PHOTON INTERACTIONS IN SHERPA

Stefan Höche¹ Institute for Particle Physics and Phenomenology Durham University

¹ for Sherpa: Tanju Gleisberg, SH, Frank Krauss, Steffen Schumann, Marek Schönherr, Frank Siegert & Jan Winter

OUTLINE

This talk does not contain much about photons ...

So what is it about ?

- Matrix element (ME) generators
- Shower (PS) generators
- Merging of ME & PS (CKKW)
- Cluster fragmentation
- Hadron decays
- Multiple parton interactions

Sherpa itself is the framework that combines all the above

How do photons fit in ?

- Sherpa provides γ beamspectrum ($p \rightarrow p\gamma$ by T. Pierzchala) & PDF
- all the rest is "standard", so let's talk about the rest first ...

WHAT IS CKKW AND WHY?

Matrix Elements

- Advantage
- Exact to fixed order
- Include all interferences
 Drawback
- Calculable only for low
 FS multiplicity (n≤6-8)

Parton Showers

Advantage

 Resum all (next-to) leading logarithms to all orders
 Drawback

Interference effects only

through angular ordering

Combine both approaches: CKKW

- Good description of hard radiation (ME)
- Correct intrajet evolution (PS)

Strategy: Separate phase space Jet production region ME

■ Intrajet evolution region → PS

Free parameter: Separation cut Qcut (K_T-type jet measure)

CKKW: Z+JETS@TEVATRON

The DØ collaboration, DØ note 5066-CONF

Pythia 6.2

normalized to data

Sherpa 1.0 normalized to data

Jet- p_T , jet 3

CKKW: Z+JETS@TEVATRON

The DØ collaboration, DØ note 5066-CONF

Pythia 6.2 normalized to data

Sherpa 1.0 normalized to data

 $\mathbf{\Delta \phi_{jet1, jet2}}$

CKKW: Z+JETS@TEVATRON

The DØ collaboration, DØ note 5066-CONF

Pythia 6.2 normalized to data

Sherpa 1.0 normalized to data

CKKW EXTENSIONS

2000002000000

Consider heavy flavour production

Narrow width approximation

 full ME factorises
 into production and decay parts
 into production

Schematically: $\mathcal{A}^{(n)} = \mathcal{A}_{\text{prod}}^{(n_{\text{prod}})} \otimes \prod_{i \in \text{decays}} \mathcal{A}_{\text{dec},i}^{(n_i)}$

How is it simulated in Sherpa?

- ME generator AMEGIC++ provides decay chains (projection onto relevant diagrams)
- PS generator APACIC++ provides production & decay shower off heavy partons (+ standard showering)
- CKKW ME-PS merging is applied separately and independent within production and each decay
 Method is fully general and applicable e.g. in SUSY production

ME'S IN SHERPA: AMEGIC++

R. Kuhn, F. Krauss, G. Soff JHEP 0202:044, 2002

What does AMEGIC++ provide ?

Flexibility

- **Fully automated** calculation of (polarized) cross sections in the SM, MSSM and ADD model
- Expandability: FeynRules reader, dynamic add-on model libs
- Performance well comparable to that of dedicated codes
 Reliability
- $e^+e^- \rightarrow 6f$ comparison vs. HELAC/PHEGAS EPJ C34 (2004) 173 \rightarrow
- Comparison of arbitrary 2→2 MSSM processes vs. WHIZARD/O'Mega & SMadGraph Phys. Rev. D73(2006) 055005
- MC4LHC ME generator comparison http://mlm.home.cern.ch/mlm/mcwshop03/mcwshop.html

n/a

CSW RECURSION IN AMEGIC++

New twistor-inspired techniques (CSW vertex rules) help speeding up calculation of pure QCD ME's for higher multiplicites
 Advantage: Up to N_{out} = 7 only up to 3 MHV-amplitudes must be sewed together

n/a

 $2j \rightarrow 5j$

Process	Time [s] for 10^5	10^5 points		e [s] for 10^5 points	Conventional /		
	Conventional		CSW rules		CSW-rules		
$2g \rightarrow 4g$	1977		19		104.1		
$2g \rightarrow 5g$	n/a			429	n/a		
$2q \rightarrow 4g$	124		14		8.9	<u> </u>	
$2q \rightarrow 5g$	43636	Norul	1	290	148.4		Significant
$2q \rightarrow 2q'+2g$	8	INEWI	y	6	1.33		
$2q \rightarrow 2q'+3g$	810	accessi	ble [74	10.8		speedup
$2q \rightarrow 2q + 2g$	24	process	ses [10	2.4	7	
$2q \rightarrow 2q+3g$	3923			118	33		
$2j \rightarrow 4j$	4082			202	20.2		

12103

T. Gleisberg, SH: in preparation

- Revisited "old-fashioned" Berends-Giele recursion JHEP 08(2006)062
 - → New ME generator **COMI**X
- Fully general implementation of SM interactions What you could do, for example:
 - $pp \rightarrow W/Z+N$ jets where so far N up to 6 (all partons !)
 - $pp \rightarrow N \text{ jets} + t [W^+b + M \text{ jets}] \overline{t} [W^-\overline{b} + M \text{ jets}]$ where so far {N,M} up to {2,1}
 - $pp \rightarrow N$ gluons where N up to 12 (QCD benchmark)
 - $pp \rightarrow N$ jets where N up to 8 (all partons !)
- Key point: Vertex decomposition of all four-particle vertices (Growth in computational complexity for CDBG
 - determined solely by number of external legs at vertices)
- The ME is ticked off, but how about the phasespace ?
 Recursive method analogous to ME calculation (see backup)

Performance in QCD benchmarks World record ! Cross section [pb] $gg \to ng$ 8 12 9 10 11 n $\sqrt{s} \, [\text{GeV}]$ 5000 1500 2000 25003500 Comix 0.755(3)0.305(2)0.101(7)0.019(2)0.057(5)0.70(4)0.30(2)Phys. Rev. D67(2003)014026 0.097(6)Nucl. Phys. B539(1999)215 0.719(19)

"Real life" example: b-pair + jets comparison with other ME generators

$\sigma \; [\mu \mathrm{b}]$	Number of jets						
$b\bar{b} + QCD$ jets	0	1	2	3	4	5	6
Comix	470.8(5)	8.83(2)	1.826(8)	0.459(2)	0.151(2)	0.0544(6)	0.023(2)
ALPGEN	470.6(6)	8.83(1)	1.822(9)	0.459(2)	0.150(2)	0.053(1)	0.0215(8)
AMEGIC++	470.3(4)	8.84(2)	1.817(6)	Children Terling			

Setup: http://mlm.home.cern.ch/mlm/mcwshop03/mcwshop.html

COMIX: PERFORMANCE

 $\begin{array}{l} \mbox{Efficiencies: LHC @ 14 TeV} \\ \mbox{Cuts: 66 GeV} \leq m_{l\bar{l}} \leq 116 \mbox{GeV}, \\ \mbox{CDF Run II } K_T\mbox{-algo @ 20GeV} \end{array}$

Process	Efficiency		
Z+0 jet	8.50%		
Z+1 jet	1.05%		
Z+2 jets	0.60%		
Z+3 jets	0.15%		
Process	Efficiency		
W+0 jet	19.13%		
W+1 jet	1.50%		
W+2 jets	0.48%		
W+3 jets	0.16%		

T. Gleisberg, SH: in preparation **Also new:** HAAG-based QCD integrator for colour sampling

JHEP03(2008)038

k

Catani-Seymour subtraction terms General framework for QCD NLO calculations Splitting of parton **ij** into partons i and j, spectator k Advantages over Parton Shower $\mathbf{V}_{ij,k}$ → Full phasespace coverage → Good approximation of ME Better analytic control e.g. final-final splitting: Implementation into Sherpa $\left< V_{q_i,g_j,k} \right> (\tilde{z}_i, y_{ij}, k) =$ $\mathrm{C_F}\left(rac{2}{1- ilde{\mathrm{z}}_\mathrm{i}+ ilde{\mathrm{z}}_\mathrm{i}\mathrm{y}_\mathrm{ii,k}}-(1+ ilde{\mathrm{z}}_\mathrm{i})
ight)$ for the general case, i.e. final-final initial-final and initial-initial dipoles

Stefan Höche, yy Workshop CERN, 24.4.2008

 $\mathbf{y_{ij,k}} = \frac{\mathbf{p_i p_j}}{\mathbf{p_i p_k} + \mathbf{p_j p_k} + \mathbf{p_i p_j}}$

 $\mathbf{z_i} = \frac{p_i p_k}{p_i p_k + p_j p_k}$

 \tilde{ij}

JHEP03(2008)038

DIPOLE SHOWER FOR HADRON COLLISIONS

arXiv: 0712.3913 [hep-ph]

- IS emission formulated completely perturbative
 Radiation associated to inital-inital, initial-final and final-final colour lines (dipoles)
 - Beam remnants kept outside
 Transverse momentum and rapidity defined through invariants, e.g. Drell-Yan:

$$\mathbf{p}_{\perp}^{2}=rac{\hat{\mathbf{u}}\hat{\mathbf{t}}}{\mathbf{m}_{\mathrm{B}}^{2}} \quad \mathbf{y}=rac{1}{2}\lnrac{\hat{\mathbf{u}}}{\hat{\mathbf{t}}}$$

● pp→jets Phys. Rev. D50 (1994) 5562

DIPOLE SHOWER FOR HADRON COLLISIONS

arXiv: 0712.3913 [hep-ph]

First emission by construction ME-corrected

MPI SIMULATION IN SHERPA

hep-ph/0601012

Sherpas current multiple parton interaction (MPI) module

- Based on the PYTHIA model
 T. Sjöstrand & M. van Zijl, PRD36(1987)2019
- Parton showers (PS) attached to secondary interactions

Combination of MPI's with hard processes and CKKW matching

- Hard processes with final state multiplicity different from two require unique definition of starting scale for MI evolution, µ_{MI}
- Sherpa algorithm (works for arbitrary n-jet ME):
 - Employ K_T -algorithm to define 2+2 core process
 - Set starting scale µ_{MI} to p_T of final state QCD parton(s) from this process and veto partons harder than µ_{MI} (from PS) in secondary interactions

MPI RESULTS FROM SHERPA

hep-ph/0601012

Our current "best fit" for CDF

- Lower p_T cutoff • $p_{T,min} \approx 2.4 \text{ GeV}$
- Moderate interaction number due to additional multiplicity from PS
 → < N^{2→2}_{hard} >≈ 2.08

To take home ...

- Highly dependent on p_{T,min} and PDF
- Does not give any prediction for the LHC (naive scaling)

Shortcomings of the current MPI model

arXiv: 0705.4577 [hep-ph]

- Lower p_T cutoff defines total cross section
- Energy extrapolation depends on tuning parameter
 We try to solve part of this by ...
 - Definiton of hard cross section through BFKL kernel convoluted with DUPDF's \Rightarrow can be extended into diffractive region $\sigma = \frac{\pi^2}{2S} \sum_{a^{(1)}} \int dy_1 \int dk_{1\perp}^2 \int d\phi_1 \int dy_n$ $\times f^{(1)}(x^{(1)}, z^{(1)}, k_{1\perp}^2, \bar{k}_{2\perp}^{(1)2}) f^{(2)}(x^{(2)}, z^{(2)}, k_{n\perp}^2, \bar{k}_{n-1\perp}^{(2)2}) \frac{1}{2\xi^{(1)} 2\xi^{(2)} 2S} \frac{1}{\Delta_{a_1}(y_1, y_2)}$ $\times \left[\prod_{i=2}^n \int \frac{d\phi_i}{2\pi} \int dy_i \int \frac{dk_{i\perp}^2}{k_{i\perp}^2} \frac{\alpha_s(k_{i\perp}^2)}{\pi} \sum_{a_i} C_{a_{i-1}a_i}(q_{i-1}, k_i) \Delta_{a_i}(y_i, y_{i-1}) \right]$ Markovian algorithm to generate splittings
 - from $\Delta_{a_i}(y_i, y_{i-1})$ in the spirit of a parton shower
 - number of emissions determined on the flight

TOWARDS A NEW MPI MODEL

• Jet - p_T spectra PRD75(2007)092006

arXiv: 0705.4577 [hep-ph]

Azimuthal decorrelation of widely separated jets PRL77(1996)595

Eur. Phys. J. C36 (2004) 381

Sherpas cluster fragementation model:

- Colour ordered partons transformed into primary clusters according to combination of
 - kinematical weight

$$\mathbf{W_{ij,\,kl}} = \ \frac{\mathbf{t_0}}{\mathbf{t_0} + 4(\mathbf{w_{ij}} + \mathbf{w_{kl}})^2}$$

- Clusters decayed according to overlap between cluster mass and hadron mass spectrum
 - cluster mass in hadron regime

 transition to hadron
 - else → 2-body decay
 C→HH, C→CH or C→CC
 combined weight applied again¹

¹ with t_0 replaced by Q_0 (hadronic scale)

CLUSTER FRAGMENTATION

Eur. Phys. J. C36 (2004) 381

HADRON DECAYS

Features of Sherpas hadron decay package

- Full flexibility, all information is read from parameter files
 (branching ratios, decay channels, form factors, integrators)
- Extremely easy to extend with specific decay modes / models (feel free to add your favourite decay ...)
- Spin correlation algorithm with full spin information from AMEGIC++ matrix element
- Extensively tested in τ and hadron decays
- B-mixing implemented in full generality
- First fully functional release with version 1.1

HADRON DECAYS: RESULTS

F. Siegert, F. Krauss: in preparation PYTHIA+TAUOLA: hep-ph/0101311

Many models: e.g. $\tau \rightarrow \nu_{\tau} \pi^{-} \pi^{-} \pi^{+}$

Spin correlations: e.g. $\mathbf{Z} \rightarrow \mathbf{W}^+ \mathbf{W}^-, \mathbf{W}^- \rightarrow \tau^- \overline{\nu}_{\tau} \rightarrow \nu_{\tau} \pi \overline{\nu}_{\tau}$

F. Siegert, F. Krauss: in preparation

B-mixing: e.g. Decay rate asymmetry $B_0 \rightarrow J/\Psi K_s \leftrightarrow \bar{B}_0 \rightarrow J/\Psi K_s$ in $\Upsilon(4s) \rightarrow B_0 \overline{B}_0$ events

PHOTON INTERACTIONS

Now that we know the rest ...

 Sherpa provides LASER backscattering beam spectrum acc. to Acta Phys. Polon. B34 (2003) 2741

cross section in $\gamma\gamma \rightarrow \tilde{\mu}^+\tilde{\mu}^-$

Prog. Part. Nucl. Phys. 53 (2004) 329

Beam spectrum for $p \rightarrow p\gamma$ acc. to Phys. Lett. C15 (1975) 181 implemented by T. Pierzchala ported into v1.1 during this WS

Sherpa is much more than what I talked about ...

Sherpas and collaborators currently also work on:

- Preparing the two new showers for ME-Shower merging
 systematics studies with different shower prescriptions
 BSM beyond the MSSM:
 - Little Higgs, MWTC

 J. Ferland (ATLAS, Montreal), ...
- Interfaces to Athena
 J. Ferland (ATLAS, Montreal) and CMS software
 M. Merschmeyer (CMS, Aachen) and LHCb software
 SH, F. Siegert, J. Stieglitz (Durham/Dortmund)
- Grid support: At the IPPP, we run Sherpa on the Grid ! Multithreading: Speed up your computation with more CPU's !

Latest release: Version 1.1.0 available on Genser and HepForge

Updates on Sherpa can be found on

WWW.SHERPA-MC.DE

INFO@SHERPA-MC.DE

CKKW IN A NUTSHELL

JHEP 0111 (2001) 063

JHEP 0208 (2002) 015

 $cut,Q_1)$

RS Domain

• Define jet resolution parameter Q_{cut} (Q-jet measure) divide phase space into regions of jet production (ME) and jet evolution (PS) Select final state multiplicity and kinematics $\Delta_q(Q_{\mathrm{cut}}, Q$

according to σ 'above' Q_{cut}

- K_T -cluster backwards (construct PS-tree) and identify core process
- Reweight ME to obtain exclusive samples at Q_{cut}
- Start the parton shower at the hard scale Veto all PS emissions harder than Q_{cut}

This yields the correct jet observables ! Generic example: 2-jet rate in $ee \rightarrow qq$ $\mathbf{R_2}(\mathbf{q}) = \left(\boldsymbol{\Delta}(\mathbf{Q_{cut}}, \mu_{\mathbf{hard}}) \frac{\boldsymbol{\Delta}(\mathbf{q}, \mu_{\mathbf{hard}})}{\boldsymbol{\Delta}(\mathbf{Q_{cut}}, \mu_{\mathbf{hard}})} \right)$

Stefan Höche, yy Workshop CERN, 24.4.2008

 $\Delta_{ar{q}}(Q_{ ext{cut}},\mu_H)$

ME Domain

PS IN SHERPA: APACIC++

R. Kuhn, F. Krauss, G. Ivanyi, G. Soff CPC 134 (2001) 223 F. Krauss, A. Schälicke, G. Soff, hep-ph/0503087

Basic features of APACIC++ :

- Virtuality ordered parton cascade, colour coherence imposed by angular veto
- Final & initial state showering in e⁺e⁻ & hadron collisions
 (no DIS-like situations)
- Algorithm similar to virtuality ordered PYTHIA parton shower
- Extensively tested, e.g. vs. LEP data (hadronisation: PYTHIA)

- In quasi-collinear limit (b \leftrightarrow heavy quark) ME factorises $|\mathbf{M}(\mathbf{b}, \mathbf{c}, \dots, \mathbf{n})|^2 \rightarrow |\mathbf{M}(\mathbf{a}, \dots, \mathbf{n})|^2 \frac{8\pi\alpha_s}{\mathbf{t} \mathbf{m}_a^2} \mathbf{P}_{\mathbf{a} \rightarrow \mathbf{b} \mathbf{c}}(\mathbf{z})$
- Virtuality ordered PS \rightarrow evolution variable t changes to $t m_a^2$
- Splitting functions P_{ab}(z) become those for massive quarks Nucl. Phys. B627(2002)189

$$\xrightarrow{\mathbf{cr}} \mathbf{C}_{\mathbf{F}} \left(\frac{1+\mathbf{z}^2}{1-\mathbf{z}} - \frac{2\mathbf{z}(1-\mathbf{z})\mathbf{m}^2}{\mathbf{q}^2 + (1-\mathbf{z})^2\mathbf{m}^2} \right)$$

$$\xrightarrow{\mathbf{T}} \left(1 - 2\mathbf{z}(1-\mathbf{z}) + \frac{2\mathbf{z}(1-\mathbf{z})\mathbf{m}^2}{\mathbf{z}^2 + (1-\mathbf{z})\mathbf{m}^2} \right)$$

$$\rightarrow T_R \left(1 - 2z(1-z) + \frac{2z(1-z)m}{q^2 + m^2} \right)$$

Cross-check: 2- and 3-jet fraction in $e^+e^- \rightarrow t\bar{t}$, PS vs. ME, weighted with NLL Sudakov form factors Phys. Lett. B576(2003)135

APACIC++: HEAVY QUARK PRODUCTION

PS in production

- On-shell daughter partons
 New decay kinematics via Lorentz transformation Choice: Boost into new (daughter) cms
- FSR-like situation
- Evolution stops once diced virtuality reaches on-shell mass of heavy quark

PS in decay

- Off-shell daughter partons
 Decay kinematics need to be reconstructed
 - Choice: Reconstruct in cms of decayed quark, such that p/|p| is preserved
- ISR-like situation
- Evolution stops if p_⊥ reaches width of decaying quark

Nucl. Phys. B9 (1969) 568

- State-of-the art approach for general phasespace generation: Factorise PS using
 - $\mathrm{d}\Phi_{\mathbf{n}}\left(\mathbf{a},\mathbf{b};\mathbf{1},\ldots,\mathbf{n}\right)=\mathrm{d}\Phi_{\mathbf{m}}\left(\mathbf{a},\mathbf{b};\mathbf{1},\ldots,\mathbf{m},\bar{\pi}\right)\,\mathbf{d}\mathbf{s}_{\pi}\,\mathrm{d}\Phi_{\mathbf{n}-\mathbf{m}}\left(\pi;\mathbf{m}+\mathbf{1},\ldots,\mathbf{n}\right)$
 - Remaining basic building blocks of the phasespace:

Arrows → Momentum flow

COMIX: PHASESPACE RECURSION

 $\hat{S}^{\,\rho,\pi\setminus
ho}_{\pi}$

 π

 $\hat{T}^{\pi,\overline{\alpha b\pi}}_{\alpha}$

 Basic idea: Take above recursion literally and "turn it around" S-channel phasespace (schematically)

 $d\Phi_{S}(\pi) = \left[\sum_{\alpha} \alpha \left(S_{\pi}^{\rho,\pi\setminus\rho}\right)\right]^{-1} \times \left[\sum_{\alpha} \alpha \left(S_{\pi}^{\rho,\pi\setminus\rho}\right) S_{\pi}^{\rho,\pi\setminus\rho} P_{\rho} d\Phi_{S}(\rho) P_{\pi\setminus\rho} d\Phi_{S}(\pi\setminus\rho)\right] -$

T-channel phasespace (schematically) Weights for adaptive multichanneling

"b" is fixed → Every PS-weight is unique !
Arrows → Weight flow !
Factorial growth of PS-channels tamed

