Exclusive dileptons at CMS $(\gamma\gamma \rightarrow l^+l \text{ and } \gamma p \rightarrow \Upsilon p \rightarrow l^+l p)$

Jonathan Hollar Lawrence Livermore National Laboratory for the CMS Collaboration

April 25, 2008

Signal processes

- Excusive dileptons
 - Two leptons, back to back in ϕ , balanced in p_T
 - "Elastic" interactions: protons remain intact & escape down beamline no other activity in detector (in limit of zero pileup assumed here for startup)

- Two processes relevant for CMS identical selection used for both:
 - Two-photon production non-resonant lepton pairs from $\gamma\gamma \rightarrow l^+l^-$
 - Photoproduction lepton pairs through Upsilon resonances via $\gamma p \rightarrow \Upsilon \rightarrow l^+ l^-$

Two-photon physics

• QED process - minimal uncertainties on the cross-section, highly constrained 4-body final state

- Startup applications candidate for:
 - Luminosity calibration
 - Low p_T lepton ID studies

- High-luminosity applications
 - Alignment sample for forward proton taggers
 - "Standard candle" for BSM physics in high energy YY interactions: YY→Ĩ⁺Ĩ, YY→H⁺⁺H⁻⁻, YY→YY, YY→W⁺W⁻ couplings, etc. (see talks tomorrow)

Upsilon photoproduction

- Narrow resonance, two ~5 GeV muons
 - cross-check low pT muon reconstruction
- QCD/diffractive physics (a la HERA)
 - cross-section, t-distribution

 (momentum transfer at p-vertex)
 depend on generalized parton
 distributions/correlations within the
 proton
 - W-dependence of cross-section well measured for light-quark mesons at lower energies
 - Heavy flavor (bb) mesons studied up to HERA energies, LHC extends energy by ~I order of magnitude

MC and trigger

- Full simulation, reconstruction, & trigger emulation applied to all samples
 - Two-photon (elastic + inelastic): LPAIR
 - Upsilon photoproduction:
 - STARLIGHT ($\sigma \ge B(Y(1S) \rightarrow \mu\mu) = 39.0 \text{ pb}$)
 - Also compared to PHITI σ lower by a factor of 3
 - (Thanks to J. Nystrand, J de Favreau)
- Signal is mostly very soft leptons use lowest possible trigger thresholds
 - Standard CMS startup dimuon trigger (pT > 3 GeV)
 - Dedicated dielectron trigger ($E_T > 6 \text{ GeV}$)

Dilepton selections

- Offline analysis selection: require exactly 2 reconstructed opposite-sign muons or electrons
- Signal is sharply peaked at $|\Delta \phi| = \pi$ and $\Delta p_T = 0$

Select events with: $\Delta p_T (\mu \mu) < 2.0 \text{ GeV}$ $|\Delta \varphi(\mu \mu)| > 2.9$

 $\Delta E_T (ee) < 5.0 \text{ GeV}$ $|\Delta \phi(ee)| > 2.7$

Exclusivity

- Calorimeter exclusivity: backgrounds contain "extra" calorimeter tower and/or charged tracks
 - "Extra" towers: E > 5 GeV, isolated from either of the lepton candidates by R > 0.3 in the η - ϕ plane
- Tracker coverage in central region ($|\eta| < 2.5$)

Inelastic backgrounds

- Irreducible background from inelastic photonexchange events
 - Cross-section similar to elastic signal, theoretically less clean
 - In 75% of these events, expect no activity within CMS forward hadron calorimeter (HF) acceptance
- Reduce by vetoing with far-forward calorimeters
 - ZDC (Zero Degree Calorimeter): Detection of neutrals in the range $|\eta| > 8.6$
 - Castor: Detection of charged/neutral activity in the range 5.2 < $|\eta|$ < 6.6
 - Based on acceptance, 2/3 of remaining inelastic events can be rejected using ZDC (2 directions) + Castor (1 direction)

- Remaining non-inelastic backgrounds will be estimated from data by fitting sidebands of calorimeter tower multiplicity distribution
 - In MC, this contribution is smaller than the inelastic background by a factor of 5
- Systematics
 - Inelastic background: assume 19% uncertainty based on CDF study
 - Calo noise: Studied, small effect after cleanup of hot/dead channels

Final samples (100 pb⁻¹)

 In MC, several hundred two-photon and Upsilon events pass the final selection in the dimuon channel

709 \pm 27 (stat) elastic events 223 \pm 15 (stat) \pm 42 (model) singly inelastic events

636 ± 25 (stat) ± 121 (model) singly inelastic events, no ZDC/Castor

- Electron sample a factor of ~10 smaller due to higher trigger threshold, efficiency for low E_T electron reconstruction
 - No sensitivity to Upsilon region

 $67 \pm 8 \text{ (stat) elastic events}$ 31 ± 6 (stat) ± 6 (model) singly inelastic events

 82 ± 9 (stat) ± 15 (model) singly inelastic events, no ZDC/Castor

- Elastic events can't be separated event-by-event due to inelastic background
- Can be done statistically using differences in shapes of $\Delta \varphi$ and Δp_T distributions within signal region
 - Precision would be improved with forward Castor/ZDC vetos

Upsilon region

 Significant sample of first 3 Upsilon resonances can be observed over twophoton continuum with 100 pb⁻¹ of single-interaction data

- proton 4-momentum transfer
 "t" highly correlated with
 Upsilon pT²
 - Fit p_T² distribution to find the slope parameter b
 - Consistent with true value of "t" up to a small bias

b(reco pT²) = 3.82 ± 0.17 GeV² b(true t) = 4.03 ± 0.04 GeV² <W> = 2398 GeV <q²> = 0.05 GeV²

Conclusions

- A significant sample of exclusive dimuons from can be triggered on and reconstructed in CMS, with 100 pb⁻¹ and minimal pileup
 - Plus a smaller sample of dielectrons
- Other backgrounds should be small compared to inelastics and signal
- Several photon-physics and calibration studies are possible with this sample, using early data from the LHC
 - High-energy Upsilon photoproduction measurements
 - Luminosity normalization
 - Lepton ID studies

Extra slides

CMS forward calorimeters 🞇

- "Baseline" CMS forward hadronic calorimeter (HF) extends to $|\eta| < 5$
- Castor: quartz-tungsten sampling calorimeter
 - ~14 m from IP, covers $5.2 < |\eta| < 6.6$
- ZDC: quartz-tungsten sampling calorimeter
 - ~140 m from IP, covers $|\eta| > 8.6$

CMS

Toal weight	12500 t
Overall diameter	15 m
Overall length	21.6 m

 Silicon tracker

 micro strips
 (10M ch)

 pixel
 (40M ch)

 (5.4m long, 2.4m Φ: |η| <2.4)</td>

Central calorimeter ECAL: PbWO4 crystal HCAL: brass+scinti. (|ŋ| <3.0)

in 4 Tesla solenoid (12.5m long, $6m \Phi$ in)

muon system DT+RPC (barrel) CSC+RPC (endcap) (in iron yoke: |η| <2.4)

Fast cerenkov forward calorimeter quartz fiber (3<|η|<5)