

Hard Photoproduction in A-A Collisions

<u>Diffractive Physics(->e⁺e⁻) with Heavy Ions at RHIC</u>

Probing small x structure of nuclei and protons at LHC (with M.Strikman and R.Vogt)

CERN- April-23-08

Sebastian White, BNL

Can one continue HERA program with higher $s_{\gamma N}$ at LHC?

Electron beam ->Z=82 at 5.5 TeV/n Pb target (AA) or proton (pA) L=4 10^{26} (AA) and 7 10^{29} (pA) cm⁻²s⁻¹

-Christian Griepenkerl (1839–1916): Raub des Feuers: Photo © Maicar Förlag – GMI

RHIC and LHC as high Luminosity γ-Hadron colliders

=>Nucleus at rest, effective lorentz γ_{eff} =2* γ_{beam}^2 -1

Equivalent Photon spectrum in target nucleus frame

Topics in Diffraction

- Total Cross Sections
 - RHIC methodology uses calculable EM cross sections to calibrate (eg Coulomb Dissociation, γ+d->n+p)
- "Peripheral γ-A interactions"
 - Diffractive Vector meson production
 - γγ->e⁺e⁻
- Deep inelastic γ-A interactions
 dijet, jet+γ, Heavy Flavor production
- Other Forward Physics, eg pp->n+X

CERN- April-23-08

Sebastian White, BNL

Forward Instrumentation

0.

10.

Centimeters

20.

30.

-20. -10.

CERN- April-23-08

PHENIX Diffractive Data

AuAu σ_{tot} : Coulomb + Geometrical

dAu σ_{tot} " :Original system for Diffraction Dissociation "Free Dissociation"+ Geometrical

 $\gamma\gamma$ -> e⁺e⁻ : High Mass continuum (m_{ee} above ~2 GeV)

γAu-> J/psi+Au coherent photoproduction

CERN- April-23-08

CERN- April-23-08

Sebastian White, BNL

TABLE I. Cross sections calculated and derived from the data. The errors quoted on measure-

5 10 15 20 25 30 35 Neutron multiplicity

	ments include the uncertainty of the BBC cross section [8]			
Run I	Cross Section	Calculated $Value(1)$	Calculated $Value(2)$	Measured
Iton I	σ_{tot}	$10.83 \pm 0.5 \mathrm{Barns}$	11.19 \pm	N.A.
PRL	σ_{geom}	$7.09 \pm xx$	$7.29 \pm xx$	N.A.
(1)Baltz & SNW (2)Bondorff et al. Meas.=Chiu et al.	$rac{\sigma_{geom}}{\sigma_{tot}}$	0.67	0.65	$0.661\ {\pm}0.014$
	electromagnetic			
	$\frac{\sigma(1n,Xn)}{\sigma_{tot}}$	0.125	xx	$0.117\pm0.003\pm\!0.002$
	$\frac{\sigma(1n,1n)}{\sigma_{1n,Xn}}$	0.329	xx	$0.345 \pm 0.01 \pm 0.006$
	$\frac{\sigma(2n,Xn)}{\sigma_{1n,Xn}}$	xx	0.327	$0.345 \pm 0.011 \pm 0.01$
	Au X Au @ \s = 130GeV "Hadronic" events 10 ² Bgd for "coulomb" events			

d-Au Inelastic cross section

Author	Calculated value(barn)		
Kopeliovich	1.93 (uses non-diffractive,Gribov)		
Kharzeev Levin,Nardi	2.26 ±0.1		
STAR "standard"	2.36 (also find 7.1 b for AuAu		
	Whereas vernier-> 6.1 barn)		
PHENIX "standard"	2.18+-0.17		
D. d'Enterria	2.32 +17 (n skin issue)		
This work	2.26(±1.6% ± 5.0% ± 4.5%)		

CERN- April-23-08

Sebastian White, BNL

ZDC N or S trigger, ie at least 1 n from either d or Au beam, (no rapidity gaps bias)

PHENIX measurement of deuteron dissociation

Impact position of neutrons For both free dissociation And stripping

How to measure accelerator background to d+Au->n+p ?

Separate beams through beam steering and measure rates:

Red(upper)=raw trigger Blue(lower)=cuts added

CERN- April-23-08

Sebastian White, BNL

RHIC γγ Physics and vector Meson Photoproduction

"Tagged" photon spectrum

ρ photoproduction: STAR Collaboration at RHIC $\sqrt{s_{nn}}$ =130 GeV (C. Adler et al., Phys. Rev. Lett. 89(2002)272302)

p_T spectrum shows clear coherent signal

High Mass e⁺e⁻ in PHENIX

CERN- April-23-08

Sebastian White, BNL

PHENIX trigger

UPC: (ZDCN || ZDCS) && (!BBCLL1noVtx) && (ERT2x2)

Sensitive to $\gamma + A \rightarrow A^* + J/psi (\rightarrow e^+e^-)$:

• Veto on BBC (|y| ~3-4) [exclude periph. nuclear & beam-gas]

Neutron(s) in at least one ZDC [from Au* Coulomb de-excitation]

• Large energy (>0.8 GeV) cluster in EMCal [e⁺e⁻ decay from J/_]

Total data set: 1352 PRDFFs * 0.8 GB/file ~ 1.04 TB, 8.4M events

Global cuts: |zvtx| < 30 cm, track multiplicity <15

Single-track cuts:

- $N_0 \ge 2$ [# of RICH phototubes fired by e^+e^-].
- E₁ > 0.8 GeV || E₂ > 0.8 GeV [ERT threshold].
- No dead-warn tower around assoc. EMCal cluster [CNT-EMC matching. e+e- candidates].

Pair cuts: $arm_1 \neq arm_2$ [back-to-back di-electrons]

Background subtraction: [unlike-sign] - [like-sign]

Full GEANT MC for J/psi & high-mass e^+e^- continuum based on physics input from Starlight model

CERN- April-23-08

Sebastian White, BNL

ZDC trigger bias

~60% of all J/psi with 1 neutron tag

 $\sim 20\%$ with 2 arm n tag

J.Nystrand/STARlight

J/psi after continuum

Dominant uncertainty in signal extraction from continuum fit

CERN- April-23-08

subtracted

Sebastian White, BNL

Hard Photoproduction at LHC

With Pb-Pb and p-Pb collisions

CERN- April-23-08

The ATLAS Detector

CERN-A

CERN- April-23-08

Di-y reconstructed in ZDC from 10⁶ PYTHIA events

ATLAS physics with UltraPeripheral Collisions

ATLAS is the highest resolution and granularity LHC calorimeter UPC physics takes full advantage of strengths -no pileup and negligible underlying event activity FCAL allows rapidity gap at level of Et~2 GeV ZDC neutron tag always present in inclusive ie γ+Pb->jj+X ZDC tag at ~20% level in diffractive ie γ+Pb->jj+ Pb

ATLAS dijet photoproduction

CERN- April-23-08

Seba

Event yields from a 1 month HI (Pb-Pb) run at nominal Luminosity (4 10^{26} cm⁻²s⁻¹). Counts per bin of $\delta pt=1.5$ GeV $\delta x2/x2=+/-0.25$

b-jet from soft lepton tag or detached vertex

ATLAS ZDC tag fraction

Fraction of diffractive events with additional γ exchanges leading to 2 arm ZDC tag

Note that directly correlated With E γ which is strongly Correlated with impact param.

CERN- April-23-08

Sebastian White, BNL

Event yields from a 1 month p+Pb run at nominal Luminosity (7 10^{29} cm⁻²s⁻¹). Counts per bin of $\delta pt=1.5$ GeV $\delta x2/x2=+/-0.25$

ATLAS jj photoproduction (p+Pb)

Number of $\gamma + p \rightarrow V + N$ events per unit rapidity for a standard proton-lead run - branching of decay to muons is included. Comparable number of coherent $\gamma + A \rightarrow V + A$ is not shown.

Sufficient to check pQCD prediction of $\sigma \sim W^{1.6}$ for Upsilon production determination of the t-slope provided protons could be detected (420 m proposal)

СЕКІЛ- Аргіі-25-08

Sebasuan white, BINL

Summary

- Large cross section diffractive processes used to normalize AuAu and dAu data in PHENIX
- High mass e+e- and J/Psi diffractive photoproduction data collected in PHENIX
- Rapidity gap and n-tag powerful tool in Heavy Ions
- Photoproduction measurements with ATLAS will explore a wide range of topics in Diffraction