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QCD factorization in Exclusive processes

DVCS Meson Production
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ë Factorisation between a hard part (perturbatively calculable) and a soft

part (non-perturbative) Generalized Parton Distribution

demonstrated for Q2 →∞, xB = Q2

Q2+W2 fixed , t small

experimentally shown for Q2 > 2GeV 2, at HERA and JLab
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Generalised Parton Distributions

Same operators as in DIS but non diagonal matrix elements

= soft part of the amplitude for exclusive reactions

γ?

x x′

γ

Q2

hadron hadron

Pert.

t

Non-pert. object

x 6= x′

GPDGPD

W 2

! (q)* ! (q’)*

H(x, ξ, t) = Fourier Transform of matrix elements

〈N(p′, λ′)|ψ̄(−z/2)α[−z/2; z/2]ψ(z/2)β|N(p, λ)〉
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z+=0, zT=0

p′ − p = ∆ ∆2 = t ∆+ = −ξ(p+ p′)+ x− x′ = 2ξ
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From spacelike to Timelike

Initial Photon Beam allows to study crossed reaction.

At lowest order, same amplitude → critical check of the

universality of GPDs.

At higher orders, significant differences under control

thanks to analitycity properties.
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Kinematics of exclusive lepton pair production
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Bethe-Heitler process
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The TCS amplitude at lowest order
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Resulting cross-section at LO
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Results at low energy

cf. E. Berger, M. Diehl, B.P., Eur. Phys. J. C 23, 675 (2002)
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Factorization at NLO
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F̃1,T, receive twist-two contributions as their leading term, while the other two,F
⊥
3! and F̃

⊥
3!, start at

twist three. Similarly to the case of the forward Compton amplitude, one can introduce the longitudinal-

longitudinal helicity36 amplitude

FL ≡ 1

"
F2 − F1 . (5.52)

In the preasymptotic Bjorken limit, the CFFs can be written as a power expansion in the hard scale, with

each term, in its turn, being a power series in the strong coupling constant. In particular, the functions

whose leading term is of twist two will be written as

Fi(", #, $2; Q2) =
∑

a=q,g

∫ 1

−1
dxC

a[−]
i (x, ", #; Q2/%2)F a(x, #, $2; %2) + O(Q−2) , (5.53)

F̃1(", #, $2; Q2) =
∑

a=q,g

∫ 1

−1
dxC

a[+]
1 (x, ", #; Q2/%2)F̃ a(x, #, $2; %2) + O(Q−2) , (5.54)

where the index i runs over i = 1, L. We have explicitly introduced the factorization scale %2 which
separates short- and long-distance physics. The perturbative expansion of coefficient functions in the

strong coupling constant reads to the lowest two orders

C
a[±]
i (x, ", #; Q2/%2) = C

a[±]
i(0) (x, ") + &s

2'
C

a[±]
i(1) (x, ", #; Q2/%2) + O(&2s ) . (5.55)

The leading-order quark coefficient functions for CFFsF1 and F̃1 are given in Eq. (5.33), i.e., C
q[±]
1(0) =

C
q[±]
(0) . The functionFL vanishes at leading order of perturbation theory,

F2
LO= "F1 . (5.56)

This a generalization of the Callan–Gross relation (2.64), just like in the forward Compton amplitude

case, it is a consequence of the spin-one-half nature of quarks. Thus, we have

C
q[±]
L(0) = 0 .

The photons can interact with gluons only through quarks, hence the contribution of gluons starts from

one-loop order,

C
g[±]
i(0) (x, ") = 0 .

The one-loop coefficient functions for all twist-two functions will be presented later in Section 5.4.3.

The appearance of the function T in decomposition (5.51) is a consequence of the gluon helicity-

flip by two units. It arises due to nonzero orbital angular momentum in the off-forward scattering. The

twist-two photon helicity-flip amplitude is absent in the handbag diagram because of the conservation

of the angular momentum along the photon–parton collision axis. Since photons are vector particles, to

flip its helicity one needs to compensate two units of the angular momentum. For the collinear twist-two

36 Referring to incoming–outgoing virtual photons.

F q, F g = Quark and Gluon GPDs (ξ = −η)
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Fig. 43. One-loop coefficient functions for quark and gluon GPDs in the Compton amplitude.

5.4.3. One-loop corrections to twist-two CFFs

So far the analysis of the Compton amplitudes was carried out in Born approximation. For reliable

phenomenological analyses of experimental observables, one has to know the magnitude of higher-order

effects in coupling constant. To match the two-loop evolution of GPDs, analyzed in full in Section 4, one

has to complement it with one-loop corrections to hard coefficient functions.

The next-to-leading coefficient functions C
a[±]
i(1) (5.55) have been found in a number of studies by

computing the one-loop Feynman diagrams shown in Fig. 43. To simplify the presentation, let us extract

the color factors and quark charges from them and split the coefficient functions into two terms, one of

which entirely absorbs the renormalization group logarithm of the hard scaleQ2,

C
q[±]
i(1) (x, !, "; Q2/#2) ≡ CF Q2

q

[
c
q[±]
i(1) (x, !, ") + $q[±]

i(1) (x, !, ") ln(Q2/#2)
]
, (5.120)

C
g[±]
i(1) (x, !, "; Q2/#2) ≡ 2TF

∑

q

Q2
q

[
c
g[±]
i(1) (x, !, ") + $g[±]

i(1) (x, !, ") ln(Q2/#2)
]
. (5.121)

The index i runs here over two values in the even-parity sector i = 1, L and it is i = 1 in the odd-

parity one. One more value is obviously possible: i = T corresponding to the gluon transversity, i.e.,

the maximal-helicity sector. The parameter #2 = #2
MS

is the renormalization scale in the MS scheme.

Varying it—normally within the rangeQ2/2!#2!2Q2—one can achieve minimization of the one-loop

corrections by choosing the optimal value. The reduced coefficient functions are summarized below for

different sectors.

• Parity-even sector [315,233,316,282]

c
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Coefficient Functions

cf. Belitsky-Radyushkin, Phys. Rep. 418 (2005)
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Fig. 43. One-loop coefficient functions for quark and gluon GPDs in the Compton amplitude.
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5.4.3. One-loop corrections to twist-two CFFs

So far the analysis of the Compton amplitudes was carried out in Born approximation. For reliable

phenomenological analyses of experimental observables, one has to know the magnitude of higher-order

effects in coupling constant. To match the two-loop evolution of GPDs, analyzed in full in Section 4, one

has to complement it with one-loop corrections to hard coefficient functions.

The next-to-leading coefficient functions C
a[±]
i(1) (5.55) have been found in a number of studies by

computing the one-loop Feynman diagrams shown in Fig. 43. To simplify the presentation, let us extract

the color factors and quark charges from them and split the coefficient functions into two terms, one of

which entirely absorbs the renormalization group logarithm of the hard scaleQ2,

C
q[±]
i(1) (x, !, "; Q2/#2) ≡ CF Q2

q

[
c
q[±]
i(1) (x, !, ") + $q[±]

i(1) (x, !, ") ln(Q2/#2)
]
, (5.120)

C
g[±]
i(1) (x, !, "; Q2/#2) ≡ 2TF

∑

q

Q2
q

[
c
g[±]
i(1) (x, !, ") + $g[±]

i(1) (x, !, ") ln(Q2/#2)
]
. (5.121)

The index i runs here over two values in the even-parity sector i = 1, L and it is i = 1 in the odd-

parity one. One more value is obviously possible: i = T corresponding to the gluon transversity, i.e.,

the maximal-helicity sector. The parameter #2 = #2
MS

is the renormalization scale in the MS scheme.

Varying it—normally within the rangeQ2/2!#2!2Q2—one can achieve minimization of the one-loop

corrections by choosing the optimal value. The reduced coefficient functions are summarized below for

different sectors.

• Parity-even sector [315,233,316,282]

c
q[−]
1(1) (x, ", !) = − 9

2

1

! − x
− 3(2x! − x2 − "2)

2(! − x)(x2 − "2)
ln

(
1− x

!

)
+ !2 + x2 − 2"2

2(! − x)(x2 − "2)
ln2

(
1− x

!

)

+ 3x(!2 − "2)

(!2 − x2)(x2 − "2)
ln

(
1− "

!

)

+ x(! − ")(x2 − 2"! − 2"2 − !2)

2(!2 − x2)"(x2 − "2)
ln2

(
1− "

!

)
+ (! ↔ −!) ,

c
g[−]
1(1) (x, ", !) = 4!2 − 4x! + x2 − "2

2(x2 − "2)2
ln

(
1− x

!

)
− 2!2 − 2x! + x2 − "2

4(x2 − "2)2
ln2

(
1− x

!

)

+ (! − ")(x2 − 4"! − "2)

2"(x2 − "2)2
ln

(
1− "

!

)
− (! − ")(x2 − 2"! − "2)

4"(x2 − "2)2
ln2

(
1− "

!

)

+ (! ↔ −!) .

226 A.V. Belitsky, A.V. Radyushkin / Physics Reports 418 (2005) 1–387

!g[−]
1(1) (x, ", #) = − 2"2 − 2x " + x2 − #2

2(x2 − #2)2
ln

(
1− x

"

)

− (" − #)(x2 − 2#" − #2)
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ln

(
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"
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!g[+]
1(1) (x, ", #) = −2x" − x2 − #2

2(x2 − #2)2
ln

(
1− x

"

)
+ x(" − #)

(x2 − #2)2
ln

(
1− #

"

)
− (" ↔ −") .

(5.127)

Other functions are zero

!q[−]
L(1) (x, ", #) = !g[−]

L(1) (x, ", #) = !g
T (1)(x, ", #) = 0 . (5.128)

Notice that in the real-photon limit q22 = 0, relevant for DVCS, all singular logarithmic contributions

vanish at least linearly in (" − #), supporting the factorizability of the DVCS amplitude. Therefore, the
DVCS coefficient functions are easily obtainable from the above expressions by setting # = " there. Let
us point out that recently one-loop coefficient functions due to heavy flavors propagating in loops were

reported in Ref. [331].

In the following section, we will demonstrate a formalism to reconstruct the one-loop coefficient

functions by means of conformal operator product expansion. It avoids explicit loop calculations and is

based on known next-to-leading forward coefficient functions. The presentation will be rather technical

and a practitioner who is interested in final results rather than the use of the QCD machinery to deduce

them, can skip entirely the following Section 5.5.

5.5. Application of conformal operator product expansion

The next-to-leading order coefficient functions for off-forward Compton amplitudes were deduced in

the previous section by an explicit calculation of perturbative one-loop diagrams. However, instead one

could have used implications of the conformal symmetry and avoid any computations of loop integrals

completely. To this end, let us note that in Section 4, we found that the off-forward evolution kernels at

leading order of perturbation theory are defined entirely by the forward splitting functions. Or in other

words, the off-forward kernels are diagonalized by conformal partial waves—conformal operators—and

their eigenvalues are determined solely by the forward anomalous dimensions of operators without total

derivatives. Thus, as we demonstrated in Section 4.7.2 one can unambiguously restore the off-forward

evolution kernels from the forward ones. By the same token, as we will demonstrate in this section, one

can reconstruct the off-forward coefficient functions.

As we explained before, the redefinition of conformal representations by shifting the scale dimensions

of fields, given originally in terms of their canonical mass dimensions, by the anomalous ones, makes the

theory respect conformal covariance. However, the effect of the running of the gauge coupling inevitably

breaks the conformal symmetry. Therefore, supposing the existence of a nontrivial zero g∗ of the $-
function ($(g∗) = 0) a conformally covariant OPE can be proven to exist even for interacting theory.

Below we will shortly outline some of the points which are of relevance for our further discussion.



Lessons from HERA

cf. A.Freund, M.McDermott, M. Strikman

GPD/PDF at ξ = 10−4 DVCS cross-section

( 10−4 < ξ < 10−3)

ment, which leads to an overshoot of the DVCS data, is built

in right at the start in the modeling of the quark singlet GPD

at the input scale. One also sees that for the gluon, which

uses x!g(x!), and bg!2, the ratio remains close to unity.
The most important enhancement effect in the valence

region, !"0.1, originates from the relative shift of the parton
momentum fraction X to smaller values close to X!! "al-
though the enhancement from small #x!$ is still significant%.
As we will show in the next section, the assumption that

H(v ,&)!(1#!/2)F(X ,!)!q(v) with v!(X#!/2)(1
#!/2) gives a good description of the data at both small and
large xb j . As stated before, this corresponds to a factorized

DD model with b!' , i.e., with no external skewedness.
However, in terms of a comparison of GPD to forward PDF,

there is a residual effect of skewedness since one now has to

compare q(v) with q(X). Since we are comparing number
distributions which are more singular than momentum distri-

butions, any shift in the momentum fraction to smaller val-

ues will lead to a quite a large enhancement of q(v) relative
to q(X). For CTEQ6M, for example, the enhancement at

X!0.1 and !!0.1 is about 1.7 for the quark singlet,

which increases further if more skewedness is added by

decreasing b.

However, as we will demonstrate in Sec. III, the available

data allow little room for further enhancement due to

skewedness at the input scale since the LO result, at least, is

already close to the upper bound of the experimental errors.

Therefore, only the extremal ‘‘b!'’’ version of the current
factorized DD model can be used to describe the data. An

obvious solution to this is to modify the quark singlet profile

FIG. 3. The integrand of Eq. "10%, illustrating how the up singlet
PDF is sampled in the DGLAP region close to the boundary of the

ERBL region, to produce the up singlet GPD.

FIG. 4. The average value of x! sampled in the DGLAP region
in the double distribution model, for the up singlet GPD, close to

the boundary with the ERBL region as a function of the

skewedness. Several values of X#! are shown.

FIG. 5. The ratio GPD to PDF at !!0.0001 "upper plot% and
!!0.1 "lower plot% for the quark singlet and gluon in the double
distribution model, using MRST01 distributions in LO and NLO, at

the input scale Q0!1 GeV. Note the large enhancement of the
quark singlet close to X!! .
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noted that the description at the lowest H1 value of Q2 is

bad. However, the enhancement we chose using Eq. !21" at
Q0
2!1–1.69 GeV2 corresponds more to the AJM at Q2

!3 GeV2 !compare Figs. 6 and 7". Hence it is not surprising
that the description at low Q2 is not good, suggesting that the

shift in X in Eq. !21" should be less at lower values of Q0.

When we increase the input scale of CTEQ6M, as done be-

low, we find an appropriate reduction in the cross section at

low Q2 much more in line with the low Q2 data and the AJM

value.

It is important to note that the preliminary ZEUS data lie

systematically above the H1 data !see Fig. 11 of #35$". Over-
all NLO seems to be doing better than LO, particularly on

the slope of the energy dependence. It is fair to say that all of

the theory curves appear to have a Q2 dependence that is too

steep to describe all of the data. We will return to this point

in the next section.

The difference between the MRST and CTEQ curves at

LO and NLO reflects the relative size of the quark singlet

and gluon distributions for each set. It is possible that more

precise data on DVCS may eventually allow a discrimination

between various input scenarios using NLO QCD. For this to

be realistic one would first need to pin down the uncertainty

associated with the slope by explicitly measuring the t de-

pendence.

We also investigated the effect on the cross section of

increasing the input scale for skewed evolution using CTEQ

input distributions, from the starting scale Q0!1.3 GeV to

Q0!2.0 GeV. We then use the forward PDFs at the new
scale in our model for the GPDs. Figure 11 shows that the

reduced lever arm for skewed evolution starting at the higher

scale leads to a smaller cross section at LO and NLO, as

expected, and that, in LO at least, the effect of this change is

FIG. 9. The photon level cross section, %(&*p→&p), calcu-
lated using the forward model ansatz for input GPDs, in the average

kinematics of the H1 data: as a function of W at fixed Q2

!4.5 GeV2 !upper plot", and as a function of Q2 at fixed W

!75 GeV !lower plot". A constant slope parameter of B

!6.5 GeV"2 was used.

FIG. 10. The photon level cross section, %(&*p→&p), calcu-
lated using the forward model ansatz for input GPDs, in the average

kinematics of the preliminary ZEUS data: as a function of W at

fixed Q2!9.6 GeV2 !upper plot", and as a function of Q2 at fixed

W!89 GeV !lower plot". A constant slope parameter of B

!6.5 GeV"2 was used.
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gluon dominant ; flat s = W2 -dependence



Prospects for LHC

→ Timelike Compton scattering may be measurable ;

Q2 ∼ 2-10 GeV2 , τ ∼ 10−2 − 10−4

→ Possibility to probe GPDs in the small x regime

→ Order of magnitude to estimate

→ Nuclear effects : Nuclear gluon GPDs cf. V.Guzey, M. Strikman

→”differential” EMC effect


