

BSM searches in the BEH sector in CMS

Hugues BRUN,

Université Libre de Bruxelles

Meeting of the Belgian Inter-University Attraction Pole network on fundamental interactions, 2016

Fundamental

June 17th, 2016

BSM physics in the scalar sector:

• Test the discovered scalar boson at 125 GeV:

- Is Higgs deviating from SM ?
 ⇒ measure H(125) properties
- Exotic decays of the H(125)

boson

Outline:

• High mass searches:

- combination of run I high mass searches
- high mass searches @ 13 TeV

• Searches for exotic decay of the Higgs @ 13 TeV:

- Higgs to Invisible
- Lepton Flavour Violating decay
- H(125) to light pseudo-scalars

A

Heavy Scalar: 2HDM benchmark model

Combination performed in benchmark model

• 2HDM:

- addition of a Higgs doublet with the same quantum numbers than the SM one
- 5 degrees of freedom in the scalar sector: 2 scalars (h, H) + 1 pseudo-scalar (A)
 + 2 charged (H⁺, H⁻)
- 2 main type of models:
 - * **type-I**, the SU(2)_L doublets couple to both up- and down-type fermions equally
 - * **type-II**, one doublet couples exclusively to up-type and the other exclusively to down-type fermions
- <u>benchmark constrain on the parameters :</u>

Parameter	Value (type I or type II)
m_h	125.09 GeV
m_A	$m_H + 100 \text{ GeV}$
m_{H^+}	$m_H + 100 \text{ GeV}$
$\cos(\beta - \alpha)$	0.1
m_{12}^2	$\max(1 - \tan \beta^{-2}, 0) \cdot \frac{1}{2} \sin(2\beta)(m_A^2 + \lambda_5 v^2)$

Parameter space chosen where different searches are complementary and theory is consistent

• MSSM:

- type-II: fermion-boson symmetry fixes all mass relations between the Higgs bosons and the angle α , at tree-level
- when m_h fixed \rightarrow 2 parameters left free: m_A and tan β

HIG-16-007

Constrains from H(125)

CMS measurements of H(125) couplings strongly constrain heavy scalar sector

κ_i = coupling modifier (κ_i = 1 in Standard Model)

	2H	hMSSM	
	type I	type II/MSSM	
κ_V	$\sin(\beta - \alpha)$	$\sin(\beta - \alpha)$	$rac{s_d+s_u aneta}{\sqrt{1+ an^2eta}}$
κ _u	$\cos(\alpha) / \sin(\beta)$	$\cos(\alpha) / \sin(\beta)$	$S_u \frac{\sqrt{1 + \tan^2 \beta}}{\tan \beta}$
κ _d	$\cos(\alpha) / \sin(\beta)$	$-\sin(\alpha)/\cos(\beta)$	$s_d \sqrt{1 + \tan^2 \beta}$

Heavy Scalars: Run 1 Summary

Direct searches in benchmark 2HDM:

Heavy Scalars: Run 1 Summary

HIG-16-007

MSSM constraints from direct searches :

hMSSM ($m_h = 125 \text{ GeV}$)

Heavy Scalar 13 TeV

Hugues BRUN

8/19

MSSM \Phi \rightarrow \tau \tau at 13 TeV

HIG-16-006

- Production = $gg\Phi$ and $bbar\Phi$
- Combine $\tau_e \tau_\mu$, $\tau_l \tau_h$, $\tau_h \tau_h$ and $\tau_\mu \tau_\mu$ channels
 - branching fraction of the neutral scalars (Φ) in $\tau\tau$ varies from 5 to 10% in the (m_A ,tan β) phase space probed by this analysis
- Event categories using multiplicity of b jets and p_T of τ_h enhance sensitivity
- Interpretation in MSSM ($m_{A,tan\beta}$) parameter space with $M_{SUSY} = 1$ TeV in

Evt / 20 GeV

Data / MC

 10^3

10

10

10-

10-2

10⁻³

0.6

0

Heavy Scalar 13 TeV

$H \rightarrow Z(ll)A(bb)$

- 2HDM with inverted mass hierarchy (light A)
- 2D search in (m_{bb}, m_{llbb}) plane
- Signal region centered on $(m_A, m_H) + m_{ll}$ around Z peak
- Background filed in mll sidebands
- Type-II 2HDM interpretation

10/19

$X \rightarrow hh: 13 \text{ TeV}$

H->hh->bbττ

- Search using m_H
- 3 categories: bbeτ_h, bbμτ_h, bbτ_hτ_h
- kinematic fix fixing $m_{bb}=m_{\tau\tau}=125$ GeV

$X(spin-o \text{ or } 2) \rightarrow HH \rightarrow bbW(lv)W(lv)$

- Search using yields in 4 event categories On/offpeak m_{bb} x low/high BDT score
- BDT trained at mX = 400 and 650 GeV

→ bbττ) [pb]

 \rightarrow H) × BR (H \rightarrow hh

95% CL limit on $\sigma(pp$

10

10

10

CMS

preliminary

Observed CLs Expected CLs Expected ± 1σ

Expected $\pm 2\sigma$

400

300

500

600

2.7 fb⁻¹ (13 TeV)

H->hh->bbtt

HIG-16-013

800

m_н [GeV]

900

11/19

700

bb $\mu\tau_{\rm h}$ + bb $e\tau_{\rm h}$ + bb $\tau_{\rm h}\tau_{\rm h}$

combined channels

Hugues BRUN

Searches for exotic decay of the Scalar Boson:

Higgs to Invisible

- Combination of several channels tagging the H production:
 - VBF H(inv.)
 - Z→ll H(inv.)
 - Z→bb H(inv.)
 - Monojet + V(had.)Htagged
- Final state = production
 - tagging + MET
 - main background = Z+jets (+ ttbar for Z→bb)

Lepton flavour violating decay:

RE

\$

2015: observed limit = 1.20% (exp. 1.63)

2015 data not enough to conclude: More data needed !

TE

Lepton flavour violating deca

• constraints on Yukawa couplings:

 $M_{\rm H}$ =125 GeV $\Gamma_{\rm SM}$ = 4.1 MeV

3.016 · 10⁻³ (exp.)

 10^{-4}

IY_{eu}l

19.7 fb⁻¹ (8 TeV)

BSM searches in the BEH sector in CMS

<mark>ک</mark>

 10^{-1}

 10^{-2}

 10^{-3}

10

 10^{-4}

H(125) → a1 a1 : 8 TeV

$H \rightarrow a1 a1 \rightarrow \mu\mu bb$

- 20 < m_{a1} < 70 GeV
- |mµµbb-125| < 25 GeV
- Search for peak in $m_{\mu\mu}$

- $H \rightarrow a1 a1 \rightarrow \mu\mu\tau\tau$
- 5 different ττ decay modes
- 20 < m_{a1} < 62.5 GeV
- $|m_{\mu\mu\tau\tau}-125| < 25 \text{ GeV}$
- $|m_{\mu\mu}-m\tau\tau|/m_{\mu\mu} < 0.8$

$H(125) \rightarrow a_1a_1: 2HDM+S summary$

hlps://twiki.cern.ch/twiki/bin/viewauth/CMSPublic/SummaryResultsHIG

a1 couplings to fermions depend on model type and $tan\beta$

Type-1 and -2 limits are ~indep. of tan β

Conclusion:

- CMS searches for BSM scalar sector at 13 TeV in LHC Run 2 are well under way
 - Sensitivity with 2015 data (2.1fb-1) already comparable with sensitivity from Run 1 dataset
- In 2016, CMS and the LHC are performing very well !
 - More results with come soon !

CMS Integrated Luminosity, pp, 2016, $\sqrt{s} =$ 13 TeV

Back-Up

2HDM

arxiv:1507.04281

	$h\overline{U}U$	$h\overline{D}D$	$h\overline{E}E$	$H\overline{U}U$	$H\overline{D}D$	$H\overline{E}E$	$iA\overline{U}\gamma_5U$	$iA\overline{D}\gamma_5D$	$iA\overline{E}\gamma_5 E$
Type I	$\frac{\cos\alpha}{\sin\beta}$	$\frac{\cos \alpha}{\sin \beta}$	$\frac{\cos \alpha}{\sin \beta}$	$\frac{\sin \alpha}{\sin \beta}$	$\frac{\sin \alpha}{\sin \beta}$	$\frac{\sin\alpha}{\sin\beta}$	$-\cot\beta$	\coteta	\coteta
Type II	$\frac{\cos \alpha}{\sin \beta}$	$-\frac{\sin \alpha}{\cos \beta}$	$-\frac{\sin\alpha}{\cos\beta}$	$\frac{\sin \alpha}{\sin \beta}$	$\frac{\cos \alpha}{\cos \beta}$	$\frac{\cos \alpha}{\cos \beta}$	$-\cot\beta$	$-\tan\beta$	$-\tan\beta$
Type X	$\frac{\cos\alpha}{\sin\beta}$	$\frac{\cos \alpha}{\sin \beta}$	$-\frac{\sin\alpha}{\cos\beta}$	$\frac{\sin \alpha}{\sin \beta}$	$\frac{\sin \alpha}{\sin \beta}$	$\frac{\cos \alpha}{\cos \beta}$	$-\cot\beta$	\coteta	$-\tan\beta$
Type Y	$\frac{\cos\alpha}{\sin\beta}$	$-\frac{\sin \alpha}{\cos \beta}$	$\frac{\cos \alpha}{\sin \beta}$	$\frac{\sin \alpha}{\sin \beta}$	$\frac{\cos \alpha}{\cos \beta}$	$\frac{\sin \alpha}{\sin \beta}$	$-\cot\beta$	$-\tan\beta$	\coteta