}^{\mathrm{NP}}\right)$	$(-1.15,0.34)$	4.7	75.0
$\left(\mathcal{C}_{9}^{\mathrm{NP}}=-\mathcal{C}_{9^{\prime}}^{\mathrm{NP}}, \mathcal{C}_{10}^{\mathrm{NP}}=-\mathcal{C}_{10^{\prime}}^{\mathrm{NP}}\right)$	($-1.06,0.06$)	4.4	70.0
$\left(\mathcal{C}_{9}^{\mathrm{NP}}=\mathcal{C}_{9^{\prime}}^{\mathrm{NP}}, \mathcal{C}_{10}^{\mathrm{NP}}=\mathcal{C}_{10^{\prime}}^{\text {NP }}\right.$)	($-0.64,-0.21$)	3.9	55.0
$\left(\mathcal{C}_{9}^{\mathrm{NP}}=-\mathcal{C}_{10}^{\mathrm{NP}}, \mathcal{C}_{9^{\prime}}^{\mathrm{NP}}=\mathcal{C}_{10^{\prime}}^{\mathrm{NP}}\right)$	($-0.72,0.29$)	3.8	53.0

$b \rightarrow s \mu \mu: 6 \mathrm{D}$ hypothesis

Letting all 6 Wilson coefficients vary (but only real)

Coefficient	1σ	2σ	3σ	Preference
$c^{\text {NP }}$	[-0.02, 0.03]	[-0.04, 0.04]	[-0.05, 0.08]	no p
$\mathcal{C s}^{\text {NP }}$	[-1.4, -1.0]	[-1.7, -0.7]	[-2.2, -0.4]	negative
$\mathcal{C l o b}_{10}^{\text {NP }}$	[-0.0, 0.9]	[-0.3, 1.3]	[-0.5, 2.0]	positive
	[-0.02, 0.03]	[-0.04, 0.06]	[-0.06, 0.07]	no pref
$c_{9,}^{\text {NP }}$	[0.3, 1.8]	[-0.5, 2.7]	[-1.3, 3.7]	positive
$\mathcal{C}_{10}^{\mathrm{NP}}$	[-0.3, 0.9]	[-0.7, 1.3]	[-1.0, 1.6]	no pref

- \mathcal{C}_{9} is consistent with SM only above 3σ
- All others are consistent with zero at 1σ except for $\mathcal{C}_{9^{\prime}}$ at 2σ
- Pull ${ }_{\text {SM }}$ for the 6D fit is 3.6σ

Sensitivity to form factors

- P_{i} designed to have limited sensitivity to form factors
- S_{i} CP-averaged version of J_{i}

$$
P_{1}=\frac{2 S_{3}}{1-F_{L}} \quad F_{L}=\frac{J_{1 c}+\bar{J}_{1 c}}{\Gamma+\bar{\Gamma}} \quad S_{3}=\frac{J_{3}+\bar{J}_{3}}{\Gamma+\bar{\Gamma}}
$$

Illustration for arbritrary NP point for two sets of LCSR form factors:
green [Ball, Zwicky] versus gray [Khodiamirian et al.]
more or less easy to discriminate against yellow (SM prediction)

Cross-checks: q^{2}-dependence of \mathcal{C}_{9}

- $\mathcal{C}_{9}^{\mathrm{NP}}$ bin by bin assuming NP in $\mathcal{C}_{9}^{\mathrm{NP}}, \mathcal{C}_{9}^{\mathrm{NP}}=-\mathcal{C}_{9^{\prime}}^{\mathrm{NP}}$ or $\mathcal{C}_{9}^{\mathrm{NP}}=-\mathcal{C}_{10}^{\mathrm{NP}}$

Cross-checks: q^{2}-dependence of \mathcal{C}_{9}

- $\mathcal{C}_{9}^{\mathrm{NP}}$ bin by bin assuming NP in $\mathcal{C}_{9}^{\mathrm{NP}}, \mathcal{C}_{9}^{\mathrm{NP}}=-\mathcal{C}_{9^{\prime}}^{\mathrm{NP}}$ or $\mathcal{C}_{9}^{\mathrm{NP}}=-\mathcal{C}_{10}^{\mathrm{NP}}$
- Up: Assuming shift in \mathcal{C}_{9} only tests need for hadronic contrib:
- NP in \mathcal{C}_{9} from short distances, q^{2}-independent
- Hadronic physics in \mathcal{C}_{9} is related to $c \bar{c}$ dynamics, (likely) q^{2}-dependent

Cross-checks: q^{2}-dependence of \mathcal{C}_{9}

- $\mathcal{C}_{9}^{\mathrm{NP}}$ bin by bin assuming NP in $\mathcal{C}_{9}^{\mathrm{NP}}, \mathcal{C}_{9}^{\mathrm{NP}}=-\mathcal{C}_{9^{\prime}}^{\mathrm{NP}}$ or $\mathcal{C}_{9}^{\mathrm{NP}}=-\mathcal{C}_{10}^{\mathrm{NP}}$
- Up: Assuming shift in \mathcal{C}_{9} only tests need for hadronic contrib:
- NP in \mathcal{C}_{9} from short distances, q^{2}-independent
- Hadronic physics in \mathcal{C}_{9} is related to $c \bar{c}$ dynamics, (likely) q^{2}-dependent
- Mid, down: correlated shift in \mathcal{C}_{9} and other \mathcal{C}_{i} (never q^{2}-depend: are NP scenarios consistent?)

Cross-checks: q^{2}-dependence of \mathcal{C}_{9}

- $\mathcal{C}_{9}^{\mathrm{NP}}$ bin by bin assuming NP in $\mathcal{C}_{9}^{\mathrm{NP}}, \mathcal{C}_{9}^{\mathrm{NP}}=-\mathcal{C}_{9^{\prime}}^{\mathrm{NP}}$ or $\mathcal{C}_{9}^{\mathrm{NP}}=-\mathcal{C}_{10}^{\mathrm{NP}}$
- Up: Assuming shift in \mathcal{C}_{9} only tests need for hadronic contrib:
- NP in \mathcal{C}_{9} from short distances, q^{2}-independent
- Hadronic physics in \mathcal{C}_{9} is related to $c \bar{c}$ dynamics, (likely) q^{2}-dependent
- Mid, down: correlated shift in \mathcal{C}_{9} and other \mathcal{C}_{i} (never q^{2}-depend: are NP scenarios consistent ?)
- No indication of q^{2}-dependent contribution

Controversies: charm-loop contribution

$c \bar{c}$ contributions to helicity ampl g_{i} as q^{2}-polynomial, extracting params from Bayesian to data "fit"
[Ciuchini, Fedele, Franco, Mishima, Paul, Silvestrini, Valli]

- constrained fit: imposing $\mathrm{SM}+\Delta \mathcal{C}_{9}^{B K\left({ }^{*}\right)}{ }_{\text {[Khodjamirian et al.] }}$ at $q^{2}<1$ GeV^{2} yields q^{2}-dep $c \bar{c}$ contribution, with "large" coefs for q^{4}

Controversies: charm-loop contribution

$c \bar{c}$ contributions to helicity ampl g_{i} as q^{2}-polynomial, extracting params from Bayesian to data "fit"

[Ciuchini, Fedele, Franco, Mishima, Paul, Silvestrini, Valli]

- constrained fit: imposing $\mathrm{SM}+\Delta \mathcal{C}_{9}^{B K\left({ }^{*}\right)}{ }_{\text {[Khodjamirian et al.] }}$ at $q^{2}<1$ GeV^{2} yields q^{2}-dep $c \bar{c}$ contribution, with "large" coefs for q^{4}
- unconstrained fit: polynomail agrees with $\Delta \mathcal{C}_{9}^{B K\left({ }^{*}\right)}+\operatorname{large} \operatorname{cst} \mathcal{C}_{9}^{N P}$ \Longrightarrow constr. fit forced at low q^{2}, compensation skewing high q^{2}

Controversies: charm-loop contribution

$c \bar{c}$ contributions to helicity ampl g_{i} as q^{2}-polynomial, extracting params from Bayesian to data "fit"
[Ciuchini, Fedele, Franco, Mishima, Paul, Silvestrini, Valli]

- constrained fit: imposing $\mathrm{SM}+\Delta \mathcal{C}_{9}^{B K\left({ }^{*}\right)}{ }_{\text {[Khodiamirian et al.] }}$ at $q^{2}<1$ GeV^{2} yields q^{2}-dep $c \bar{c}$ contribution, with "large" coefs for q^{4}
- unconstrained fit: polynomail agrees with $\Delta \mathcal{C}_{9}^{B K\left({ }^{*}\right)}+$ large cst $\mathcal{C}_{9}^{N P}$ \Longrightarrow constr. fit forced at low q^{2}, compensation skewing high q^{2}
- no explanation for R_{K} or deviations in low-recoil BRs
- data on $B \rightarrow K^{*} \mu \mu$ to fix q^{2}-polynomial before any prediction

More on very large power corrections (1)

- Scheme: choice of definition for the two soft form factors

$$
\left\{\xi_{\perp}, \xi_{\|}\right\}=\left\{V, a_{1} A_{1}+a_{2} A_{2}\right\},\left\{T_{1}, A_{0}\right\}, \ldots
$$

- Power corrections for the other form factors from dimensional estimates or fit to other determinations (LCSR)

$$
F\left(q^{2}\right)=F^{\mathrm{soft}}\left(\xi_{\perp, \|}\left(q^{2}\right)\right)+\Delta F^{\alpha_{s}}\left(q^{2}\right)+a_{F}+b_{F} \frac{q^{2}}{m_{B}^{2}}+\ldots
$$

- For some schemes, large(r) uncertainties found for some observables [Camalich, Jäger]

More on very large power corrections (1)

- Scheme: choice of definition for the two soft form factors

$$
\left\{\xi_{\perp}, \xi_{\| \|}\right\}=\left\{V, a_{1} A_{1}+a_{2} A_{2}\right\},\left\{T_{1}, A_{0}\right\}, \ldots
$$

- Power corrections for the other form factors from dimensional estimates or fit to other determinations (LCSR)

$$
F\left(q^{2}\right)=F^{\text {soft }}\left(\xi_{\perp, \|}\left(q^{2}\right)\right)+\Delta F^{\alpha_{s}}\left(q^{2}\right)+a_{F}+b_{F} \frac{q^{2}}{m_{B}^{2}}+\ldots
$$

- For some schemes, large(r) uncertainties found for some observables [Camaich, Jagere]

Observables are scheme independent, but
procedure to compute them can be either scheme dependent or not

- Option 1: Include all correlations among error power corrections
- Option 2: Assign 10\% uncorrelated uncertainties for pc
- 1 hinges on detail of ff determination, 2 depends on scheme ($a_{i}=b_{i}=0$ for different form factors in each scheme)

More on very large power corrections (2)

* correlations from large-recoil sym.
$\rightarrow \xi_{\perp, \|}, \Delta F^{\mathrm{PC}}$ uncorr.
Full LCSR
information
3
$\star \Delta F^{\mathrm{PC}}=F \times \mathcal{O}\left(\Lambda / m_{B}\right)$
$\star \Delta F^{\mathrm{PC}}$ from LCSR
\star correlations from large-recoil sym.
$\rightarrow \xi_{\perp, \|}, \Delta F^{\mathrm{PC}}$ uncorr.

2
$\star \Delta F^{\mathrm{PC}}$ from LCSR
\star correlations from LCSR $\rightarrow \xi_{\perp, \|}, \Delta F^{\mathrm{PC}}$ corr.

More on very large power corrections (2)

Model

independent

$\star \Delta F^{\mathrm{PC}}=F \times \mathcal{O}\left(\Lambda / m_{B}\right)$ $\sim F \times 10 \%$

* correlations from large-recoil sym.
$\rightarrow \xi_{\perp, \|}, \Delta F^{\mathrm{PC}}$ uncorr.

$P_{5}^{\prime}[4.0,6.0]$	scheme 1	scheme 2
1	-0.72 ± 0.05	-0.72 ± 0.12
1	-0.72 ± 0.03	-0.72 ± 0.03
2	-0.72 ± 0.03	-0.72 ± 0.03
3	-0.72 ± 0.03	

2
$\star \Delta F^{\mathrm{PC}}$ from LCSR
\star correlations from large-recoil sym.
$\rightarrow \xi_{\perp, \|}, \Delta F^{\mathrm{PC}}$ uncorr.

Full LCSR
information

3
$\star \Delta F^{\mathrm{PC}}$ from LCSR
\star correlations from LCSR $\rightarrow \xi_{\perp, \|}, \Delta F^{\mathrm{PC}}$ corr.

- using [Bharucha, Straub, Zwicky] (correlations provided)
- 2 schemes defining $\xi_{\|, \perp}$
- expected magnitude for pc
- scheme indep. restored if ΔF^{PC} from LCSR
- ff in 1 at odds with LCSR

NP interpretations: leptoquarks (1)

Vector leptoquark $(3,2)_{2 / 3}$

- $g_{s \mu}, g_{b \mu}, g_{b \tau}$ only large couplings
- both R_{K} and $R_{D\left({ }^{*}\right)}$ at tree level
- flavour constraints: $t \rightarrow \mathrm{~b} \tau^{+} \nu$, LFU tests for kaon, $B \rightarrow K^{(*)} \bar{\nu} \nu$, $B \rightarrow K \mu \tau, b \rightarrow c \mu^{-} \bar{\nu} \ldots$

NP interpretations: leptoquarks (2)

Scalar leptoquark $(3,1)_{-1 / 3}$

- near 1 TeV with $O(1)$ generation-diagonal couplings
- tree-level $b \rightarrow c \tau \nu, b \rightarrow s \nu \nu$ (and other semileptonic decays)
- loop-level $b \rightarrow s \mu \mu,(g-2)_{\mu}$
- need discrete symmetry to avoid proton decay
- bounds from $B \rightarrow K\left({ }^{*}\right) \nu \bar{\nu}, D^{0} \rightarrow \mu \mu, D^{+} \rightarrow \pi^{+} \mu \mu$

NP interpretations: Z^{\prime} coupling

Z^{\prime} coupling to $\mu \mu$ and $\bar{b} s: \bar{f}_{i} \gamma^{\mu}\left[\Delta_{L}^{f_{i} f_{j}} P_{L}+\Delta_{R}^{f_{i} f_{j}} P_{R}\right] f_{j} Z_{\mu}^{\prime}$

- contributes to \mathcal{C}_{9} and \mathcal{C}_{10} via $\Delta_{L}^{b s} \Delta_{L, R}^{\mu \mu}$
- $\Delta_{L}^{b s}$ constrained from B_{s} mixing
- $\Delta_{L}^{q q}$ for $q=u, d$ constrained by $q_{L} \bar{q}_{L} \rightarrow \mu \mu$ at ATLAS/CMS
- $M_{Z^{\prime}} \geq 3 \mathrm{TeV}$ with weak-interaction strength couplings to u, d, but strong coupling to muons $\Delta_{L}^{\mu \mu} \geq 1$
- Same with vector-like coupling to muons

- blue shaded: excluded by $Z^{\prime} \rightarrow \mu \mu$,
- above red: excluded by contact interactions
- upper axis: minimal Z^{\prime} coupling to $\mu_{L} \mu_{L}$ for C_{9}, C_{10}

NP interpretations: heavy gauge bosons

Heavy gauge bosons from $\mathrm{G}(221)$

- Gauge group symmetry breaking
- L-breaking: $S U_{L}(2) \otimes S U_{H}(2) \otimes U(1)_{H} \rightarrow S U_{L}(2) \otimes U(1)_{Y}$
- Y-breaking: $S U_{1}(2) \otimes S U_{2}(2) \otimes U(1)_{Y} \rightarrow \otimes S U_{L}(2) \otimes U(1)_{Y}$
- Non universality from
- gauge coup. (non-univ. embedding of SM fermions in larger group)
- Yukawas (non-universal mixing between SM fermions and extra particles coupled to new vector bosons)

NP interpretations: heavy gauge bosons

Heavy gauge bosons from $\mathrm{G}(221)$

- Gauge group symmetry breaking
- L-breaking: $S U_{L}(2) \otimes S U_{H}(2) \otimes U(1)_{H} \rightarrow S U_{L}(2) \otimes U(1)_{Y}$
- Y-breaking: $S U_{1}(2) \otimes S U_{2}(2) \otimes U(1)_{Y} \rightarrow \otimes S U_{L}(2) \otimes U(1)_{Y}$
- Non universality from
- gauge coup. (non-univ. embedding of SM fermions in larger group)
- Yukawas (non-universal mixing between SM fermions and extra particles coupled to new vector bosons)

	L-breaking	Y-breaking
gauge coupling non univ	No left-handed current	Nonperturbativity
Yukawa non univ	No GIM	OK

NP interpretations: heavy gauge bosons

Heavy gauge bosons from $\mathrm{G}(221)$

- Gauge group symmetry breaking
- L-breaking: $S U_{L}(2) \otimes S U_{H}(2) \otimes U(1)_{H} \rightarrow S U_{L}(2) \otimes U(1)_{Y}$
- Y-breaking: $S U_{1}(2) \otimes S U_{2}(2) \otimes U(1)_{Y} \rightarrow \otimes S U_{L}(2) \otimes U(1)_{Y}$
- Non universality from
- gauge coup. (non-univ. embedding of SM fermions in larger group)
- Yukawas (non-universal mixing between SM fermions and extra particles coupled to new vector bosons)

	L-breaking	Y-breaking
gauge coupling non univ	No left-handed current	Nonperturbativity
Yukawa non univ	No GIM	OK

Explicit model (but no pheo analysis) with

- $S U_{C}(3) \otimes S U_{1}(2) \otimes S U_{2}(2) \otimes U(1)_{Y}$
- breaking through $\phi=(1,1,2)_{1 / 2}$ and $\Phi=(1,2, \overline{2})_{0}$
- several generations of vector-like fermions

$$
Q_{L}, Q_{R}=(3,2,1)_{1 / 6}, L_{L}, L_{R}=(1,2,1)_{-1 / 2}
$$

- left-handed fermions: anomalous W, Z couplings $+W^{\prime}, Z^{\prime}$ coupl

NP interpretations: partial compositeness

[Niehoff, Stangl, Straub, Butazzo, Greljo, Isidori, Marzocca]

- SM-like elementary sector
- strongly interacting BSM sector with symmetry H
- elementary fermions mix with fermion composite operators (measured by s_{L})
- several examples fitting both $R_{D\left({ }^{*}\right)}$ and R_{K}

- mixing between quarks and technibaryons
- up to slight fine tuning

$\left|V_{u b}\right|$ from semileptonic B decays

Two ways of getting $\left|V_{u b}\right|$:

- Inclusive : $b \rightarrow u \ell \nu+$ Operator Product Expansion
- Exclusive : $B \rightarrow \pi \ell \nu+$ Form factors
[J. A. Bailey et al., Fermilab-MILC]
$\left|V_{u b}\right|_{\text {inc }}=4.45 \pm 0.18 \pm 0.31$
$\left|V_{u b}\right|_{e x c}=3.72 \pm 0.09 \pm 0.22$
$\left|V_{u b}\right|_{\text {ave }}=4.01 \pm 0.08 \pm 0.22$
with all values $\times 10^{-3}$
- HFAG, with theory errors added linearly
- systematics combined using Educated Rfit

Indirect det. from global fit: $\left|V_{u b}\right|_{f i t}=3.57_{-0.14}^{+0.15}(4 \%)$

$\left|V_{c b}\right|$ from semileptonic B decays

Two ways of getting $\left|V_{c b}\right|$:

- Inclusive : $b \rightarrow c \ell \nu+$ OPE for moments
- Exclusive : $B \rightarrow D\left(^{*}\right) \ell \nu+$ Form factors
[HFAG, Gambino and Schwanda]
[J. A. Bailey et al., Fermilab-MILC]

$$
\begin{aligned}
\left|V_{c b}\right|_{\text {inc }} & =42.42 \pm 0.44 \pm 0.74 \\
\left|V_{c b}\right|_{\text {exc }} & =38.99 \pm 0.49 \pm 1.17
\end{aligned}
$$

$$
\left|V_{c b}\right|_{\text {ave }}=41.00 \pm 0.33 \pm 0.74
$$

$$
\text { with all values } \times 10^{-3}
$$

- HFAG, with theory errors added linearly
- systematics combined using Educated Rfit

Indirect det. from global fit: $\left|V_{c b}\right|_{f i t}=43.0_{-1.4}^{+0.4}(4 \%)$
$\left|V_{u b}\right|,\left|V_{c b}\right|$

- Information on $\left|V_{u b}\right|$ from $\operatorname{Br}(B \rightarrow \tau \nu)$
- New LHCb result on $\left|V_{u b} / V_{c b}\right|$ from $\Gamma\left(\Lambda_{b} \rightarrow p \mu \nu\right) /$ $\Gamma\left(\Lambda_{b} \rightarrow \Lambda_{c} \mu \nu\right)$ at high q^{2}
[Detmold, Lehner and Meinel]
- Global fit favours exclusive $\left|V_{u b}\right|_{S L}$ but inclusive $\left|V_{c b}\right|_{S L}$

