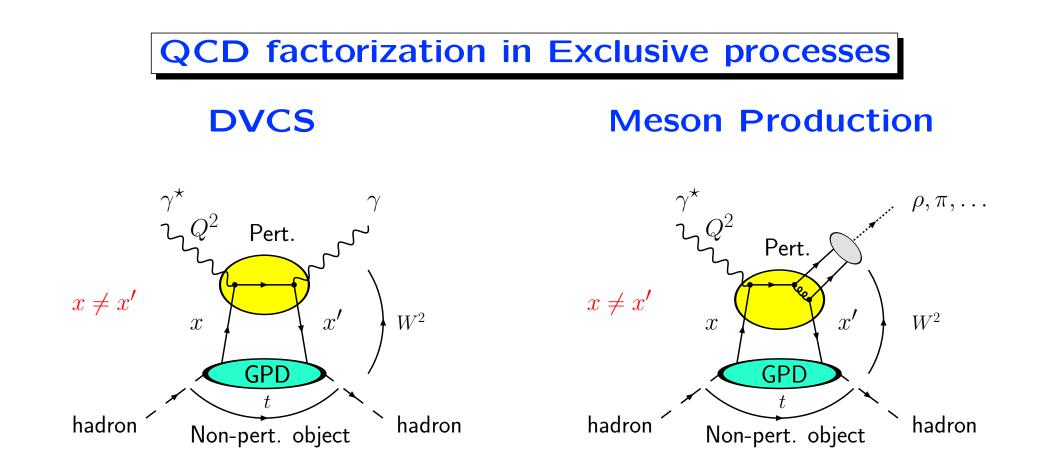


Exclusive photoproduction of a lepton pair (TCS) Nucleon and Nuclear Generalized Gluon distributions

High Energy Photon Collisions at the LHC - CERN - 24 avril 2008

B. Pire CPhT, École Polytechnique , CNRS , Palaiseau

from work with L. Szymanowski, M. Diehl, J. Wagner ...

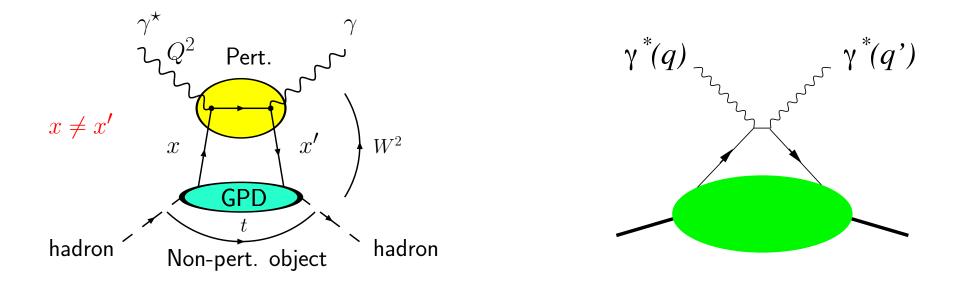


✓ Factorisation between a hard part (perturbatively calculable) and a soft part (non-perturbative) Generalized Parton Distribution

demonstrated for
$$Q^2 \to \infty$$
, $x_B = \frac{Q^2}{Q^2 + W^2}$ fixed , t small
experimentally shown for $Q^2 > 2GeV^2$, at HERA and JLab

Generalised Parton Distributions

Same operators as in DIS but non diagonal matrix elements = soft part of the amplitude for exclusive reactions



 $H(x,\xi,t) =$ Fourier Transform of matrix elements

$$\left\langle N(p',\lambda')|\bar{\psi}(-z/2)_{\alpha}[-z/2;z/2]\psi(z/2)_{\beta}|N(p,\lambda)\rangle\right|_{z^{+}=0,z_{T}=0}$$

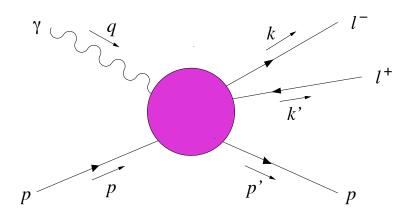
$$p'-p = \Delta$$
 $\Delta^2 = t$ $\Delta^+ = -\xi(p+p')^+$ $x-x' = 2\xi$

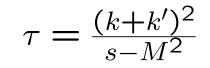
Initial Photon Beam allows to study crossed reaction.

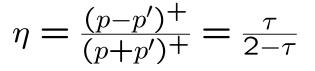
At lowest order, same amplitude \rightarrow critical check of the universality of GPDs.

At higher orders, significant differences under control thanks to analitycity properties.

Kinematics of exclusive lepton pair production

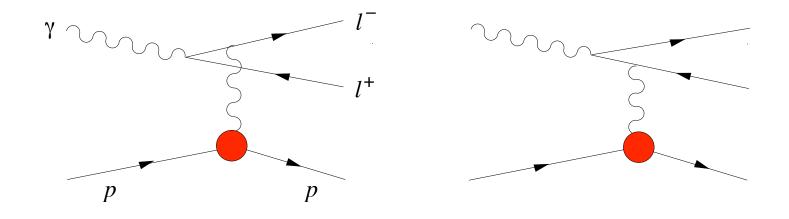








Bethe-Heitler process

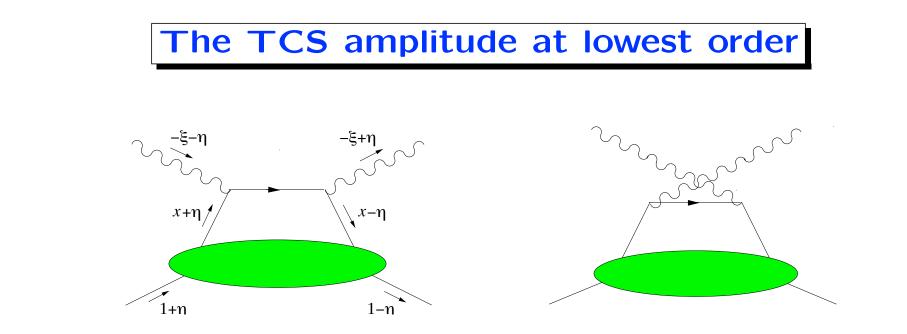


$$\frac{d\sigma_{BH}}{dQ'^2 dt \, d(\cos\theta) \, d\varphi} \approx \frac{\alpha_{em}^3}{2\pi s^2} \frac{1}{-t} \frac{1 + \cos^2 \theta}{\sin^2 \theta} \left[\left(F_1^2 - \frac{t}{4M^2} F_2^2 \right) \frac{2}{\tau^2} \frac{\Delta_T^2}{-t} + (F_1 + F_2)^2 \right]$$

restrict to $\sin^2 \theta > 1/2$ to keep B-H far from $\frac{1}{\sin^2 \theta}$ singularity

 $\frac{\Delta_T^2}{-t} \approx 1 \quad \rightarrow \quad \text{first term dominant at small } \tau$

 \rightarrow B-H Cross section almost constant in s at fixed Q^2



The hadronic tensor is $T^{\alpha\beta} = i \int d^4x \, e^{-iq \cdot x} \langle p(p') | T J^{\alpha}_{em}(x) J^{\beta}_{em}(0) | p(p) \rangle =$

$$-\frac{1}{(p+p')^{+}}\bar{u}(p')\left[g_{T}^{\alpha\beta}\left(\mathcal{H}_{1}\gamma^{+}+\mathcal{E}_{1}\frac{i\sigma^{+\rho}\Delta_{\rho}}{2M}\right)+i\epsilon_{T}^{\alpha\beta}\left(\tilde{\mathcal{H}}_{1}\gamma^{+}\gamma_{5}+\tilde{\mathcal{E}}_{1}\frac{\Delta^{+}\gamma_{5}}{2M}\right)\right]u(p)$$

with

$$\mathcal{H}_{1}(\xi,\eta,t) = \sum_{q} e_{q}^{2} \int_{-1}^{1} dx \left(\frac{1}{\xi - x - i\epsilon} - \frac{1}{\xi + x - i\epsilon} \right) H^{q}(x,\eta,t) \dots$$

 $H^{q}(x,\eta,t)$ is the quark GPD in the target TCS : $-\xi = \eta = \frac{\tau}{2-\tau}$

Resulting cross-section at LO

$$\frac{d\sigma_{TCS}}{dQ'^2 dt \, d(\cos\theta) \, d\varphi} \approx \frac{\alpha_{em}^3}{8\pi s^2} \frac{1}{Q'^2} \frac{1 + \cos^2\theta}{4} \sum_{\lambda,\lambda'} |M^{\lambda'-,\lambda-}|^2.$$

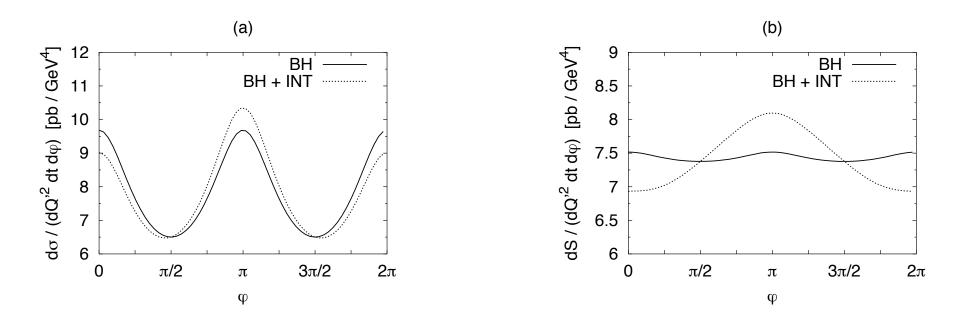
$$\frac{1}{2} \sum_{\lambda,\lambda'} |M^{\lambda'-,\lambda-}|^2 = (1 - \eta^2) \Big(|\mathcal{H}_1|^2 + |\tilde{\mathcal{H}}_1|^2 \Big) - 2\eta^2 \operatorname{Re}\Big(\mathcal{H}_1^* \mathcal{E}_1 + \tilde{\mathcal{H}}_1^* \tilde{\mathcal{E}}_1\Big)$$

$$- \Big(\eta^2 + \frac{t}{4M^2}\Big) |\mathcal{E}_1|^2 - \eta^2 \frac{t}{4M^2} |\tilde{\mathcal{E}}_1|^2,$$

where \mathcal{H}_1 , $\tilde{\mathcal{H}}_1$, \mathcal{E}_1 , $\tilde{\mathcal{E}}_1$ are to be evaluated at $-\xi = \eta$.

Results at low energy

cf. E. Berger, M. Diehl, B.P., Eur. Phys. J. C 23, 675 (2002)



B-H dominant; TCS dominated by quark GPDs

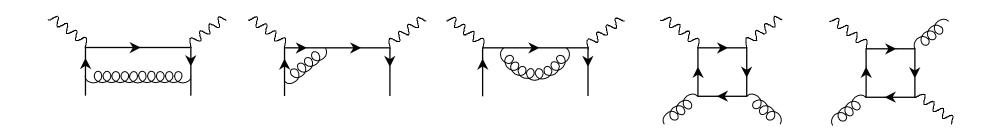
Charge asymmetry \sim interference of B-H and TCS contributions

Factorization at NLO

$$\mathcal{F}_{i}(\xi,\eta,\Delta^{2};Q^{2}) = \sum_{a=q,g} \int_{-1}^{1} \mathrm{d}x C_{i}^{a[-]}(x,\xi,\eta;Q^{2}/\mu^{2}) F^{a}(x,\eta,\Delta^{2};\mu^{2}) + \mathcal{O}(Q^{-2}) ,$$

$F^q, F^g =$ Quark and Gluon GPDs $(\xi = -\eta)$

$$C_i^{a[\pm]}(x,\,\xi,\,\eta;\,Q^2/\mu^2) = C_{i(0)}^{a[\pm]}(x,\,\xi) + \frac{\alpha_s}{2\pi} \,C_{i(1)}^{a[\pm]}(x,\,\xi,\,\eta;\,Q^2/\mu^2) + \mathcal{O}(\alpha_s^2) \,\,.$$



Coefficient Functions

cf. Belitsky-Radyushkin, Phys. Rep. 418 (2005)

$$C_{i(1)}^{q[\pm]}(x,\,\xi,\,\eta;\,Q^2/\mu^2) \equiv C_F Q_q^2 \left[c_{i(1)}^{q[\pm]}(x,\,\xi,\,\eta) + \kappa_{i(1)}^{q[\pm]}(x,\,\xi,\,\eta) \ln(Q^2/\mu^2) \right] ,$$

$$C_{i(1)}^{g[\pm]}(x,\,\xi,\,\eta;\,Q^2/\mu^2) \equiv 2T_F \sum_q Q_q^2 \left[c_{i(1)}^{g[\pm]}(x,\,\xi,\,\eta) + \kappa_{i(1)}^{g[\pm]}(x,\,\xi,\,\eta) \ln(Q^2/\mu^2) \right] .$$

$$\begin{aligned} c_{1(1)}^{g[-]}(x,\eta,\xi) &= \frac{4\xi^2 - 4x\xi + x^2 - \eta^2}{2(x^2 - \eta^2)^2} \ln\left(1 - \frac{x}{\xi}\right) - \frac{2\xi^2 - 2x\xi + x^2 - \eta^2}{4(x^2 - \eta^2)^2} \ln^2\left(1 - \frac{x}{\xi}\right) \\ &+ \frac{(\xi - \eta)(x^2 - 4\eta\xi - \eta^2)}{2\eta(x^2 - \eta^2)^2} \ln\left(1 - \frac{\eta}{\xi}\right) - \frac{(\xi - \eta)(x^2 - 2\eta\xi - \eta^2)}{4\eta(x^2 - \eta^2)^2} \ln^2\left(1 - \frac{\eta}{\xi}\right) \\ &+ (\xi \leftrightarrow -\xi) \;. \end{aligned}$$

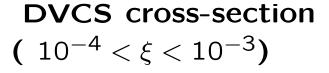
$$\kappa_{1(1)}^{g[-]}(x,\xi,\eta) = -\frac{2\xi^2 - 2x\,\xi + x^2 - \eta^2}{2(x^2 - \eta^2)^2} \ln\left(1 - \frac{x}{\xi}\right) -\frac{(\xi - \eta)(x^2 - 2\eta\xi - \eta^2)}{2\eta(x^2 - \eta^2)^2} \ln\left(1 - \frac{\eta}{\xi}\right) + (\xi \leftrightarrow -\xi) ,$$

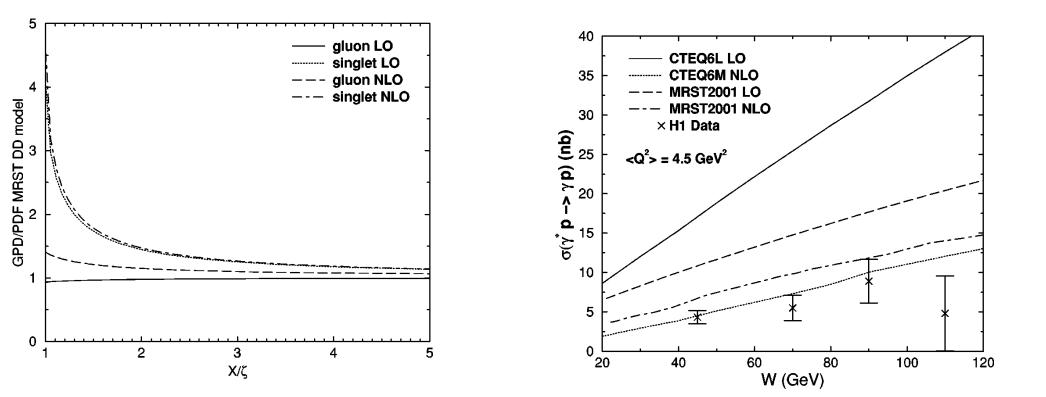
$$\kappa_{1(1)}^{g[+]}(x,\,\xi,\,\eta) = -\frac{2x\xi - x^2 - \eta^2}{2(x^2 - \eta^2)^2} \ln\left(1 - \frac{x}{\xi}\right) + \frac{x(\xi - \eta)}{(x^2 - \eta^2)^2} \ln\left(1 - \frac{\eta}{\xi}\right) - (\xi \leftrightarrow -\xi)$$

Lessons from HERA

cf. A.Freund, M.McDermott, M. Strikman

GPD/PDF at $\xi = 10^{-4}$





gluon dominant; flat $s = W^2$ -dependence

 \rightarrow Timelike Compton scattering may be measurable;

$$Q^2\sim$$
 2-10 GeV 2 , $au\sim 10^{-2}-10^{-4}$

- \rightarrow Possibility to probe GPDs in the small x regime
- \rightarrow Order of magnitude to estimate
- $\rightarrow \textbf{Nuclear effects: Nuclear gluon GPDs} \qquad \texttt{cf. v.Guzey, M. Strikman}$

 \rightarrow " differential" EMC effect