## PHOTON INTERACTIONS IN SHERPA

Stefan Höche ${ }^{1}$<br>Institute for Particle Physics and Phenomenology<br>Durham University

${ }^{1}$ for Sherpa: Tanju Gleisberg, SH, Frank Krauss, Steffen Schumann, Marek Schönherr, Frank Siegert \& Jan Winter

## oUtLINE

This talk does not contain much about photons ...

## So what is it about ?

- Matrix element (ME) generators
- Shower (PS) generators
- Merging of ME \& PS (CKKW)
- Cluster fragmentation
- Hadron decays
- Multiple parton interactions

Sherpa itself is the framework that combines all the above


How do photons fit in ?

- Sherpa provides $\gamma$ beamspectrum ( $p \rightarrow p \gamma$ by T. Pierzchala) \& PDF
- all the rest is "standard", so let's talk about the rest first ...


## WHAT IS CKKW AND WHY?

## Matrix Elements

## Advantage

- Exact to fixed order
- Include all interferences

Drawback

- Calculable only for low FS multiplicity ( $\mathrm{n} \leq 6-8$ )


## Parton Showers

## Advantage

- Resum all (next-to) leading logarithms to all orders


## Drawback

- Interference effects only through angular ordering

Combine both approaches: CKKW

- Good description of hard radiation (ME)
- Correct intrajet evolution (PS)
- Strategy: Separate phase space

Jet production region $\rightarrow \mathrm{ME}$

- Intrajet evolution region $\Rightarrow$ PS
- Free parameter: Separation cut $\mathbf{Q}_{\text {cut }}$
( $\mathrm{K}_{\mathrm{T}}$-type jet measure)


## CKKW: Z+J€TS @ TEVATRON

- Jet multiplicity

The $\mathrm{D} \emptyset$ collaboration, $\mathrm{D} \emptyset$ note 5066 -CONF




- Pythia 6.2 normalized to data
- Sherpa 1.0 normalized to data

Stefan Höche, YY Workshop CERN, 24.4.2008

## CKKW: Z+J€TS @ TEVATRON

- Jet- $\mathrm{p}_{\mathrm{T}}$, jet 3

The $\mathrm{D} \emptyset$ collaboration, $\mathrm{D} \emptyset$ note 5066 -CONF




- Pythia 6.2 normalized to data
- Sherpa 1.0 normalized to data

Stefan Höche, $\gamma \gamma$ Workshop CERN, 24.4.2008

## CKKW: Z+J€TS @ TEVATRON

The $\mathrm{D} \emptyset$ collaboration, $\mathrm{D} \emptyset$ note 5066 -CONF
$\Delta \phi_{\text {jet1 }}$, jet2


- Pythia 6.2 normalized to data


- Sherpa 1.0 normalized to data

Stefan Höche, $\gamma \gamma$ Workshop CERN, 24.4.2008

## CKKW EXTENSIONS

Consider heavy flavour production

- Narrow width approximation $\rightarrow$ full ME factorises into production and decay parts

Schematically: $\mathcal{A}^{(\mathbf{n})}=\mathcal{A}_{\text {prod }}^{\left(\mathbf{n}_{\text {rod }}\right)} \otimes \prod_{\mathbf{i} \in \text { decays }} \mathcal{A}_{\text {dec }, \mathbf{i}}^{\left(\mathbf{n}_{\mathbf{i}}\right)}$
How is it simulated in Sherpa ?

- ME generator AMEGIC++ provides decay chains (projection onto relevant diagrams)

- PS generator APACIC++ provides production \& decay shower off heavy partons (+ standard showering)
- CKKW ME-PS merging is applied separately and independent within production and each decay
Method is fully general and applicable e.g. in SUSY production


## CKKW:TOP PAIRS @ LHC

- Sanity check of the procedure
- $\mathrm{Q}_{\text {cut }}$ - variation in production
- Why it is necessary ...
- $p_{\perp}$ of $\mathbf{t \overline { t }}$ pair


## ME'S IN SHERPA: AMEGIC++

R. Kuhn, F. Krauss, G. Soff JHEP 0202:044, 2002

## What does AMEGIC++ provide ?

Flexibility

- Fully automated calculation of (polarized) cross sections in the SM, MSSM and ADD model
- Expandability: FeynRules reader, dynamic add-on model libs
- Performance well comparable to that of dedicated codes

Reliability

- $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow 6 \mathrm{f}$ comparison vs. HELAC/PHEGAS EPJ C34 (2004) $173 \rightarrow$
- Comparison of arbitrary $2 \rightarrow 2$ MSSM processes vs. WHIZARD / O'Mega \& SMadGraph Phys. Rev. D73(2006) 055005
- MC4LHC ME generator comparison http://mlm.home.cern.ch/mlm/mcwshop03/mcwshop.html



## CSW RECURSION IN AMEGIC++

- New twistor-inspired techniques (CSW
based on hep-th / 0403047 vertex rules) help speeding up calculation of pure QCD ME's for higher multiplicites
- Advantage: Up to $\mathbf{N}_{\text {out }}=7$ only up to 3 MHV-amplitudes must be sewed together


| Process | Time [s] for $10^{5}$ points Conventional | Time $[\mathrm{s}]$ for $10^{5}$ points CSW rules | Conventional / CSW-rules |  |
| :---: | :---: | :---: | :---: | :---: |
| $2 \mathrm{~g} \rightarrow 4 \mathrm{~g}$ | 1977 | 19 | 104.1 |  |
| $2 \mathrm{~g} \rightarrow 5 \mathrm{~g}$ | n/a | 429 | n/a |  |
| $2 \mathrm{q} \rightarrow 4 \mathrm{~g}$ | 124 | 714 | 8.9 |  |
| $2 \mathrm{q} \rightarrow 5 \mathrm{~g}$ | 43636 New | $y \quad 290$ | 148.4 | Significant speedup |
| $2 \mathrm{q} \rightarrow 2 \mathrm{q}^{\prime}+2 \mathrm{~g}$ |  | $y-6$ | 1.33 |  |
| $2 \mathrm{q} \rightarrow 2 \mathrm{q}^{\prime}+3 \mathrm{~g}$ | 810 access |  | 10.8 |  |
| $2 \mathrm{q} \rightarrow 2 \mathrm{q}+2 \mathrm{~g}$ | 24 proce | ses 10 | 2.4 |  |
| $2 \mathrm{q} \rightarrow 2 \mathrm{q}+3 \mathrm{~g}$ | 3923 | ) 118 | 33 |  |
| $2 \mathrm{j} \rightarrow 4 \mathrm{j}$ | 4082 | 1202 | (20.2 |  |
| $2 \mathrm{j} \rightarrow 5 \mathrm{j}$ | n/a | 12103 | n/a |  |

## VERY HIGH-MULTI ME'S: COMI

T. Gleisberg, SH: in preparation

- Revisited "old-fashioned" Berends-Giele recursion JHEP 08(2006)062
$\Rightarrow$ New ME generator COMI
- Fully general implementation of SM interactions What you could do, for example:
- pp $\rightarrow \mathrm{W} / \mathrm{Z}+\mathrm{N}$ jets where so far N up to 6 (all partons !)
- $\mathrm{pp} \rightarrow \mathbf{N}$ jets $+\mathbf{t}\left[\mathbf{W}^{+} \mathbf{b}+\mathbf{M}\right.$ jets $] \overline{\mathbf{t}}\left[\mathbf{W}^{-} \overline{\mathbf{b}}+\mathbf{M}\right.$ jets $]$ where so far $\{\mathrm{N}, \mathrm{M}\}$ up to $\{2,1\}$
- $\mathrm{pp} \rightarrow \mathrm{N}$ gluons where N up to 12 (QCD benchmark)
- $\mathrm{pp} \rightarrow \mathrm{N}$ jets where N up to 8 (all partons !)
- Key point: Vertex decomposition of all four-particle vertices ( Growth in computational complexity for CDBG determined solely by number of external legs at vertices )
- The ME is ticked off, but how about the phasespace ?
$\Rightarrow$ Recursive method analogous to ME calculation (see backup)


## COMI : PERFORMANCE

T. Gleisberg, SH: in preparation

- Performance in QCD benchmarks

World
record!

| $\mathrm{gg} \rightarrow \mathrm{ng}$ | Cross section [pb] |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| n | 8 | 9 | 10 | 11 | - 12 |
| $\sqrt{s}[\mathrm{GeV}]$ | 1500 | 2000 | 2500 | 3.500 | - 5000 |
| Comix | 0.755(3) | 0.305(2) | 0.101(7) | 0.057(5) | 0.019(2) |
| Phys. Rev. D67(2003)014026 | 0.70(4) | 0.30(2) | 0.097(6) |  |  |
| Nucl. Phys. B539(1999)215 | 0.719(19) |  |  |  |  |

- "Real life" example: b-pair + jets comparison with other ME generators

| $\sigma[\mu \mathrm{b}]$ | Number of jets |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $b \bar{b}+$ QCD jets | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| Comix | $470.8(5)$ | $8.83(2)$ | $1.826(8)$ | $0.459(2)$ | $0.151(2)$ | $0.0544(6)$ | $0.023(2)$ |
| ALPGEN | $470.6(6)$ | $8.83(1)$ | $1.822(9)$ | $0.459(2)$ | $0.150(2)$ | $0.053(1)$ | $0.0215(8)$ |
| AMEGIC ++ | $470.3(4)$ | $8.84(2)$ | $1.817(6)$ |  |  |  |  |

Setup: http://mlm.home.cern.ch/mlm/mcwshop03/mcwshop.html

## COMI : PERFORMANCE

- Efficiencies: LHC @ 14 TeV

Cuts: $\mathbf{6 6} \mathrm{GeV} \leq \mathrm{m}_{\overline{\mathrm{l}}} \leq 116 \mathrm{GeV}$, CDF Run II K $\mathrm{T}_{\mathrm{T}}$-algo @ 20 GeV

| Process | Efficiency |
| :---: | :---: |
| $\mathrm{Z}+0$ jet | $8.50 \%$ |
| $\mathrm{Z}+1$ jet | $1.05 \%$ |
| $\mathrm{Z}+2$ jets | $0.60 \%$ |
| $\mathrm{Z}+3$ jets | $0.15 \%$ |
| Process | Efficiency |
| $\mathrm{W}+0$ jet | $19.13 \%$ |
| $\mathrm{~W}+1$ jet | $1.50 \%$ |
| $\mathrm{~W}+2$ jets | $0.48 \%$ |
| $\mathrm{~W}+3$ jets | $0.16 \%$ |

T. Gleisberg, SH: in preparation

Also new: HAAG-based QCD integrator for colour sampling

CSI - Colour Sampling Integrator


## CS-SUBTRACTION BASED SHOWER

- Catani-Seymour subtraction terms
$\Rightarrow$ General framework for QCD NLO calculations
- Splitting of parton $\tilde{\mathbf{j}}$ into partons i and j , spectator k
- Advantages over Parton Shower
$\rightarrow$ Full phasespace coverage
$\rightarrow$ Good approximation of ME
$\rightarrow$ Better analytic control

e.g. final-final splitting:
- Implementation into Sherpa for the general case, i.e. final-final initial-final and initial-initial dipoles

$$
\begin{aligned}
& \left\langle\mathbf{V}_{\mathbf{q}_{\mathrm{i}}, \mathrm{~g}_{\mathrm{j}}, \mathrm{k}}\right\rangle\left(\tilde{\mathbf{z}}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i} \mathbf{j}}, \mathbf{k}\right)= \\
& C_{F}\left(\frac{2}{1-\tilde{z}_{i}+\tilde{z}_{i} y_{i j, k}}-\left(1+\tilde{z}_{i}\right)\right) \\
& y_{i j, k}=\frac{p_{i} p_{j}}{p_{i} p_{k}+p_{j} p_{k}+p_{i} p_{j}} \\
& z_{i}=\frac{p_{i} p_{k}}{\mathbf{p}_{\mathbf{i}} \mathbf{p}_{\mathbf{k}}+\mathbf{p}_{\mathbf{j}} \mathbf{p}_{\mathrm{k}}}
\end{aligned}
$$

## CS-SUBTRACTION BASED SHOWER

JHEP03(2008)038

- pp $\rightarrow$ jets

Phys. Rev. Lett. 94 (2005) 221801


- pp $\rightarrow$ jets

Phys. Rev. D50 (1994) 5562


## DIPOLE SHOWER FOR HADRON COLLISIONS

arXiv: 0712.3913 [hep-ph]

- IS emission formulated completely perturbative
- Radiation associated to inital-inital, initial-final and final-final colour lines (dipoles)
- Beam remnants kept outside
- Transverse momentum and rapidity defined through invariants, e.g. Drell-Yan:

$$
\mathbf{p}_{\perp}^{2}=\frac{\hat{\mathbf{u}} \hat{\mathbf{t}}}{\mathbf{m}_{\mathbf{B}}^{2}} \quad \mathbf{y}=\frac{1}{2} \ln \frac{\hat{\mathbf{u}}}{\hat{\mathbf{t}}}
$$



- pp $\rightarrow$ jets Phys. Rev. D50 (1994) 5562



## DIPOLE SHOWER FOR HADRON COLLISIONS

- First emission by construction ME-corrected




## MPI SIMULATION IN SHERPA

## Sherpas current multiple parton interaction (MPI) module

- Based on the PYTHIA model T. Sjöstrand \& M. van Zijl, PRD36(1987)2019
- Parton showers (PS) attached to secondary interactions


Combination of MPI's with hard processes and CKKW matching

- Hard processes with final state multiplicity different from two require unique definition of starting scale for MI evolution, $\mu_{\mathrm{MI}}$
- Sherpa algorithm (works for arbitrary n-jet ME):
- Employ $\mathrm{K}_{\mathrm{T}}$-algorithm to define $2 \rightarrow 2$ core process
- Set starting scale $\mu_{\mathrm{MI}}$ to $\mathrm{p}_{\mathrm{T}}$ of final state QCD parton(s) from this process and veto partons harder than $\mu_{\mathrm{MI}}$ (from PS) in secondary interactions


## MPI RESULTS FROM SHERPA

hep-ph/0601012

## Our current "best fit" for CDF

- Lower $\mathrm{p}_{\mathrm{T}}$ - cutoff
$\Rightarrow \mathrm{p}_{\mathrm{T}, \min } \approx 2.4 \mathrm{GeV}$
- Moderate interaction number due to additional multiplicity from PS
$\Rightarrow\left\langle\mathrm{N}_{\text {hard }}^{2 \rightarrow 2}\right\rangle \approx 2.08$


## To take home ...

- Highly dependent on $\mathrm{p}_{\mathrm{T}, \min }$ and PDF
- Does not give any prediction for the LHC (naive scaling)
- $\mathrm{N}_{\text {Charged }}$ vs. $\mathrm{p}_{\mathrm{T}, \mathrm{jet} 1}$ in CTC



## TOWARDSA NEW MPI MODEL

## Shortcomings of the current MPI model

- Lower $\mathrm{p}_{\mathrm{T}}$ - cutoff defines total cross section
- Energy extrapolation depends on tuning parameter

We try to solve part of this by ...
Definiton of hard cross section through BFKL kernel convoluted with DUPDF's $\Rightarrow$ can be extended into diffractive region

$$
\begin{aligned}
\sigma= & \frac{\pi^{2}}{2 S} \sum_{a^{(1)}} \int \mathrm{d} y_{1} \int \mathrm{dk}_{1 \perp}^{2} \int \mathrm{~d} \phi_{1} \int \mathrm{~d} y_{n} \\
& \times f^{(1)}\left(x^{(1)}, z^{(1)}, \mathrm{k}_{1 \perp}^{2}, \overline{\mathrm{k}}_{2 \perp}^{(1) 2}\right) f^{(2)}\left(x^{(2)}, z^{(2)}, \mathrm{k}_{n \perp}^{2}, \overline{\mathrm{k}}_{n-1 \perp}^{(2) 2}\right) \frac{1}{2 \xi^{(1) 2} \xi^{(2) 2} S} \frac{1}{\Delta_{a_{1}}\left(y_{1}, y_{2}\right)} \\
& \times\left[\prod_{i=2}^{n} \int \frac{\mathrm{~d} \phi_{i}}{2 \pi} \int \mathrm{~d} y_{i} \int \frac{\mathrm{dk}_{i \perp}^{2}}{\mathrm{k}_{i \perp}^{2}} \frac{\alpha_{s}\left(\mathrm{k}_{i \perp}^{2}\right)}{\pi} \sum_{a_{i}} C_{a_{i-1} a_{i}}\left(\mathrm{q}_{i-1}, \mathrm{k}_{i}\right) \Delta_{a_{i}}\left(y_{i}, y_{i-1}\right)\right]
\end{aligned}
$$

Markovian algorithm to generate splittings from $\Delta_{a_{i}}\left(y_{i}, y_{i-1}\right)$ in the spirit of a parton shower
$\Rightarrow$ number of emissions determined on the flight

## TOWARDSA NEW MPI MODEL

- Jet - $\mathrm{p}_{\mathrm{T}}$ spectra PRD75(2007)092006
arXiv: 0705.4577 [hep-ph]

- Azimuthal decorrelation of widely separated jets PRL77(1996)595



## CLUSTER FRAGMENTATION

## Eur. Phys. J. C36 (2004) 381

Sherpas cluster fragementation model:

- Colour ordered partons transformed into primary clusters according to combination of
- kinematical weight

$$
W_{i j}, \mathrm{kl}=\frac{t_{0}}{t_{0}+4\left(w_{i j}+w_{k l}\right)^{2}}
$$

- colour weight

- Clusters decayed according to overlap between cluster mass and hadron mass spectrum
- cluster mass in hadron regime $\Rightarrow$ transition to hadron
- else $\Rightarrow 2$-body decay
$\mathrm{C} \rightarrow \mathrm{HH}, \mathrm{C} \rightarrow \mathrm{CH}$ or $\mathrm{C} \rightarrow \mathrm{CC}$ combined weight applied again ${ }^{1}$
${ }^{1}$ with $\mathrm{t}_{0}$ replaced by $\mathrm{Q}_{0}$ (hadronic scale)


## CLUSTER FRAGMENTATION

Eur. Phys. J. C36 (2004) 381

- $\mathrm{N}_{\text {charged }}$ vs. $\mathrm{E}_{\mathrm{cms}}$

- charged scaled momentum



## HADRON DECAYS

## Features of Sherpas hadron decay package

- Full flexibility, all information is read from parameter files ( branching ratios, decay channels, form factors, integrators )
- Extremely easy to extend with specific decay modes / models ( feel free to add your favourite decay ... )
- Spin correlation algorithm with full spin information from AMEGIC++ matrix element
- Extensively tested in $\tau$ - and hadron decays
- B-mixing implemented in full generality
- First fully functional release with version 1.1


## HADRON DECAYS: RESULTS

Many models: e.g.

$$
\tau \rightarrow \nu_{\tau} \pi^{-} \pi^{-} \pi^{+}
$$


F. Siegert, F. Krauss: in preparation PYTHIA+TAUOLA: hep-ph/0101311

- Spin correlations: e.g.

$$
\mathbf{Z} \rightarrow \mathbf{W}^{+} \mathbf{W}^{-}, \mathbf{W}^{-} \rightarrow \tau^{-} \bar{\nu}_{\tau} \rightarrow \nu_{\tau} \pi \bar{\nu}_{\tau}
$$



## HADRON DECAYS: RESULTS

B-mixing: e.g.
F. Siegert, F. Krauss: in preparation Decay rate asymmetry $\mathbf{B}_{0} \rightarrow \mathbf{J} / \Psi \mathbf{K}_{\mathrm{s}} \leftrightarrow \overline{\mathbf{B}}_{\mathbf{0}} \rightarrow \mathbf{J} / \Psi \mathbf{K}_{\mathrm{s}}$ in $\mathbf{\Upsilon}(\mathbf{4 s}) \rightarrow \mathbf{B}_{0} \overline{\mathbf{B}}_{0}$ events


Stefan Höche, $\gamma \gamma$ Workshop CERN, 24.4.2008

## PHOTON INTERACTIONS

Now that we know the rest ...

- Sherpa provides LASER backscattering beam spectrum acc. to Acta Phys. Polon. B34 (2003) 2741
- cross section in $\gamma \gamma \rightarrow \tilde{\mu}^{+} \tilde{\mu}^{-}$


Prog. Part. Nucl. Phys. 53 (2004) 329


- Beam spectrum for $p \rightarrow p \gamma$ acc. to Phys. Lett. C15 (1975) 181 implemented by T. Pierzchala ported into v1.1 during this WS


## sUMMARYAND OUTLOOK

Sherpa is much more than what I talked about ...
Sherpas and collaborators currently also work on:

- Preparing the two new showers for ME-Shower merging $\Rightarrow$ systematics studies with different shower prescriptions
- BSM beyond the MSSM:

Little Higgs, MWTC $\rightarrow$ J. Ferland (ATLAS, Montreal), ...

- Interfaces to Athena $\rightarrow$ J. Ferland (ATLAS, Montreal)
and CMS software $\rightarrow$ M. Merschmeyer (CMS, Aachen) and LHCb software $\rightarrow$ SH, F. Siegert, J. Stieglitz (Durham/Dortmund)
- Grid support: At the IPPP, we run Sherpa on the Grid !

Multithreading: Speed up your computation with more CPU's !

> Latest release: Version 1.1.0 available on Genser and HepForge

## Updates on Sherpa can be found on

## WWW.SHERPA-MC.DE

E-mail us at
INFO@SHERPA-MC.DE

## CKKW IN A NUTSHELL

- Define jet resolution parameter $\mathrm{Q}_{\text {cut }}$ (Q-jet measure)

JHEP 0111 (2001) 063 JHEP 0208 (2002) 015 divide phase space into regions of jet production (ME) and jet evolution (PS)
Select final state multiplicity and kinematics according to $\sigma$ 'above' $Q_{\text {cut }}$

- $\mathrm{K}_{\mathrm{T}}$-cluster backwards (construct PS-tree) and identify core process
- Reweight ME to obtain exclusive samples at $Q_{\text {cut }}$
- Start the parton shower at the hard scale Veto all PS emissions harder than $Q_{\text {cut }}$


This yields the correct jet observables ! Generic example: 2-jet rate in ee $\rightarrow \mathrm{qq}$

$$
\mathbf{R}_{2}(\mathbf{q})=\left(\Delta\left(\mathbf{Q}_{\mathrm{cut}}, \mu_{\mathrm{hard}}\right) \frac{\Delta\left(\mathbf{q}, \mu_{\mathrm{hard}}\right)}{\Delta\left(\mathbf{Q}_{\mathrm{cut}}, \mu_{\mathrm{hard}}\right)}\right)^{2}
$$



## PS IN SHERPA: APACIC++

R. Kuhn, F. Krauss, G. Ivanyi, G. Soff CPC 134 (2001) 223

F. Krauss, A. Schälicke, G. Soff, hep-ph / 0503087

Basic features of APACIC++ :

- Virtuality ordered parton cascade, colour coherence imposed by angular veto
- Final \& initial state showering in $\mathrm{e}^{+} \mathrm{e}^{-} \&$ hadron collisions ( no DIS-like situations )
- Algorithm similar to virtuality ordered PYTHIA parton shower
- Extensively tested, e.g. vs. LEP data (hadronisation: PYTHIA)



## APACIC++: HEAVY QUARK PRODUCTION

- In quasi-collinear limit ( $\mathrm{b} \leftrightarrow$ heavy quark) ME factorises

$$
|\mathbf{M}(\mathbf{b}, \mathbf{c}, \ldots, \mathbf{n})|^{2} \rightarrow|\mathbf{M}(\mathbf{a}, \ldots, \mathbf{n})|^{2} \frac{8 \pi \alpha_{\mathbf{s}}}{\mathbf{t}-\mathbf{m}_{\mathbf{a}}^{2}} \mathbf{P}_{\mathbf{a} \rightarrow \mathbf{b} \mathbf{c}}(\mathbf{z})
$$



- Virtuality ordered PS $\rightarrow$ evolution variable $t$ changes to $t-\mathbf{m}_{\mathbf{a}}^{2}$
- Splitting functions $\mathbf{P}_{\mathbf{a b}}(\mathbf{z})$ become those for massive quarks
Nucl. Phys. B627(2002)189

$$
\begin{aligned}
& \rightarrow C_{F}\left(\frac{1+z^{2}}{1-z}-\frac{2 z(1-z) m^{2}}{q^{2}+(1-z)^{2} m^{2}}\right) \\
& \Rightarrow T_{R}\left(1-2 z(1-z)+\frac{2 z(1-z) m^{2}}{q^{2}+m^{2}}\right)
\end{aligned}
$$

- Cross-check: 2- and 3-jet fraction in $\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow \mathbf{t} \overline{\mathbf{t}}$, PS vs. ME, weighted with NLL Sudakov form factors Phys. Lett. B576(2003)135



## APACIC++: HEAVY QUARK PRODUCTION

PS in production


- On-shell daughter partons $\Rightarrow$ New decay kinematics via

Lorentz transformation Choice: Boost into new (daughter) cms

- FSR-like situation
- Evolution stops once diced virtuality reaches on-shell mass of heavy quark

PS in decay


- Off-shell daughter partons Decay kinematics need to be reconstructed
$\Rightarrow$ Choice: Reconstruct in cms of decayed quark, such that $\overrightarrow{\mathbf{p}} /|\overrightarrow{\mathbf{p}}|$ is preserved
- ISR-like situation
- Evolution stops if $\mathbf{p}_{\perp}$ reaches width of decaying quark


## COMI : PHASESPACE RECURSION

Nucl. Phys. B9 (1969) 568

- State-of-the art approach for general phasespace generation:

Factorise PS using

$$
\mathrm{d} \boldsymbol{\Phi}_{\mathbf{n}}(\mathbf{a}, \mathbf{b} ; \mathbf{1}, \ldots, \mathbf{n})=\mathrm{d} \boldsymbol{\Phi}_{\mathbf{m}}(\mathbf{a}, \mathbf{b} ; \mathbf{1}, \ldots, \mathbf{m}, \bar{\pi}) \mathrm{d} \mathbf{s}_{\pi} \mathrm{d} \boldsymbol{\Phi}_{\mathbf{n}-\mathbf{m}}(\pi ; \mathbf{m}+\mathbf{1}, \ldots, \mathbf{n})
$$

Remaining basic building blocks of the phasespace:
$\Rightarrow$ "Propagators" $\mathbf{P}_{\pi}=\left\{\begin{array}{cc}1 & \text { if } \boldsymbol{\pi} \text { or } \overline{\boldsymbol{\pi}} \text { external } \\ \mathrm{d} s_{\boldsymbol{\pi}} & \text { else }\end{array}\right.$
Decay "vertices"
Arrows $\rightarrow$ Momentum flow

## COMI : PHASESPACE RECURSION

Basic idea: Take above recursion literally and "turn it around" S-channel phasespace (schematically)

$$
\begin{aligned}
& \mathrm{d} \Phi_{S}(\pi)=\left[\sum \alpha\left(S_{\pi}^{\rho, \pi \backslash \rho}\right)\right]^{-1}
\end{aligned}
$$



T-channel phasespace (schematically)
Weights for adaptive multichanneling

$$
\begin{aligned}
& \mathrm{d} \Phi_{\Phi}^{(b)}(\alpha)=\left[\sum \alpha\left(T_{\alpha, \pi, \overline{\alpha b \pi})} \quad\right]^{-1}\right. \\
& \quad \times\left[\sum \alpha\left(T_{\alpha}^{\pi, \alpha b \pi}\right) T_{\alpha}^{\pi, \overline{\alpha b \pi}} P_{\pi} \mathrm{d} \Phi_{S}(\pi) P_{\overline{\alpha b \pi}} \mathrm{~d} \Phi_{( }^{(b)}(\alpha \pi)\right]
\end{aligned}
$$

"b" is fixed $\rightarrow$ Every PS-weight is unique!
 Arrows $\rightarrow$ Weight flow!

Factorial growth of PS-channels tamed

## MPI RESULTS FROM SHERPA

hep-ph/0601012

- $\mathrm{N}_{\text {Charged }}$ vs. $\mathrm{p}_{\mathrm{T}, \mathrm{jet} 1}$ in CTC in different regions w.r.t. leading charged particle jet



## MPI RESULTS FROM SHERPA

hep-ph/0601012

- $\mathrm{N}_{\text {Charged }}$ vs. $\Delta \varphi_{\text {jet } 1}$ in CTC for different $\mathrm{p}_{\mathrm{T}}$ of leading charged particle jet


