LHC potential to study quartic electroweak gauge boson couplings

Oscar Éboli Universidade de São Paulo Departamento de Física Matemática eboli@fma.if.usp.br

Work with S. Lietti, M.C. Gonzaez-Garcia, J.K. Mizukoshi, S.F. Novaes

April 25, 2008

Outline

- → I. Basic facts
- II. Quartic couplings not containing photons
- ✓ III. Quartic couplings with photons
- → IV. LHC capability to study quartic couplings
- → V. Conclusions

I. Basic facts

SWhat we know:

$$\mathcal{L} = \mathcal{L}_{\text{kinetic}}^{f} + \mathcal{L}_{\text{kinetic}}^{GB} + \mathcal{L}_{\text{ffv}} + \mathcal{L}_{\text{vvvv}} + \mathcal{L}_{\text{vvvv}} + \mathcal{L}_{\text{EWSB}}$$

SU(3)_c × SU(2)_L × U(1)_Y gauge interaction between fermions and gauge bosons tested at 0.1% level.

The couplings between the gauge bosons are fixed by the gauge symmetry, e.g.

$\textcircled{} \mathbf{W}_{L}^{+}\mathbf{W}_{L}^{-} \rightarrow \mathbf{W}_{L}^{+}\mathbf{W}_{L}^{-} \text{ scattering (Cornwall; Lee-Quigg-Thacker; etc)}$

 $\star J = 0$ partial wave

$$\mathbf{A} = \mathbf{A}_4 rac{\mathbf{E}^4}{\mathbf{M}_{\mathbf{W}}^4} + \mathbf{A}_2 rac{\mathbf{E}^2}{\mathbf{M}_{\mathbf{W}}^2} + \cdots$$

 \bigstar Unitarity implies that \mathbf{A}_4 and \mathbf{A}_2 must vanish

 $\bigstar \mathbf{A}_4 \propto \mathbf{g}_{\mathbf{W}\mathbf{W}\mathbf{W}\mathbf{W}} - \mathbf{g}_{\mathbf{W}\mathbf{W}\mathbf{Z}}^2 - \mathbf{g}_{\mathbf{W}\mathbf{W}\gamma}^2$ vanishes automatically in the SM.

★ Additional particles/interactions are needed to cancel the A_2 term as well.

Quartic couplings can be modified in extensions of the SM

 \bigstar In Higgsless models the Higgs is replaced by a tower of KK excitations of the gauge bosons

★ The cancelation of the E^4 growth of the scattering amplitudes requires that (Csaki–Grojean–Murayama–Pilo–Terning)

$$\mathbf{g}_{\mathbf{WWWW}} = \mathbf{g}_{\mathbf{WWZ}}^2 + \mathbf{g}_{\mathbf{WW\gamma}}^2 + \sum_{\mathbf{i}} \left(\mathbf{g}_{\mathbf{WWV_i}}^{(\mathbf{i})}
ight)^2$$

 \star Quartic couplings in these models can easily differ by a few percent from the SM values.

Simple way to look for anomalous (quartic) couplings is through the cross section growth

 $\frac{d\sigma}{dM_{WW}}(WW \to WW)$ for $g_{WWWW} = 1.01 g_{WWWW}^{SM}$

5

II. Quartic couplings not containing photons

 \bigstar Possible Lorentz invariant structures without ${\bf W}$ and ${\bf Z}$ derivatives

$$\begin{split} \mathcal{O}_{0}^{WW} &= \mathbf{g}^{\alpha\beta} \mathbf{g}^{\gamma\delta} \left[\mathbf{W}_{\alpha}^{+} \mathbf{W}_{\beta}^{-} \mathbf{W}_{\gamma}^{+} \mathbf{W}_{\delta}^{-} \right] , \qquad \mathcal{O}_{1}^{WW} = \mathbf{g}^{\alpha\beta} \mathbf{g}^{\gamma\delta} \left[\mathbf{W}_{\alpha}^{+} \mathbf{W}_{\beta}^{+} \mathbf{W}_{\gamma}^{-} \mathbf{W}_{\delta}^{-} \right] \\ \mathcal{O}_{0}^{WZ} &= \mathbf{g}^{\alpha\beta} \mathbf{g}^{\gamma\delta} \left[\mathbf{W}_{\alpha}^{+} \mathbf{Z}_{\beta} \mathbf{W}_{\gamma}^{-} \mathbf{Z}_{\delta} \right] , \qquad \mathcal{O}_{1}^{WZ} = \mathbf{g}^{\alpha\beta} \mathbf{g}^{\gamma\delta} \left[\mathbf{W}_{\alpha}^{+} \mathbf{W}_{\beta}^{-} \mathbf{Z}_{\gamma} \mathbf{Z}_{\delta} \right] , \\ \mathcal{O}_{0}^{ZZ} &= \mathcal{O}_{1}^{ZZ} \equiv \mathcal{O}^{ZZ} = \mathbf{g}^{\alpha\beta} \mathbf{g}^{\gamma\delta} \left[\mathbf{Z}_{\alpha} \mathbf{Z}_{\beta} \mathbf{Z}_{\gamma} \mathbf{Z}_{\delta} \right] , \end{split}$$

and we write $\mathcal{L}^{\mathbf{V}\mathbf{V}\mathbf{V}'\mathbf{V}'} \equiv \, \mathbf{c}_0^{\mathbf{V}\mathbf{V}'}\,\mathcal{O}_0^{\mathbf{V}\mathbf{V}'} + \, \mathbf{c}_1^{\mathbf{V}\mathbf{V}'}\,\mathcal{O}_1^{\mathbf{V}\mathbf{V}'}$.

😒 In the SM

$$\mathbf{c}_{0,\mathrm{SM}}^{\mathbf{WW}} = -\mathbf{c}_{1,\mathrm{SM}}^{\mathbf{WW}} = \frac{2}{\mathbf{c}_{W}^{2}}\mathbf{c}_{0,\mathrm{SM}}^{\mathbf{WZ}} = -\frac{2}{\mathbf{c}_{W}^{2}}\mathbf{c}_{1,\mathrm{SM}}^{\mathbf{WZ}} = \mathbf{g}^{2} \qquad \mathbf{c}_{\mathrm{SM}}^{\mathbf{ZZ}} = \mathbf{0}$$

 \bigstar Form of the low energy lagrangian depends on the existence, or not, of a Higgs boson

Linear realization of the gauge symmetry

★ We are interested in effective operators leading to quartic couplings but not triple couplings

 \star The lowest dimension operators are dimension 8, e.g.

$$\mathcal{L}_{S,0} = \frac{f_0}{\Lambda^4} \left[(D_\mu \Phi)^{\dagger} D_\nu \Phi \right] \times \left[(D^\mu \Phi)^{\dagger} D^\nu \Phi \right] ,$$

$$\mathcal{L}_{S,1} = \frac{f_1}{\Lambda^4} \left[(D_\mu \Phi)^{\dagger} D^\mu \Phi \right] \times \left[(D_\nu \Phi)^{\dagger} D^\nu \Phi \right] .$$

which lead to

$$\Delta c_i^{WW} = \frac{g^2 v^4 f_i}{8\Lambda^4} \equiv \qquad \Delta c_i^{WZ} = \frac{g^2 v^4 f_i}{16 c_W^2 \Lambda^4} \qquad \Delta c^{ZZ} = \frac{g^2 v^2 (f_0 + f_1)}{32 c_W^4 \Lambda^4}$$

Non-Linear realization of the gauge symmetry

 \bigstar Without the Higgs \implies non-linear realization of the symmetry \implies "chiral lagrangians". At lowest order, $O(\mathbf{p}^4)$,

	2 pt. vtx.	3 pt. vtx. (TGC)	4 pt. vtx. (QGC)
$v^2 ar{\mathcal{L}}_0$			
$\bar{\mathcal{L}}_1$	\checkmark	\checkmark	
$ar{\mathcal{L}}_2$		\checkmark	\checkmark
$-ar{\mathcal{L}}_3$		\checkmark	\checkmark
$ar{\mathcal{L}}_4$			\checkmark
$ar{\mathcal{L}}_5$			\checkmark
$ar{\mathcal{L}}_6$			\checkmark
$\bar{\mathcal{L}}_7$			\checkmark
$ar{\mathcal{L}}_8$		\checkmark	\checkmark
$\bar{\mathcal{L}}_9$		\checkmark	\checkmark
$ar{\mathcal{L}}_{10}$			\checkmark

 \star The operators that respect the SU(2) custodial are

$$\mathcal{L}_{4}^{(4)} = \alpha_{4} \left[\operatorname{Tr} \left(\mathbf{V}_{\mu} \mathbf{V}_{\nu} \right) \right]^{2} \qquad \qquad \mathcal{L}_{5}^{(4)} = \alpha_{5} \left[\operatorname{Tr} \left(\mathbf{V}_{\mu} \mathbf{V}^{\mu} \right) \right]^{2}$$

with $\mathbf{D}_{\mu} \mathbf{\Sigma} \equiv \partial_{\mu} \mathbf{\Sigma} + \mathbf{i} \mathbf{g} \frac{\tau^{a}}{2} \mathbf{W}_{\mu}^{a} \mathbf{\Sigma} - \mathbf{i} \mathbf{g}' \mathbf{\Sigma} \frac{\tau^{3}}{2} \mathbf{B}_{\mu}$ and $\mathbf{V}_{\mu} \equiv (\mathbf{D}_{\mu} \mathbf{\Sigma}) \mathbf{\Sigma}^{\dagger}$ leading to

$$\Delta \mathbf{c}_{\mathbf{0}(1)}^{\mathbf{WW}} = \mathbf{g}^2 \alpha_{4(5)} \qquad \Delta \mathbf{c}_{\mathbf{0}(1)}^{\mathbf{WZ}} = \frac{\mathbf{g}^2}{2\mathbf{c}_{\mathbf{W}}^2} \alpha_{4(5)} \qquad \Delta \mathbf{c}^{\mathbf{ZZ}} = \frac{\mathbf{g}^2}{4\mathbf{c}_{\mathbf{W}}^4} (\alpha_4 + \alpha_5)$$

Example: integrating out a heavy Higgs leads to

$$\alpha_4 = \mathbf{0} \qquad \alpha_5 = \frac{1}{8} \frac{\mathbf{v}^2}{\mathbf{M}_{\mathrm{H}}^2}$$

★ Integrating out a heavy spin-1 particle leads to

$$\alpha_4 = -\alpha_5 = \mathbf{12}\pi \; \frac{\mathbf{v}^4}{\mathbf{M}_{\rho}^4} \; \frac{\mathbf{\Gamma}_{\rho}}{\mathbf{M}_{\rho}}$$

Constraints on the anomalous QVC

Precision electroweak measurements can constrain the anomalous QVC

 \bigstar there is a contribution only to ϵ_1 leading to

 $-0.32 < \alpha_4 < 0.085$, $-0.81 < \alpha_5 < 0.21$.

at 99% CL

The strongest bounds come from unitarity.

 \bigstar Only considering $\mathbf{J}=\mathbf{0}$ for $\mathbf{V_LV_L}\to\mathbf{V_LV_L}$ we have

$$\begin{aligned} |4\alpha_4 + 2\alpha_5| &< 3\pi \frac{v^4}{\Lambda^4}, \\ |3\alpha_4 + 4\alpha_5| &< 3\pi \frac{v^4}{\Lambda^4}, \\ |\alpha_4 + \alpha_6 + 3(\alpha_5 + \alpha_7)| &< 3\pi \frac{v^4}{\Lambda^4}, \\ |2(\alpha_4 + \alpha_6) + \alpha_5 + \alpha_7| &< 3\pi \frac{v^4}{\Lambda^4}, \\ |\alpha_4 + \alpha_5 + 2(\alpha_6 + \alpha_7 + \alpha_{10})| &< \frac{6\pi}{5} \frac{v^4}{\Lambda^4}. \end{aligned}$$

 \bigstar For $\Lambda=1$ TeV the bounds are $\simeq 0.01$

III. Quartic couplings with photons

 \star Using the non-linear representation there are 14 $\mathcal{O}(\mathbf{p}^4)$ effective operators that respect custodial $\mathbf{SU}(2)$ symmetry

★ these are associated to eleven independent tensor structures

 \star For instance, the operators containing two photons are

$$\mathcal{L}_{eff} = -\pi\alpha\beta_0 \left(\frac{1}{2}F^{\mu\nu}F_{\mu\nu}W^{+\alpha}W^{-}_{\alpha} + \frac{1}{4\cos^2\theta_W}F^{\mu\nu}F_{\mu\nu}Z^{\alpha}Z_{\alpha}\right)$$
$$-\pi\alpha\beta_c \left(\frac{1}{4}F^{\mu\alpha}F_{\mu\beta}(W^{+}_{\alpha}W^{-\beta} + W^{+}_{\beta}W^{-\alpha}) + \frac{1}{4\cos^2\theta_W}F^{\mu\alpha}F_{\mu\beta}Z_{\alpha}Z^{\beta}\right)$$

 \bigstar Direct searches at LEP in $e^+e^- \to W^+W^-\gamma$ and $Z\gamma\gamma$ lead to 95% CL bounds

$$\begin{array}{rcl} -4.9 \times 10^{-3} \ \mathrm{GeV}^{-2} &< & \beta_0 &< 5.6 \times 10^{-3} \ \mathrm{GeV}^{-2} \ , \\ -5.4 \times 10^{-3} \ \mathrm{GeV}^{-2} &< & \beta_c &< 9.8 \times 10^{-3} \ \mathrm{GeV}^{-2} \ . \end{array}$$

Present constraints:

 \bigstar Direct searches at LEP in $e^+e^- \to W^+W^-\gamma$ and $Z\gamma\gamma$ lead to 95% CL bounds

$$\begin{array}{rcl} -4.9 \times 10^{-3} \ \mathrm{GeV}^{-2} &< & \beta_0 &< 5.6 \times 10^{-3} \ \mathrm{GeV}^{-2} \\ -5.4 \times 10^{-3} \ \mathrm{GeV}^{-2} &< & \beta_c &< 9.8 \times 10^{-3} \ \mathrm{GeV}^{-2} \end{array}$$

 \star Electroweak precision measurements: these QGV contribute to $\epsilon_{2,3}$

Λ (TeV)	Parameter	eta_0 (GeV $^{-2}$)	$eta_c~({ m GeV}^{-2})$
0.5	S	$($ -0.09 , 1.5 $) imes 10^{-4}$ $)$	$\left \left(\left0.29 \right. , 4.9 \left. ight) imes 10^{-4} ight ight.$
	U	(-5.4 , 1.9) $ imes 10^{-4}$	($-$ 18. , 6.2) $ imes 10^{-4}$
2.5	S	$($ $-$ 0.04 , 0.69 $) imes 10^{-4}$ $)$	$($ -0.15 , 2.5 $) imes 10^{-4}$ $)$
	U	(-2.5 , 0.88) $ imes 10^{-4}$	(-9.1 , 3.2) $ imes10^{-4}$

\star Unitarity violation in $\gamma\gamma \rightarrow \mathbf{VV}$ leads to the constraint

$$\begin{split} \left(\frac{\alpha\beta s}{16}\right)^2 \left(1 - \frac{4M_W^2}{s}\right)^{1/2} \left(3 - \frac{s}{M_W^2} + \frac{s^2}{4M_W^4}\right) &\leq N \text{ for } V = W \ , \\ \left(\frac{\alpha\beta s}{16c_W^2}\right)^2 \left(1 - \frac{4M_Z^2}{s}\right)^{1/2} \left(3 - \frac{s}{M_Z^2} + \frac{s^2}{4M_Z^4}\right) &\leq N \text{ for } V = Z \ , \end{split}$$

where $\beta = \beta_0$ or β_c and N = 1/4 (4) for β_0 (β_c). For instance, unitarity is violated for $\gamma\gamma$ invariant masses above 240 GeV for $\beta_0 = 5.6 \times 10^{-3}$ GeV⁻² (one of the present LEP bounds).

IV. LHC capability to study quartic couplings

QGC with two photons

(Lietti, Gonzalez-Garcia, OE, S. Novaes)

 $\Rightarrow \gamma \gamma W(\mathbf{Z})$ production

 $\mathbf{p} + \mathbf{p} \to \gamma + \gamma + (\mathbf{W}^* \to) \ \ell + \nu$ and $\mathbf{p} + \mathbf{p} \to \gamma + \gamma + (\mathbf{Z}^* \to) \ \ell + \ell$

✤ To have a meaningful limit we introduce the form factor

$$eta_{0, ext{c}} \longrightarrow \left(\mathbf{1} + rac{\mathbf{M}_{\gamma\gamma}^2}{\mathbf{\Lambda}^2}
ight)^{- ext{n}} imes eta_{0, ext{c}}$$

IV. LHC capability to study quartic couplings

QGC with two photons

(Lietti, Gonzalez-Garcia, OE, S. Novaes)

 $\Rightarrow \gamma \gamma W(\mathbf{Z})$ production

 $\mathbf{p} + \mathbf{p} \to \gamma + \gamma + (\mathbf{W}^* \to) \ \ell + \nu$ and $\mathbf{p} + \mathbf{p} \to \gamma + \gamma + (\mathbf{Z}^* \to) \ \ell + \ell$

✤ To have a meaningful limit we introduce the form factor

$$eta_{\mathbf{0},\mathbf{c}} \longrightarrow \left(\mathbf{1} + rac{\mathbf{M}_{\gamma\gamma}^2}{\mathbf{\Lambda}^2}
ight)^{-\mathbf{n}} imes eta_{\mathbf{0},\mathbf{c}}$$

Parton level analysis using MadGraph adding the anomalous quartic interactions.

✤ P. Bell has a MC ready for full simulations.

✤ Basic acceptance cuts

$$\begin{array}{ll} p_T^{(\ell,\nu)} & \geq & 25 \ \mathrm{GeV} \ \mathrm{for} \ \ell = e \ (\mu) \\ E_T^{\gamma} & \geq & 20 \ \mathrm{GeV} \\ |\eta_{\gamma,e}| & \leq & 2.5 \\ |\eta_{\mu}| & \leq & 1.0 \\ \Delta R_{ij} & \geq & 0.4 \ , \end{array}$$

✤ To select W's

 $\overline{\mathbf{65}}\;\overline{\mathbf{GeV}}\; \leq \mathbf{M}_{\mathbf{T}}^{\ell
u} \leq \mathbf{100}\;\overline{\mathbf{GeV}}$

✿ Basic acceptance cuts

$$\begin{array}{ll} p_T^{(\ell,\nu)} & \geq & 25 \ \text{GeV for } \ell = e \ (\mu) \\ E_T^{\gamma} & \geq & 20 \ \text{GeV} \\ |\eta_{\gamma,e}| & \leq & 2.5 \\ |\eta_{\mu}| & \leq & 1.0 \\ \Delta R_{ij} & \geq & 0.4 \ , \end{array}$$

✿ To select W's

 $65 \; ext{GeV} \; \leq \mathbf{M}_{\mathbf{T}}^{\ell
u} \leq 100 \; ext{GeV}$

★ To enhance the signal

 ${f E}_{T}^{\gamma_{1(2)}} \geq 200~~(100)~{ ext{GeV}}$

photon collisions

Solution We write that $\sigma \equiv \sigma_{sm} + \beta \sigma_{inter} + \beta^2 \sigma_{ano}$

 \clubsuit Assuming that $\Lambda = 2.5$ TeV we get that

Process

$$\beta_0$$
 (TeV⁻²)
 β_c (TeV⁻²)

 $pp \rightarrow l^{\pm} \nu_{l^{\pm}} \gamma \gamma$
 (-76., 76.)
 (-110., 100.)

* A bit better than the bounds imposed by precision measurements

photon collisions

Solution We write that $\sigma \equiv \sigma_{sm} + \beta \sigma_{inter} + \beta^2 \sigma_{ano}$

 \clubsuit Assuming that $\Lambda=2.5~{
m TeV}$ we get that

Process

$$\beta_0$$
 (TeV⁻²)
 β_c (TeV⁻²)

 $pp \rightarrow l^{\pm} \nu_{l^{\pm}} \gamma \gamma$
 (-76., 76.)
 (-110., 100.)

* A bit better than the bounds imposed by precision measurements

Solution WBF $\gamma\gamma$ production

$$\mathbf{p} + \mathbf{p}
ightarrow \mathbf{q} + \mathbf{q} + (\mathbf{W}^* + \mathbf{W}^* \text{ or } \mathbf{Z}^* + \mathbf{Z}^*)
ightarrow \mathbf{q} + \mathbf{q} + \gamma + \gamma$$

✤ Basic acceptance cuts for the jets

$$p_T^{j_{1(2)}} > 40 \ (20) \text{ GeV} \quad , \quad |\eta_{j_{(1,2)}}| < 5.0 \ ,$$

 $|\eta_{j_1} - \eta_{j_2}| > 4.4 \quad , \quad \eta_{j_1} \cdot \eta_{j_2} < 0 \quad \text{and}$
 $\Delta R_{jj} > 0.7 \ .$

Basic acceptance cuts for the photons

$$egin{aligned} E_T^{\gamma_{(1,2)}} &> 25 \; {
m GeV} &, & |\eta_{\gamma_{(1,2)}}| < 2.5 \;, \ && \min\{\eta_{j_1},\eta_{j_2}\} + 0.7 < \eta_{\gamma_{(1,2)}} < \max\{\eta_{j_1},\eta_{j_2}\} - 0.7 \;, \ && \Delta R_{j\gamma} > 0.7 \;\; \mbox{ and }\; \Delta R_{\gamma\gamma} > 0.4 \end{aligned}$$

Sasic acceptance cuts for the jets

$$p_T^{j_{1(2)}} > 40 \ (20) \ \text{GeV}$$
 , $|\eta_{j_{(1,2)}}| < 5.0$,
 $|\eta_{j_1} - \eta_{j_2}| > 4.4$, $\eta_{j_1} \cdot \eta_{j_2} < 0$ and
 $\Delta R_{jj} > 0.7$.

Basic acceptance cuts for the photons

$$E_T^{\gamma_{(1,2)}} > 25 \text{ GeV}$$
 , $|\eta_{\gamma_{(1,2)}}| < 2.5$,
min $\{\eta_{j_1}, \eta_{j_2}\} + 0.7 < \eta_{\gamma_{(1,2)}} < \max\{\eta_{j_1}, \eta_{j_2}\} + 0.7$ and $\Delta R_{\gamma\gamma} > 0.4$

To enhance the signal

19
$$400~{ ext{GeV}} \le \mathrm{m}_{\gamma\gamma} \le 2500~{ ext{GeV}}.$$

\bigstar The predictions for the SM backgrounds vary by a factor of 10 when we change the QCD scales

✤ We must extract the SM background from data.

The best variable to define the control region is the $\gamma\gamma$ invariant mass

$$\mathbf{R}(\xi) = \frac{\sigma(400 \text{ GeV} < \mathbf{m}_{\gamma\gamma} < 2500 \text{ GeV})}{\sigma(100 \text{ GeV} < \mathbf{m}_{\gamma\gamma} < 400 \text{ GeV})}$$

★ The QCD uncertainty is 15% in LO
♦ $N_{bck} = 143$ for 100 fb⁻¹

 \star Bounds: $|eta_0| < 0.057~{
m TeV^{-2}}$ and $|eta_{
m c}| < 0.21~{
m TeV^{-2}}$

 \bigstar 2 to 3 orders improvement over $\gamma\gamma W$

(Mizukoshi, Gonzalez–Garcia, OE)

✤ We studied two processes

QGC without photons

 $\mathbf{p} + \mathbf{p} \to \mathbf{j}\mathbf{j}\mathbf{W}^+\mathbf{W}^- \to \mathbf{j}\mathbf{j}\mathbf{e}^\pm\mu^\mp\nu\nu$ and $\mathbf{p} + \mathbf{p} \to \mathbf{j}\mathbf{j}\mathbf{W}^\pm\mathbf{W}^\pm \to \mathbf{j}\mathbf{j}\mathbf{e}^\pm\mu^\pm\nu\nu$

* Let's concentrate on the anomalous QGC α_4 and α_5 * Main SM backgrounds: W^+W^-jj , $t\bar{t}$, $t\bar{t}j$, $t\bar{t}jj$

* Basic acceptance cuts

$$\begin{array}{ll} p_T^j > 20 \ {\rm GeV} & , & |\eta_j| < 4.9 \ , \\ |\eta_{j1} - \eta_{j2}| > 3.8 & , & \eta_{j1} \cdot \eta_{j2} < 0 \ . \\ & |\eta_\ell| \le 2.5 & , & \eta_{\min}^j < \eta_\ell < \eta_{\max}^j \\ & \Delta R_{\ell j} \ge 0.4 & , & \Delta R_{\ell \ell} \ge 0.4 \\ & p_T^\ell \ge 100 \ {\rm GeV} & , & p_{missing}^T \ge 30 \ {\rm GeV} \ . \end{array}$$

* To further suppress the background in the $e^{\pm}\mu^{\mp}jj$ final state

 $\mathbf{M_{jj}} \geq 1000 \; \text{GeV} \; ,$

* We also veto extra jet activity

$$\mathbf{p_T^j} < \mathbf{20} \ \ \text{GeV} \quad \text{if} \quad \eta_{\min}^j < \eta_j < \eta_{\max}^j \ .$$

* Anomalous QGC leads larger
 cross sections for large WW
 invariant masses
 * We define the transverse mass

✤ Further cut

 $\mathbf{M}_{\mathrm{T}}^{\mathrm{WW}} \geq \overline{\mathbf{800~GeV}}$

* The effect of the cuts in $e^{\pm}\mu^{\mp}jj$ is

background/cut	basic [20 GeV]	basic	$+M_j j$ cut	jet veto	jet veto $ imes P_{f surv}$	angle $ imes P_{ m surv}$
IRED+- (QCD)	20.0	1.12	0.26	0.26	0.058	0.035
IRED+- (EW)	4.4	0.30	0.24	0.24	0.14	0.089
$tar{t}$	217.	6.96	0.0306	0.0306	0.0069	0.0068
$tar{t}j$	1860.	73.8	8.88	0.776	0.175	0.158
$tar{t}jj$	682.	77.2	2.21	0.0140	0.0032	0.0031
Anomalous σ_{00}	2710	1710	1310	1310	786	758

scenario	channel	$\sigma_{ m bck}$	σ_0	σ_1	σ_{00}	σ_{11}	σ_{01}
	$pp o e^{\pm} \mu^{\mp} \nu \nu j j$	0.067			300	655	822
$m_h = 120~{ m GeV}$	$pp \to e^+ \mu^+ \nu \nu j j$	0.029	-0.46	-0.20	400	94	380
	$pp ightarrow e^- \mu^- u u jj$	0.045	-0.11	-0.04	91	21	87
	$pp o e^{\pm} \mu^{\mp} \nu \nu j j$	0.07	1.3	2.1	300	655	822
No light Higgs boson	$pp \to e^+ \mu^+ \nu \nu j j$	0.017	-4.9	-2.3	400	94	380
	$pp ightarrow e^- \mu^- u u jj$	0.017	-1.2	-0.54	91	21	87

* We need to extract the background from data due to QCD uncertainties

* For opposite charge leptons we use $M_T(WW)$ in the extrapolation

$$\mathbf{R}_{\mathrm{os}} = \frac{\sigma_{\mathrm{bck}}(\mathbf{M}_{\mathbf{T}}^{\mathbf{WW}} > \mathbf{800~GeV})}{\sigma_{\mathrm{bck}}(\mathbf{M}_{\mathbf{T}}^{\mathbf{WW}} < \mathbf{800~GeV})}$$

* For same charge leptons we use p_T^{ℓ} in the extrapolation

$$\mathbf{R}_{\rm ss} = \frac{\sigma_{\rm bck}(\mathbf{p}_{\rm T}^\ell > \mathbf{100~GeV})}{\sigma_{\rm bck}(\mathbf{30} < \mathbf{p}_{\rm T}^\ell < \mathbf{100~GeV})}$$

photon collisions

* We need to extract the background from data due to QCD uncertainties (e.g. for ttj)

* the extrapolation uncertainties are in between 15% for OS (7.5% for SS)

* Finally we can estimate that achievable bounds are

* Finally we can estimate that achievable 99% CL bounds are

$$-22 < \frac{f_0}{\Lambda^4} (\text{TeV}^{-4}) < 24$$
 , (1)

$$-25 < \frac{f_1}{\Lambda^4} (\text{TeV}^{-4}) < 25$$
 , (2)

in the linear case and

$$-7.7 \times 10^{-3} < \alpha_4 < 15 \times 10^{-3} , \qquad (3)$$

$$-12 \times 10^{-3} < \alpha_5 < 10 \times 10^{-3} . \qquad (4)$$

in models without a light Higgs.

V. Conclusions

* The LHC has a good potential to extend our knowledge on the QGC

* WBF will be an important tool for the analysis of anomalous quartic couplings \implies we should invest more time understanding its details.

