BSM searches in the BEH sector in CMS

BSM physics in the scalar sector:

- Test the discovered scalar boson at 125 GeV :
- Is Higgs deviating from SM ?
\Rightarrow measure $\mathrm{H}(125)$ properties
- Exotic decays of the H(125)

- Search for more scalar bosons
\Rightarrow Various BSM models are predicting more than 1 scalar boson

Outline:

- High mass searches:
- combination of run I high mass searches
- high mass searches @ 13 TeV
- Searches for exotic decay of the Higgs @ 13 TeV:
- Higgs to Invisible
- Lepton Flavour Violating decay
- H(125) to light pseudo-scalars

Heavy Scalar: 2HDM benchmark model

Combination performed in benchmark model

- 2HDM:

- addition of a Higgs doublet with the same quantum numbers than the SM one
- 5 degrees of freedom in the scalar sector: 2 scalars (h, H) + 1 pseudo-scalar (A) +2 charged $\left(\mathrm{H}^{+}, \mathrm{H}^{-}\right)$
- 2 main type of models:
* type-I, the $\operatorname{SU}(2)_{\mathrm{L}}$ doublets couple to both up- and down-type fermions equally
* type-II, one doublet couples exclusively to up-type and the other exclusively to down-type fermions
- benchmark constrain on the parameters:

Parameter	Value (type I or type II)
m_{h}	125.09 GeV
m_{A}	$m_{H}+100 \mathrm{GeV}$
$m_{H^{+}}$	$m_{H}+100 \mathrm{GeV}$
$\cos (\beta-\alpha)$	0.1
m_{12}^{2}	$\max \left(1-\tan \beta^{-2}, 0\right) \cdot \frac{1}{2} \sin (2 \beta)\left(m_{A}^{2}+\lambda_{5} v^{2}\right)$

Parameter space chosen where different searches are complementary and theory is consistent

- MSSM:
- type-II: fermion-boson symmetry fixes all mass relations between the Higgs bosons and the angle α, at tree-level
- when m_{h} fixed $\rightarrow 2$ parameters left free: m_{A} and $\tan \beta$

Constrains from $\mathbf{H}(125)$

CMS measurements of $\mathrm{H}(125)$ couplings strongly constrain heavy scalar sector

$$
\begin{gathered}
\boldsymbol{\kappa}_{\mathrm{i}}=\text { coupling modifier } \\
\left(\boldsymbol{\kappa}_{\mathrm{i}}=1 \text { in Standard Model }\right)
\end{gathered}
$$

	2HDM		hMSSM
	type I	type II/MSSM	
κ_{V}	$\sin (\beta-\alpha)$	$\sin (\beta-\alpha)$	$\frac{s_{d}+s_{u} \tan \beta}{\sqrt{1+\tan ^{2} \beta}}$
κ_{u}	$\cos (\alpha) / \sin (\beta)$	$\cos (\alpha) / \sin (\beta)$	$s_{u} \frac{\sqrt{1+\tan ^{2} \beta}}{\tan ^{\beta}}$
κ_{d}	$\cos (\alpha) / \sin (\beta)$	$-\sin (\alpha) / \cos (\beta)$	$s_{d} \sqrt{1+\tan ^{2} \beta}$

2HDM Type I

Heavy Scalars: Run 1 Summary

Direct searches in benchmark 2HDM:

Type-II models more
constrained

Heavy Scalars: Run 1 Summary

MSSM constraints from direct searches :

Heavy Scalar 13 TeV

H->ZZ->4l

- search using m4l
- generic cross section limits for several widths

H->ZZ->2l2v

- EWK singlet model

$$
\begin{aligned}
\mu^{\prime} & =C^{\prime 2}\left(1-\mathcal{B}_{\text {new }}\right) \\
\Gamma^{\prime} & =\Gamma_{\mathrm{SM}} \frac{C^{\prime 2}}{1-\mathcal{B}_{\text {new }}}
\end{aligned}
$$

- generic gluon-fusion and VBF cross section limits independent of width

MSSM $\Phi \rightarrow \mathbf{T T}$ at 13 TeV

- Production = ggФ and bbar Φ
- Combine $\tau_{e} \tau_{\mu}, \tau_{1} \tau_{h}, \tau_{h} \tau_{h}$ and $\tau_{\mu} \tau_{\mu}$ channels
- branching fraction of the neutral scalars (Φ) in $\tau \tau$ varies from 5 to 10% in the $\left(m_{A}, \tan \beta\right)$ phase space probed by this analysis
- Event categories using multiplicity of b jets and p_{T} of τ_{h} enhance sensitivity
- Interpretation in MSSM $\left(\mathrm{m}_{\mathrm{A}}, \tan \beta\right)$ parameter space with $\mathrm{M}_{\text {susy }}=1 \mathrm{TeV}$ in

- Also Model-independent limits: exclude $\sigma \times \mathrm{BR}(\tau \tau)>30(20) \mathrm{pb} @ \mathrm{~m} \varphi=$ 90 GeV down to 40 (30) fb @ 1 TeV for ggH (bbH).

Heavy Scalar 13 TeV

H->Z(ll)A(bb)

- 2 HDM with inverted mass hierarchy (light A)
- 2D search in (m_{bb}, mulbb) plane
- Signal region centered on $\left(\mathrm{m}_{\mathrm{A}}, \mathrm{m}_{\mathrm{H}}\right)+\mathrm{m}_{\| l}$ around Z peak
- Background filed in mll sidebands
- Type-II 2HDM interpretation

X \rightarrow hh: 13 TeV

H->hh->bb $\tau \tau$

- Search using m_{H}
- 3 categories: bbe $_{\mathrm{h}}, \mathrm{bb} \mu \tau_{\mathrm{h}}, \mathrm{bb} \tau_{\mathrm{h}} \tau_{\mathrm{h}}$
- kinematic fix fixing $\mathrm{m}_{\mathrm{bb}}=\mathrm{m}_{\tau \tau}=125 \mathrm{GeV}$

X(spin-o or 2)->HH->bbW(lv)W(lv)

- Search using yields in 4 event categories On/offpeak $\mathrm{m}_{\mathrm{bb}} \mathrm{x}$ low/high BDT score
- BDT trained at $\mathrm{mX}=400$ and 650 GeV

X-> HH -> 4b

Searches for exotic decay of the Scalar Boson:

Higgs to Invisible

- Possible in a wide range of models (for example neutralino in susy models)

- Combination of several channels tagging the H production:
- VBF H(inv.)
- $\mathrm{Z} \rightarrow \mathrm{ll} \mathrm{H}$ (inv.)
- $\mathrm{Z} \rightarrow \mathrm{bb} \mathrm{H}$ (inv.)
- Monojet + V(had.)Htagged
- Final state $=$ production tagging + MET
- main background $=$ Z+jets (+ ttbar for $\mathrm{Z} \rightarrow \mathrm{bb}$)

Result for $\mathbf{m}_{\mathbf{h}}=125 \mathrm{GeV} / \mathbf{c}^{\mathbf{2}}$: 32\% (exp. 26\%) VBF only: 48\% (exp. 32\%)

Lepton flavour violating decay:

- forbidden in SM but allowed by many BSM models
- Higgs doublet, composite Higgs, Randall-Sundrum models
- $\mathrm{H} \rightarrow \mu \tau_{\mathrm{h}}, \mathrm{H} \rightarrow \mu \tau_{\mathrm{e}}$

PLB 749 (2015) 337

observed limit on $\mathbf{B}(\mathrm{H} \rightarrow \mu \tau)=1.51 \%(\exp .0 .75)$
best fit fraction $\mathrm{B}(\mathrm{H} \rightarrow \mu \tau)=\mathbf{0 . 8 4}+\mathbf{0 . 3 9 - 0 . 3 7 \%}$
analyses similar to $\mathrm{SM} \mathrm{H} \rightarrow \tau \tau$ but different kinematic

- $\mathrm{H} \rightarrow \mathrm{e} \tau_{\mathrm{h}}, \mathrm{H} \rightarrow \mathrm{e} \tau_{\mu}$

- $\mathrm{H} \rightarrow \mathrm{e} \mu$
observed limit on
$B(H \rightarrow e \mu)=0.036 \%$

Lepton flavour violating decay:

$\bullet \mathrm{H} \rightarrow \mu \tau_{\mathrm{h}}, \mathrm{H} \rightarrow \mu \tau_{\mathrm{e}} \quad 13 \mathrm{TeV}$

$2015:$
observed limit =
1.20\% (exp. 1.63)

2015 data not enough to conclude: More data needed!

Lepton flavour violating decay:

- constraints on Yukawa couplings:

$$
\mathrm{M}_{\mathrm{H}}=125 \mathrm{GeV}
$$

$$
\Gamma_{\mathrm{SM}}=4.1 \mathrm{MeV}
$$

$$
\begin{aligned}
B\left(\mathrm{H} \rightarrow \ell^{\alpha} \ell^{\beta}\right) & =\frac{\Gamma\left(\mathrm{H} \rightarrow \ell^{\alpha} \ell^{\beta}\right)}{\Gamma\left(\mathrm{H} \rightarrow \ell^{\alpha} \ell^{\beta}\right)+\Gamma_{S M}} \\
\Gamma\left(\mathrm{H} \rightarrow \ell^{\alpha} \ell^{\beta}\right) & =\frac{m_{\mathrm{H}}}{8 \pi}\left(\left|Y_{\ell \beta^{\beta \ell \chi}}\right|^{2}+\left|Y_{\ell^{\alpha} \ell \beta}\right|^{2}\right)
\end{aligned}
$$

H(125) \rightarrow a1 a1: 8 TeV

$H(125) \rightarrow a_{1} a_{1}: 2 H D M+S$ summary

hlps://twiki.cern.ch/twiki/bin/viewauth/CMSPublic/SummaryResultsHIG

a1 couplings to fermions depend on model type and $\tan \beta$

Type- 1 and -2 limits are \sim indep. of $\tan \beta$

$$
\begin{gathered}
\text { Sensitivity to } \mathrm{B}(\mathrm{~h} \rightarrow \mathrm{aa}) \text { in Type- } 3 \\
\text { and }-4
\end{gathered}
$$

Conclusion:

- CMS searches for BSM scalar sector at 13 TeV in LHC Run 2 are well under way
- Sensitivity with 2015 data (2.1fb-1) already comparable with sensitivity from Run 1 dataset
- In 2016, CMS and the LHC are performing very well !
- More results with come soon !

Back-Up

2HDM

arxiv:1507.04281

	$h \bar{U} U$	$h \bar{D} D$	$h \bar{E} E$	$H \bar{U} U$	$H \bar{D} D$	$H \bar{E} E$	$i A \bar{U} \gamma_{5} U$	$i A \bar{D} \gamma_{5} D$	$i A \bar{E} \gamma_{5} E$
Type I	$\frac{\cos \alpha}{\sin \beta}$	$\frac{\cos \alpha}{\sin \beta}$	$\frac{\cos \alpha}{\sin \beta}$	$\frac{\sin \alpha}{\sin \beta}$	$\frac{\sin \alpha}{\sin \beta}$	$\frac{\sin \alpha}{\sin \beta}$	$-\cot \beta$	$\cot \beta$	$\cot \beta$
Type II	$\frac{\cos \alpha}{\sin \beta}$	$-\frac{\sin \alpha}{\cos \beta}$	$-\frac{\sin \alpha}{\cos \beta}$	$\frac{\sin \alpha}{\sin \beta}$	$\frac{\cos \alpha}{\cos \beta}$	$\frac{\cos \alpha}{\cos \beta}$	$-\cot \beta$	$-\tan \beta$	$-\tan \beta$
Type X	$\frac{\cos \alpha}{\sin \beta}$	$\frac{\cos \alpha}{\sin \beta}$	$-\frac{\sin \alpha}{\cos \beta}$	$\frac{\sin \alpha}{\sin \beta}$	$\frac{\sin \alpha}{\sin \beta}$	$\frac{\cos \alpha}{\cos \beta}$	$-\cot \beta$	$\cot \beta$	$-\tan \beta$
Type Y	$\frac{\cos \alpha}{\sin \beta}$	$-\frac{\sin \alpha}{\cos \beta}$	$\frac{\cos \alpha}{\sin \beta}$	$\frac{\sin \alpha}{\sin \beta}$	$\frac{\cos \alpha}{\cos \beta}$	$\frac{\sin \alpha}{\sin \beta}$	$-\cot \beta$	$-\tan \beta$	$\cot \beta$

