Photoproduction in Ultra-Peripheral Relativistic Heavy Ion Collisions at STAR

Boris Grube

Pusan National University, Department of Physics Busan, Republic of Korea

> Brookhaven National Laboratory Upton, NY, U.S.A.

Workshop on High Energy Photon Collisions at the LHC CERN, Geneva 23rd April 2008

PUSAN NATIONAL UNIVERSITY

Outline

Introduction

- Ultra-peripheral relativistic heavy ion collisions at STAR
- Experimental setup
- Triggering and data selection
- 2 Results on photonuclear ho production in Au imes Au collisions
 - ρ production cross section
 - Spin structure of ρ production amplitudes
 - Interference effects in coherent ρ production

Other results

- Photonuclear ρ production in d \times Au collisions
- $\pi^+\pi^-\pi^+\pi^-$ production in Au × Au collisions
- e^+e^- -pair production in Au × Au collisions

Introduction esults on photonuclear ρ production in Au \times Au collisions Other results Jltra-peripheral relativistic heavy ion collisions at STAR Experimental setup Friggering and data selection

Outline

Introduction

- Ultra-peripheral relativistic heavy ion collisions at STAR
- Experimental setup
- Triggering and data selection
- 2 Results on photonuclear ho production in Au imes Au collisions
 - *ρ* production cross section
 - Spin structure of ρ production amplitudes
 - Interference effects in coherent ρ production

3 Other results

- Photonuclear ρ production in d \times Au collisions
- $\pi^+\pi^-\pi^+\pi^-$ production in Au × Au collisions
- e^+e^- -pair production in Au × Au collisions

Results on photonuclear ρ production in Au \times Au collisions Other results Ultra-peripheral relativistic heavy ion collisions at STAR Experimental setup Triggering and data selection

Ultra-Peripheral Heavy Ion Collisions (UPC) at STAR

UPC processes measured at STAR

Photonuclear interactions

- ρ production in Au × Au @ $\sqrt{s_{_{NN}}}$ = 200, and 130 GeV
- γ^* from "spectator" ion fluctuates into $q\bar{q}$ -pair
- qq-pair scatters off "target" nucleus into real vector meson
- Scattering described in terms of soft Pomeron exchange

Results on photonuclear ρ production in Au \times Au collisions Other results Ultra-peripheral relativistic heavy ion collisions at STAR Experimental setup Triggering and data selection

Ultra-Peripheral Heavy Ion Collisions (UPC) at STAR

UPC processes measured at STAR (cont.)

- **2** Photonuclear interactions with mutual nuclear breakup
 - ρ production in Au × Au @ $\sqrt{s_{NN}} = 200, 130$, and 62 GeV
 - Mutual Coulomb excitation of nuclei by additional photons
 - Independent of meson production
 - Predominantly excitation of Giant Dipole Resonance (GDR)
 - GDRs decay via neutron emission \implies distinctive signature

Results on photonuclear ρ production in Au \times Au collisions Other results Ultra-peripheral relativistic heavy ion collisions at STAR Experimental setup Triggering and data selection

Ultra-Peripheral Heavy Ion Collisions (UPC) at STAR

UPC processes measured at STAR (cont.)

2 Photonuclear interactions with mutual nuclear breakup

- ρ production in Au × Au @ $\sqrt{s_{_{NN}}}$ = 200, 130, and 62 GeV
- Mutual Coulomb excitation of nuclei by additional photons
 - Independent of meson production
 - Predominantly excitation of Giant Dipole Resonance (GDR)
 - GDRs decay via neutron emission \implies distinctive signature

Introduction sults on photonuclear ρ production in Au × Au collisions Other results Ultra-peripheral relativistic heavy ion collisions at STAR Experimental setup Triggering and data selection

Ultra-Peripheral Heavy Ion Collisions (UPC) at STAR

UPC processes measured at STAR (cont.)

O Photon-photon interactions with mutual nuclear breakup

• e^+e^- -pair production in Au × Au @ $\sqrt{s_{NN}} = 200 \text{ GeV}$

Introduction esults on photonuclear ρ production in Au \times Au collisions Other results Ultra-peripheral relativistic heavy ion collisions at STAR Experimental setup Triggering and data selection

The STAR Experiment at RHIC

Detector components important for UPC measurements Nucl. Instr. Meth. A499

Boris Grube Photoproduction in Ultra-Peripheral Heavy Ion Collisions at

Results on photonuclear ρ production in Au × Au collisions Other results Ultra-peripheral relativistic heavy ion collisions at STAR Experimental setup Triggering and data selection

Triggering and Data Selection

TPC tracks for typical ρ event

Experimental signature and event selection

- Coherent production dominates: particles produced in $\gamma^*\gamma^*$ and $\gamma^*\mathbb{P}$ have low $p_T \leq 2\hbar/R_A \approx 60 \text{ MeV}/c$
- 2 well reconstructed tracks
 - From common vertex
 - Opposite charge
 - Low net p_T
- Vertex position close to interaction diamond
- Low overall track multiplicity
- For nuclear breakup: additional forward neutrons ⇒ trigger

STAR acceptance limits accessible rapidities to |y| < 1

Boris Grube

Results on photonuclear ρ production in Au × Au collisions Other results Ultra-peripheral relativistic heavy ion collisions at STAF Experimental setup Triggering and data selection

Triggering and Data Selection

TPC tracks for typical ρ event

Experimental signature and event selection

- Coherent production dominates: particles produced in $\gamma^*\gamma^*$ and $\gamma^*\mathbb{P}$ have low $p_T \leq 2\hbar/R_A \approx 60 \text{ MeV}/c$
- 2 well reconstructed tracks
 - From common vertex
 - Opposite charge
 - Low net p_T
- Vertex position close to interaction diamond
- Low overall track multiplicity
- For nuclear breakup: additional forward neutrons ⇒ trigger

STAR acceptance limits accessible rapidities to |y| < 1

Boris Grube

Results on photonuclear ρ production in Au × Au collisions Other results Ultra-peripheral relativistic heavy ion collisions at STAF Experimental setup Triggering and data selection

Triggering and Data Selection

TPC tracks for typical ρ event

Experimental signature and event selection

- Coherent production dominates: particles produced in $\gamma^*\gamma^*$ and $\gamma^*\mathbb{P}$ have low $p_T \leq 2\hbar/R_A \approx 60 \text{ MeV}/c$
- 2 well reconstructed tracks
 - From common vertex
 - Opposite charge
 - Low net p_T
- Vertex position close to interaction diamond
- Low overall track multiplicity
- For nuclear breakup: additional forward neutrons ⇒ trigger

STAR acceptance limits accessible rapidities to |y| < 1

Results on photonuclear ρ production in Au × Au collisions Other results Ultra-peripheral relativistic heavy ion collisions at STAR Experimental setup Triggering and data selection

Triggering and Data Selection

TPC tracks for typical ρ event

Experimental signature and event selection

- Coherent production dominates: particles produced in $\gamma^*\gamma^*$ and $\gamma^*\mathbb{P}$ have low $p_T \leq 2\hbar/R_A \approx 60 \text{ MeV}/c$
- 2 well reconstructed tracks
 - From common vertex
 - Opposite charge
 - Low net *p*_T
- Vertex position close to interaction diamond
- Low overall track multiplicity
- For nuclear breakup: additional forward neutrons ⇒ trigger

STAR acceptance limits accessible rapidities to |y| < 1

Results on photonuclear ho production in Au imes Au collisions Other results Ultra-peripheral relativistic heavy ion collisions at STAR Experimental setup Triggering and data selection

UPC Triggers

2 triggers used at STAR

- **Topology trigger** (CTB only)
 - CTB is subdivided into 4 quadrants
 - Top+Bottom quadrants veto cosmic rays
 - Coincidence of North and South quadrants
 - In addition low multiplicity requirement
 - Does not require nuclear breakup
- Minimum bias trigger (ZDC only)
 Coincident neutrons in both ZDCs

Results on photonuclear ho production in Au imes Au collisions Other results Ultra-peripheral relativistic heavy ion collisions at STAR Experimental setup Triggering and data selection

UPC Triggers

2 triggers used at STAR

- **Topology trigger** (CTB only)
 - CTB is subdivided into 4 quadrants
 - Top+Bottom quadrants veto cosmic rays
 - Coincidence of North and South quadrants
 - In addition low multiplicity requirement
 - Does not require nuclear breakup
- Inimum bias trigger (ZDC only)
 - Coincident neutrons in both ZDCs

Results on photonuclear ρ production in Au \times Au collisions Other results Ultra-peripheral relativistic heavy ion collisions at STAR Experimental setup Triggering and data selection

Triggering and Data Selection

Main background contributions

- Beam-gas interactions reduced by
 - Requiring low track multiplicity
 - Limiting primary vertex position

Peripheral hadronic interactions reduced by

- Requiring low track multiplicity
- Selecting low *p*_T

Pile-up events reduced by

- Requiring low track multiplicity
- Limiting primary vertex position

Osmic rays reduced by

- Limiting primary vertex position
- Minimum bias trigger: ZDC neutron tag
- Topology trigger: excluding events close to |y| = 0

Results on photonuclear ρ production in Au \times Au collisions Other results Ultra-peripheral relativistic heavy ion collisions at STAR Experimental setup Triggering and data selection

Triggering and Data Selection

Main background contributions

- Beam-gas interactions reduced by
 - Requiring low track multiplicity
 - Limiting primary vertex position

Peripheral hadronic interactions reduced by

- Requiring low track multiplicity
- Selecting low *p*_T
- Pile-up events reduced by
 - Requiring low track multiplicity
 - Limiting primary vertex position

Osmic rays reduced by

- Limiting primary vertex position
- Minimum bias trigger: ZDC neutron tag
- Topology trigger: excluding events close to |y| = 0

Results on photonuclear ρ production in Au \times Au collisions Other results Ultra-peripheral relativistic heavy ion collisions at STAR Experimental setup Triggering and data selection

Triggering and Data Selection

Main background contributions

- Beam-gas interactions reduced by
 - Requiring low track multiplicity
 - Limiting primary vertex position
- Peripheral hadronic interactions reduced by
 - Requiring low track multiplicity
 - Selecting low *p*_T
- Pile-up events reduced by
 - Requiring low track multiplicity
 - Limiting primary vertex position
- Cosmic rays reduced by
 - Limiting primary vertex position
 - Minimum bias trigger: ZDC neutron tag
 - Topology trigger: excluding events close to |y| = 0

Results on photonuclear ρ production in Au \times Au collisions Other results Ultra-peripheral relativistic heavy ion collisions at STAR Experimental setup Triggering and data selection

Triggering and Data Selection

Main background contributions

- Beam-gas interactions reduced by
 - Requiring low track multiplicity
 - Limiting primary vertex position

Peripheral hadronic interactions reduced by

- Requiring low track multiplicity
- Selecting low *p_T*
- Pile-up events reduced by
 - Requiring low track multiplicity
 - Limiting primary vertex position
- Osmic rays reduced by
 - Limiting primary vertex position
 - Minimum bias trigger: ZDC neutron tag
 - Topology trigger: excluding events close to |y| = 0

Results on photonuclear ρ production in Au \times Au collisions Other results Ultra-peripheral relativistic heavy ion collisions at STAR Experimental setup Triggering and data selection

Triggering and Data Selection

Main background contributions

- Beam-gas interactions reduced by
 - Requiring low track multiplicity
 - Limiting primary vertex position

Peripheral hadronic interactions reduced by

- Requiring low track multiplicity
- Selecting low *p_T*
- Pile-up events reduced by
 - Requiring low track multiplicity
 - Limiting primary vertex position
- Osmic rays reduced by
 - Limiting primary vertex position
 - Minimum bias trigger: ZDC neutron tag
 - Topology trigger: excluding events close to |y| = 0

Introduction Results on photonuclear ρ production in Au \times Au collisions Other results $_{\rm 0}$ production cross section Spin structure of ρ production amplitudes nterference effects in coherent ρ production

Outline

Introduction

- Ultra-peripheral relativistic heavy ion collisions at STAR
- Experimental setup
- Triggering and data selection
- 2) Results on photonuclear ho production in Au imes Au collisions
 - ρ production cross section
 - Spin structure of ρ production amplitudes
 - Interference effects in coherent ρ production

3 Other results

- Photonuclear ρ production in d \times Au collisions
- $\pi^+\pi^-\pi^+\pi^-$ production in Au × Au collisions
- e^+e^- -pair production in Au × Au collisions

Introduction Results on photonuclear ρ production in Au × Au collisions Other results ρ production cross section Spin structure of ρ production amplitudes Interference effects in coherent ρ production

ho Yield from Run 2 Au imes Au @ $\sqrt{s_{_{NN}}}$ = 200 GeV

2 trigger sets

- Topology trigger
 - No nuclear breakup required
 - $13054 \pm 124 \rho$ candidates
- 2 Minimum bias trigger
 - ZDC neutron tag
 - $3\,075 \pm 128\,\rho$ candidates
- Background estimate from like-sign pairs π[±]π[±]

Introduction Results on photonuclear ρ production in Au × Au collisions Other results ρ production cross section Spin structure of ρ production amplitudes Interference effects in coherent ρ production

ho Yield from Run 2 Au imes Au @ $\sqrt{s_{_{NN}}}$ = 200 GeV

2 trigger sets

- Topology trigger
 - No nuclear breakup required
 - $13054 \pm 124 \rho$ candidates
- 2 Minimum bias trigger
 - ZDC neutron tag
 - $3075 \pm 128 \rho$ candidates
 - Background estimate from like-sign pairs $\pi^{\pm}\pi^{\pm}$

Introduction Results on photonuclear ρ production in Au × Au collisions Other results ρ production cross section Spin structure of ρ production amplitudes Interference effects in coherent ρ production

ho Yield from Run 2 Au imes Au @ $\sqrt{s_{_{NN}}}$ = 200 GeV

2 trigger sets

- Topology trigger
 - No nuclear breakup required
 - $13054 \pm 124 \rho$ candidates
- 2 Minimum bias trigger
 - ZDC neutron tag
 - $3\,075\pm128\,
 ho$ candidates
 - Background estimate from like-sign pairs π[±]π[±]

 ρ production cross section Spin structure of ρ production amplitudes Interference effects in coherent ρ production

ρ Invariant Mass Fit

$$\frac{\mathrm{d}\sigma}{\mathrm{d}M_{\pi\pi}} = \left| A \frac{\sqrt{M_{\pi\pi}M_{\rho}\Gamma}}{M_{\pi\pi}^2 - M_{\rho}^2 + iM_{\rho}\Gamma} + B \right|^2 + f_{\mathrm{BG}}$$

$$= (M_{\rho} \left[M_{\pi\pi}^2 - 4m_{\pi}^2 \right]^{\frac{3}{2}} \stackrel{\text{(Minimum)}}{=}$$

with
$$\Gamma(M_{\pi\pi}) \equiv \Gamma_{\rho} \frac{M_{\rho}}{M_{\pi\pi}} \left[\frac{M_{\pi\pi}^2 - 4m_{\pi}^2}{M_{\rho}^2 - 4m_{\pi}^2} \right]^2$$

- Relativistic Breit-Wigner function for ρ peak with amplitude A
- Constant direct π⁺π⁻ production amplitude B
- 3 Söding term for interference of the two
- 2nd order polynomial f_{BG} describes background from like-sign pairs

 ρ production cross section Spin structure of ρ production amplitudes Interference effects in coherent ρ production

ρ Invariant Mass Fit

$$\frac{\mathrm{d}\sigma}{\mathrm{d}M_{\pi\pi}} = \left| A \frac{\sqrt{M_{\pi\pi}M_{\rho}\Gamma}}{M_{\pi\pi}^2 - M_{\rho}^2 + iM_{\rho}\Gamma} + B \right|^2 + f_{\mathrm{BG}}$$

with
$$\Gamma(M_{\pi\pi}) \equiv \Gamma_{\rho} \frac{M_{\rho}}{M_{\pi\pi}} \left[\frac{M_{\pi\pi}^2 - 4m_{\pi}^2}{M_{\rho}^2 - 4m_{\pi}^2} \right]^{\frac{3}{2}}$$

- Relativistic Breit-Wigner function for *ρ* peak with amplitude *A*
- Constant direct π⁺π⁻ production amplitude B
- Söding term for interference of the two
- 2nd order polynomial f_{BG} describes background from like-sign pairs

 ρ production cross section Spin structure of ρ production amplitudes Interference effects in coherent ρ production

ρ Invariant Mass Fit

$$\frac{\mathrm{d}\sigma}{\mathrm{d}M_{\pi\pi}} = \left| A \frac{\sqrt{M_{\pi\pi}M_{\rho}\Gamma}}{M_{\pi\pi}^2 - M_{\rho}^2 + iM_{\rho}\Gamma} + B \right|^2 + f_{\mathrm{BG}}$$

with
$$\Gamma(M_{\pi\pi}) \equiv \Gamma_{\rho} \frac{M_{\rho}}{M_{\pi\pi}} \left[\frac{M_{\pi\pi}^2 - 4m_{\pi}^2}{M_{\rho}^2 - 4m_{\pi}^2} \right]^{\frac{3}{2}}$$

- Relativistic Breit-Wigner function for *ρ* peak with amplitude *A*
- Constant direct π⁺π⁻ production amplitude B
- Söding term for interference of the two
- 2nd order polynomial f_{BG} describes background from like-sign pairs

Results on photonuclear ρ production in Au × Au collisions Other results ρ production cross section Spin structure of ρ production amplitudes Interference effects in coherent ρ production

ρ Invariant Mass Fit

$$\frac{\mathrm{d}\sigma}{\mathrm{d}M_{\pi\pi}} = \left| A \frac{\sqrt{M_{\pi\pi}M_{\rho}\Gamma}}{M_{\pi\pi}^2 - M_{\rho}^2 + iM_{\rho}\Gamma} + B \right|^2 + f_{\mathrm{BG}}$$

with
$$\Gamma(M_{\pi\pi}) \equiv \Gamma_{\rho} \frac{M_{\rho}}{M_{\pi\pi}} \left[\frac{M_{\pi\pi}^2 - 4m_{\pi}^2}{M_{\rho}^2 - 4m_{\pi}^2} \right]^{\frac{3}{2}}$$

- Relativistic Breit-Wigner function for *ρ* peak with amplitude *A*
- Constant direct π⁺π⁻ production amplitude B
- Söding term for interference of the two
- 2nd order polynomial *f*_{BG} describes background from like-sign pairs

 ρ production cross section Spin structure of ρ production amplitudes Interference effects in coherent ρ production

ρ Invariant Mass Fit

$$\frac{\mathrm{d}\sigma}{\mathrm{d}M_{\pi\pi}} = \left| A \frac{\sqrt{M_{\pi\pi}M_{\rho}\Gamma}}{M_{\pi\pi}^2 - M_{\rho}^2 + iM_{\rho}\Gamma} + B \right|^2 + f_{\mathrm{BG}}$$

with
$$\Gamma(M_{\pi\pi}) \equiv \Gamma_{\rho} \frac{M_{\rho}}{M_{\pi\pi}} \left[\frac{M_{\pi\pi}^2 - 4m_{\pi}^2}{M_{\rho}^2 - 4m_{\pi}^2} \right]^{\frac{3}{2}}$$

- Relativistic Breit-Wigner function for *ρ* peak with amplitude *A*
- Constant direct π⁺π⁻ production amplitude B
- Söding term for interference of the two
- 2nd order polynomial *f*_{BG} describes background from like-sign pairs

 ρ production cross section Spin structure of ρ production amplitudes Interference effects in coherent ρ production

Direct $\pi^+\pi^-$ vs. ρ Production

Ratio of non-resonant to resonant $\pi^+\pi^-$ production

$$\frac{\mathrm{d}\sigma}{\mathrm{d}M_{\pi\pi}} = \left| A \frac{\sqrt{M_{\pi\pi}M_{\rho}\Gamma}}{M_{\pi\pi}^2 - M_{\rho}^2 + iM_{\rho}\Gamma} + B \right|^2 + f_{\mathrm{BG}}$$

- Amplitudes *A* and *B* are fit parameters
- *B*/*A* measure for ratio of non-resonant to resonant $\pi^+\pi^-$ production
 - For Au × Au @ $\sqrt{s_{NN}} = 200 \text{ GeV}$:

 $|B/A| = 0.89 \pm 0.08_{\text{stat.}} \pm 0.09_{\text{syst.}} \,\text{GeV}^{-\frac{1}{2}}$

- No dependence on angles or rapidity PR C77, 034910 (2008)
- For Au × Au @ $\sqrt{s_{_{NN}}} = 130 \text{ GeV}$: $|B/A| = 0.81 \pm 0.08_{\text{stat.}} \pm 0.20_{\text{syst.}} \text{ GeV}^{-\frac{1}{2}}$ PRL **89**, 272302 (2002)
- In agreement with ZEUS EPJ **C2**, 247 (1998)

 ρ production cross section Spin structure of ρ production amplitudes Interference effects in coherent ρ production

Direct $\pi^+\pi^-$ vs. ρ Production

Ratio of non-resonant to resonant $\pi^+\pi^-$ production

$$\frac{\mathrm{d}\sigma}{\mathrm{d}M_{\pi\pi}} = \left| A \frac{\sqrt{M_{\pi\pi}M_{\rho}\Gamma}}{M_{\pi\pi}^2 - M_{\rho}^2 + iM_{\rho}\Gamma} + B \right|^2 + f_{\mathrm{BG}}$$

- Amplitudes *A* and *B* are fit parameters
- *B*/*A* measure for ratio of non-resonant to resonant $\pi^+\pi^-$ production
 - For Au × Au @ $\sqrt{s_{NN}} = 200 \text{ GeV}$:
 - $|B/A| = 0.89 \pm 0.08_{\text{stat.}} \pm 0.09_{\text{syst.}} \,\text{GeV}^{-\frac{1}{2}}$
 - No dependence on angles or rapidity PR C77, 034910 (2008)
 - For Au × Au @ $\sqrt{s_{_{NN}}} = 130 \text{ GeV}$: $|B/A| = 0.81 \pm 0.08_{\text{stat.}} \pm 0.20_{\text{syst.}} \text{ GeV}^{-\frac{1}{2}}$ PRL **89**, 272302 (2002)
 - In agreement with ZEUS EPJ C2, 247 (1998)

 ρ production cross section Spin structure of ρ production amplitudes Interference effects in coherent ρ production

ρ Production Cross Section

Total ρ production cross section for Au \times Au @ $\sqrt{s_{_{NN}}} = 200 \text{ GeV}$

 ρ production cross section Spin structure of ρ production amplitudes Interference effects in coherent ρ production

ρ Production Cross Section

Comparison with model predictions for Au imes Au @ $\sqrt{s_{_{NN}}}$ = 200 GeV

Klein, Nystrand PR **C60**, 014903 (1999)

- Vector Dominance Model (VDM) for $\gamma^* \rightarrow |q\bar{q}\rangle$
- Classical mechanical approach for scattering
- Uses photoproduction data from $\gamma p \rightarrow \rho p$ experiments

Frankfurt, Strikman, Zhalov PR C67, 034901 (2003)

- generalized VDM
- QCD Gribov-Glauber approach

Gonçalves, Machado EPJ C2

EPJ **C29**, 271-275 (2003)

- QCD color dipole approach
- Includes nuclear effects and parton saturation phenomena

16

 ρ production cross section Spin structure of ρ production amplitudes Interference effects in coherent ρ production

ρ Production Cross Section

Comparison with model predictions for Au imes Au @ $\sqrt{s_{_{NN}}}$ = 200 GeV

Klein, Nystrand PR **C60**, 014903 (1999)

- Vector Dominance Model (VDM) for $\gamma^* \rightarrow |q\bar{q}\rangle$
- Classical mechanical approach for scattering
- Uses photoproduction data from $\gamma p \rightarrow \rho p$ experiments

Frankfurt, Strikman, Zhalov PR C67, 034901 (2003)

- generalized VDM
- QCD Gribov-Glauber approach

Gonçalves, Machado EPJ

EPJ **C29**, 271-275 (2003)

- QCD color dipole approach
- Includes nuclear effects and parton saturation phenomena

 ρ production cross section Spin structure of ρ production amplitudes Interference effects in coherent ρ production

ρ Production Cross Section

Comparison with model predictions for Au \times Au @ $\sqrt{s_{_{NN}}}=200\,\text{GeV}$

Klein, Nystrand PR **C60**, 014903 (1999)

- Vector Dominance Model (VDM) for $\gamma^* \rightarrow |q\bar{q}\rangle$
- Classical mechanical approach for scattering
- Uses photoproduction data from $\gamma p \rightarrow \rho p$ experiments

Frankfurt, Strikman, Zhalov PR C67, 034901 (2003)

- generalized VDM
- QCD Gribov-Glauber approach

Gonçalves, Machado

EPJ C29, 271-275 (2003)

- QCD color dipole approach
- Includes nuclear effects and parton saturation phenomena

Introduction Results on photonuclear ρ production in Au \times Au collisions Other results

 ρ production cross section Spin structure of ρ production amplitudes Interference effects in coherent ρ production

ρ Production Cross Section

Energy dependence of coherent ρ production with nuclear breakup

- Based on total hadronic cross section of 7.2 b
- For run 1 Au × Au @ $\sqrt{s_{NN}} = 130$ GeV $\sigma_{XnXn}^{\text{coh}} = 28.3 \pm 2.0_{\text{stat.}} \pm 6.3_{\text{syst.}}$ mb

PRL 89, 272302 (2002)

• For run 2 Au × Au @ $\sqrt{s_{NN}} = 200 \text{ GeV}$ $\sigma_{XnXn}^{\text{coh}} = 31.9 \pm 1.5_{\text{stat.}} \pm 4.5_{\text{syst.}} \text{ mb}$

PR C77, 034910 (2008)

• Currently analyzing **run 4** Au × Au @ $\sqrt{s_{NN}} = 62 \text{ GeV}$ data to get third data point Introduction Results on photonuclear ρ production in Au \times Au collisions Other results

 ρ production cross section Spin structure of ρ production amplitudes Interference effects in coherent ρ production

ρ Production Cross Section

Energy dependence of coherent ρ production with nuclear breakup

- Based on total hadronic cross section of 7.2 b
- For run 1 Au × Au @ $\sqrt{s_{NN}} = 130 \text{ GeV}$ $\sigma_{XnXn}^{\text{coh}} = 28.3 \pm 2.0_{\text{stat.}} \pm 6.3_{\text{syst.}} \text{ mb}$

PRL 89, 272302 (2002)

• For run 2 Au × Au @ $\sqrt{s_{NN}} = 200 \text{ GeV}$ $\sigma_{XnXn}^{\text{coh}} = 31.9 \pm 1.5_{\text{stat.}} \pm 4.5_{\text{syst.}} \text{ mb}$

PR C77, 034910 (2008)

• Currently analyzing **run 4** Au × Au @ $\sqrt{s_{NN}} = 62 \text{ GeV}$ data to get third data point

$\begin{array}{c} & \text{Introduction} \\ \text{Results on photonuclear } \rho \text{ production in Au} \times \text{Au collisions} \\ & \text{Other results} \end{array} \right) \\ \hline \end{array} \\ \begin{array}{c} \rho \text{ production of n} \\ \text{Spin structure of } \\ & \text{Interference effet} \end{array}$

 ρ production cross section Spin structure of ρ production amplitudes Interference effects in coherent ρ production

Spin Structure of ρ Production Amplitudes

Extraction of spin density matrix elements from $\pi^+\pi^-$ angular distribution Schilling, Wolf NP **B61**, 381 (1973)

$$\frac{1}{\sigma} \frac{d^2 \sigma}{d\cos\theta \ d\phi} = \frac{3}{4\pi} \left[\frac{1}{2} (1 - r_{00}^{04}) + \frac{1}{2} (3r_{00}^{04} - 1)\cos^2\theta - \sqrt{2} \operatorname{\Ree}[r_{10}^{04}] \sin 2\theta \ \cos\phi - r_{1-1}^{04} \sin^2\theta \ \cos 2\phi \right]$$

- ρ production plane difficult to reconstruct
- Approximate production plane using beam direction
 - θ is polar angle between beam direction and \vec{p}_{π^+} in ρ RF
 - ϕ is angle between ρ decay and production plane (w.r.t. beam)
- Due to ambiguity in beam direction cannot measure Re[r₁₀⁰⁴] (interference between helicity non-flip and single-flip)

 ρ production cross section Spin structure of ρ production amplitudes Interference effects in coherent ρ production

Spin Structure of ρ Production Amplitudes

Spin density matrix elements from fit of 2D angular distributions

- Results similar to ZEUS measurements EPJ **C2**, 247 (1998)
- Spin density elements close to zero indicate s-channel helicity conservation

 ρ production cross section Spin structure of ρ production amplitudes Interference effects in coherent ρ production

Spin Structure of ρ Production Amplitudes

Spin density matrix elements from fit of 2D angular distributions

- Results similar to ZEUS measurements EPJ C2, 247 (1998)
- Spin density elements close to zero indicate *s*-channel helicity conservation

Results on photonuclear ρ production in Au \times Au collisions

Interference effects in coherent p production

Interference Effects in Coherent ρ Production

2-source interferometer

- Cannot distinguish γ^* source and target
- ρ production occurs close ($d \leq 1$ fm) to target nucleus

• Interference creates entangled final state $\pi^+\pi^-$ wave function

• $\mathbb{P}(\rho) = -1$: subtract amplitudes • For $y \approx 0$: $A(b, y) \approx A(b, -y)$

• Suppression at low $p_T \lesssim \hbar / \langle b \rangle$

ρ production cross section Spin structure of ρ production amplitudes Interference effects in coherent ρ production

Interference Effects in Coherent ρ Production

2-source interferometer

- Cannot distinguish γ^* source and target
- ρ production occurs close ($d \lesssim 1$ fm) to target nucleus

• Interference creates entangled final state $\pi^+\pi^-$ wave function

•
$$\mathbb{P}(\rho) = -1$$
: subtract amplitudes
 $\sigma = \left| A(b, y) - A(b, -y) e^{i\vec{p}_T \cdot \vec{b}} \right|^2$

• For
$$y \approx 0$$
: $A(b, y) \approx A(b, -y)$
 $\implies \sigma = \sigma_0 \Big[1 - \cos(\vec{p}_T \cdot \vec{b}) \Big]$

• Suppression at low $p_T \lesssim \hbar / \langle b \rangle$

 $\begin{array}{c} \mbox{Introduction} \\ \mbox{Results on photonuclear } \rho \mbox{ production in Au} \times \mbox{Au collisions} \\ \mbox{Other results} \end{array}$

 ρ production cross section Spin structure of ρ production amplitudes Interference effects in coherent ρ production

Interference Effects in Coherent ρ Production

Measuring interference in run 2 Au \times Au @ $\sqrt{s_{_{NN}}}$ = 200 GeV collisions

• Fit
$$t \approx p_T^2$$
-spectra with $\frac{dN}{dt} = a e^{-kt} [1 + c(R(t) - 1)]$

- *k* is slope parameter
- Ratio $R(t) \equiv \frac{t$ -spectrum with interference from MC $\frac{t}{t}$ -spectrum without interference
- Fit parameter *c* measures strength of interference
 - *c* = 0 corresponds to no interference
 - c = 1 is expected interference
- Different median impact parameters \tilde{b}
 - Topology data (no neutron tag): $\tilde{b} \approx 46 \, \mathrm{fm}$
 - Minimum bias data (neutron tag): $\tilde{b} \approx 18 \, \text{fm}$
 - \implies interference effects extend to larger p_T

• Energy dependence of *ρ* production amplitudes decreases interference effect at larger rapidities

 $\begin{array}{c} \mbox{Introduction} \\ \mbox{Results on photonuclear} \ \rho \ \mbox{production in Au} \ \times \ \mbox{Au collisions} \\ \mbox{Other results} \end{array}$

 ρ production cross section Spin structure of ρ production amplitudes Interference effects in coherent ρ production

Interference Effects in Coherent ρ Production

Measuring interference in run 2 Au \times Au @ $\sqrt{s_{_{NN}}}$ = 200 GeV collisions

• Fit
$$t \approx p_T^2$$
-spectra with $\frac{dN}{dt} = a e^{-kt} [1 + c(R(t) - 1)]$

- *k* is slope parameter
- Ratio $R(t) \equiv \frac{t$ -spectrum with interference from MC t-spectrum without interference
- Fit parameter *c* measures strength of interference
 - *c* = 0 corresponds to no interference
 - c = 1 is expected interference
- Different median impact parameters \tilde{b}
 - Topology data (no neutron tag): $\tilde{b} \approx 46 \, \mathrm{fm}$
 - Minimum bias data (neutron tag): $\tilde{b} \approx 18 \, \text{fm}$
 - \implies interference effects extend to larger p_T
- Energy dependence of *ρ* production amplitudes decreases interference effect at larger rapidities

 $\begin{array}{c} \mbox{Introduction} \\ \mbox{Results on photonuclear} \ \rho \ \mbox{production in Au} \ \times \ \mbox{Au collisions} \\ \mbox{Other results} \end{array}$

 ρ production cross section Spin structure of ρ production amplitudes Interference effects in coherent ρ production

Interference Effects in Coherent ρ Production

Measuring interference in run 2 Au \times Au @ $\sqrt{s_{_{NN}}}$ = 200 GeV collisions

• Fit
$$t \approx p_T^2$$
-spectra with $\frac{dN}{dt} = a e^{-kt} [1 + c(R(t) - 1)]$

- *k* is slope parameter
- Ratio $R(t) \equiv \frac{t$ -spectrum with interference from MC t-spectrum without interference
- Fit parameter *c* measures strength of interference
 - *c* = 0 corresponds to no interference
 - c = 1 is expected interference
- Different median impact parameters \tilde{b}
 - Topology data (no neutron tag): $\tilde{b} \approx 46 \, \mathrm{fm}$
 - Minimum bias data (neutron tag): $\tilde{b} \approx 18 \, {
 m fm}$
 - \implies interference effects extend to larger p_T
- Energy dependence of *ρ* production amplitudes decreases interference effect at larger rapidities

 ρ production cross section Spin structure of ρ production amplitudes Interference effects in coherent ρ production

Interference Effects in Coherent ρ Production

Photonuclear ρ production in d × Au collisions $\pi^+ \pi^- \pi^+ \pi^-$ production in Au × Au collisions $^+e^-$ -pair production in Au × Au collisions

Outline

Introduction

- Ultra-peripheral relativistic heavy ion collisions at STAR
- Experimental setup
- Triggering and data selection
- 2 Results on photonuclear ρ production in Au × Au collisions
 - ρ production cross section
 - Spin structure of ρ production amplitudes
 - Interference effects in coherent ρ production

Other results

- Photonuclear ρ production in d \times Au collisions
- $\pi^+\pi^-\pi^+\pi^-$ production in Au × Au collisions
- e^+e^- -pair production in Au × Au collisions

Photonuclear ρ production in d \times Au collisions $\pi^+\pi^-\pi^+\pi^-$ production in Au \times Au collisions e^+e^- -pair production in Au \times Au collisions

Photonuclear ρ Prod. in d \times Au @ $\sqrt{s_{_{NN}}} = 200 \,\text{GeV}$

Asymmetric collision

- γ^{*} predominantly emitted by Au nucleus
- Topology data
 - Mainly $\gamma^* d \rightarrow \rho d$
 - Coherent coupling to entire deuteron
- Topology trigger in coincidence with ZDC neutron signal from deuteron breakup
 - Mainly $\gamma^* d \rightarrow \rho pn$
 - Coupling to individual nucleons: "incoherent"
- Smaller radii: $R_d \approx 2 \text{ fm}$, $R_N \approx 0.7 \text{ fm}$ $\implies \rho$ has larger p_T

Photonuclear ρ production in d \times Au collisions $\pi^+\pi^-\pi^+\pi^-$ production in Au \times Au collisions e^+e^- -pair production in Au \times Au collisions

Photonuclear ρ Prod. in d \times Au @ $\sqrt{s_{_{NN}}} = 200 \,\text{GeV}$

Asymmetric collision

- γ^{*} predominantly emitted by Au nucleus
- Topology data
 - Mainly $\gamma^* d \rightarrow \rho d$
 - Coherent coupling to entire deuteron
- Topology trigger in coincidence with ZDC neutron signal from deuteron breakup
 - Mainly $\gamma^* d \rightarrow \rho pn$
 - Coupling to individual nucleons: "incoherent"

• Smaller radii: $R_d \approx 2 \text{ fm}, R_N \approx 0.7 \text{ fm}$ $\implies \rho \text{ has larger } p_T$

Neutron tagged data

Photonuclear ρ production in d \times Au collisions $\pi^+\pi^-\pi^+\pi^-$ production in Au \times Au collisions e^+e^- -pair production in Au \times Au collisions

Photonuclear ρ Prod. in d \times Au @ $\sqrt{s_{_{NN}}} = 200 \,\mathrm{GeV}$

Asymmetric collision

- γ^{*} predominantly emitted by Au nucleus
- Topology data
 - Mainly $\gamma^* d \rightarrow \rho d$
 - Coherent coupling to entire deuteron
- Topology trigger in coincidence with ZDC neutron signal from deuteron breakup
 - Mainly $\gamma^* d \rightarrow \rho pn$
 - Coupling to individual nucleons: "incoherent"
- Smaller radii: $R_d \approx 2 \text{ fm}, R_N \approx 0.7 \text{ fm}$ $\implies \rho \text{ has larger } p_T$

Photonuclear ρ production in d \times Au collisions $\pi^+\pi^-\pi^+\pi^-$ production in Au \times Au collisions e^+e^- -pair production in Au \times Au collisions

Photonuclear ρ Prod. in d \times Au @ $\sqrt{s_{_{NN}}} = 200 \,\text{GeV}$

t-spectrum for d-breakup ("incoherent")

- Exponential fit function: $dN/dt = a e^{-kt}$
- Slope parameter
 - $k = 9.06 \pm 0.85_{\text{stat.}} \,\text{GeV}^{-2}$
 - Related to nucleon form factor
 - Similar to results from Au × Au @ $\sqrt{s_{_{NN}}} = 200 \text{ GeV}$: $k = 8.8 \pm 1.0_{\text{stat.}} \text{ GeV}^{-2}$

PR C77, 034910 (2008)

• Compatible with ZEUS $k = 10.9 \pm 0.3_{\text{stat.}-0.5}$ syst. GeV⁻² EPJ **C2**, 247 (1998)

• Downturn at low *t*

- Not enough energy for d dissociation
- Also seen in low-energy γd (SLAC 4.3 GeV Eisenberg *et al.* NP **B104** 61 (1970

Photonuclear ρ production in d × Au collisions $\pi^+\pi^-\pi^+\pi^-$ production in Au × Au collisions e^+e^- -pair production in Au × Au collisions

Photonuclear ρ Prod. in d \times Au @ $\sqrt{s_{_{NN}}} = 200 \,\text{GeV}$

t-spectrum for d-breakup ("incoherent")

- Exponential fit function: $dN/dt = a e^{-kt}$
- Slope parameter
 - $k = 9.06 \pm 0.85_{\text{stat.}} \,\text{GeV}^{-2}$
 - Related to nucleon form factor
 - Similar to results from Au × Au @ $\sqrt{s_{NN}} = 200 \text{ GeV}$: $k = 8.8 \pm 1.0_{\text{stat.}} \text{ GeV}^{-2}$

PR C77, 034910 (2008)

- Compatible with ZEUS $k = 10.9 \pm 0.3_{\text{stat.}-0.5}$ syst. GeV⁻² EPJ **C2**, 247 (1998)
- Downturn at low *t*
 - Not enough energy for d dissociation
 - Also seen in low-energy γd (SLAC 4.3 GeV Eisenberg *et al.*, NP B104, 61 (1976))

Neutron tagged data

Photonuclear ρ production in d × Au collisions $\pi^+\pi^-\pi^+\pi^-$ production in Au × Au collisions e^+e^- -pair production in Au × Au collisions

$\pi^+\pi^-\pi^+\pi^-$ Production in Au imes Au @ $\sqrt{s_{_{NN}}}=$ 200 GeV

Photonuclear production with mutual nuclear excitation

- Run 4: 3.9 M multi-prong triggers
 - Coincident neutrons from nuclear breakup in both ZDCs
 - Low CTB multiplicity
 - Veto from large-tile BBCs

- Peak: 123 events at $m = (1510 \pm 20) \text{ MeV}/c^2$, $\Gamma = (330 \pm 45) \text{ MeV}$
- Could be $\rho(1450)$ and/or $\rho(1700)$

Photonuclear ρ production in d \times Au collisions $\pi^+\pi^-\pi^+\pi^-$ production in Au \times Au collisions e^+e^- -pair production in Au \times Au collisions

e^+e^- -Pair Production in Au imes Au @ $\sqrt{s_{_{NN}}}=200\,{ m GeV}$

Strong electromagnetic fields

- $Z\alpha \approx 0.6 \implies$ conventional perturbative calculations may be questionable
- Enrich collisions at small impact parameters (= stronger fields) by requiring mutual Coulomb excitation $2R_A < b \lesssim 30$ fm

Run 2 minimum bias data

- Challenging measurement due to small acceptance
- Most *e*[±] produced at very low *p*_T
 - Reconstructible only at half solenoid field of 0.25 T
- e^{\pm} identification via dE/dx in TPC gas
 - Clean sample with PID efficiency close to 1 and minimum contaminations for $p_{e^{\pm}} < 130 \text{ MeV/}c$
- Limited statistics: 52 events

Photonuclear ρ production in d \times Au collisions $\pi^+\pi^-\pi^+\pi^-$ production in Au \times Au collisions e^+e^- -pair production in Au \times Au collisions

e^+e^- -Pair Production in Au imes Au @ $\sqrt{s_{_{NN}}} = 200\,{ m GeV}$

Strong electromagnetic fields

- $Z\alpha \approx 0.6 \implies$ conventional perturbative calculations may be questionable
- Enrich collisions at small impact parameters (= stronger fields) by requiring mutual Coulomb excitation $2R_A < b \lesssim 30$ fm

Run 2 minimum bias data

- Challenging measurement due to small acceptance
- Most e^{\pm} produced at very low p_T
 - Reconstructible only at half solenoid field of 0.25 T
- e^{\pm} identification via dE/dx in TPC gas
 - Clean sample with PID efficiency close to 1 and minimum contaminations for $p_{e^{\pm}} < 130$ MeV/c
- Limited statistics: 52 events

Photonuclear ρ production in d \times Au collisions $\pi^+\pi^-\pi^+\pi^-$ production in Au \times Au collisions e^+e^- -pair production in Au \times Au collisions

e^+e^- -Pair Production in Au \times Au @ $\sqrt{s_{_{NN}}} = 200 \,\text{GeV}$

Differential cross sections ${ m d}\sigma/{ m d}M_{e^+e^-}$ and ${ m d}\sigma/{ m d}p_T^{e^+e^-}$

- Data compared with 2 models:
 - EPA: equivalent photon approach
 - Treats γ^* as real photons
 - Fails for lowest p_T bin ($p_T < 15$ MeV/c)
 - QED: lowest order QED calculation with simplified model for Coulomb excitation (GDR only) Henken *et al.*, PR **C69**, 054902 (2004
 - Describes data well

PR C70, 031902 (2004)

Photonuclear ρ production in d \times Au collisions $\pi^+\pi^-\pi^+\pi^-$ production in Au \times Au collisions e^+e^- -pair production in Au \times Au collisions

e^+e^- -Pair Production in Au \times Au @ $\sqrt{s_{_{NN}}} = 200 \,\text{GeV}$

Differential cross sections ${ m d}\sigma/{ m d}M_{e^+e^-}$ and ${ m d}\sigma/{ m d}p_T^{e^+e^-}$

- Data compared with 2 models:
 - EPA: equivalent photon approach

PR C70, 031902 (2004)

- Treats γ^{*} as real photons
- Fails for lowest p_T bin ($p_T < 15$ MeV/c)
- QED: lowest order QED calculation with simplified model for Coulomb excitation (GDR only) Henken *et al.*, PR C69, 054902 (2004)
 - Describes data well

Photonuclear ρ production in d \times Au collisions $\pi^+\pi^-\pi^+\pi^-$ production in Au \times Au collisions e^+e^- -pair production in Au \times Au collisions

e^+e^- -Pair Production in Au imes Au @ $\sqrt{s_{_{NN}}} = 200 \, { m GeV}$

New QED calculation with realistic phenomenological treatment of Coulomb excitation Baltz, PRL 100, 062302 (2008)

Lowest order QED

Overshoots data

 $\sigma_{\rm QED} = 2.34 \,\mathrm{mb} \,\mathrm{vs.}$ $\sigma_{\rm exp} = 1.6 \pm 0.2_{\rm stat.} \pm 0.3_{\rm syst.} \,\mathrm{mb}$

Including higher order corrections

• Good agreement with data, $\sigma_{\text{QED}} = 1.67 \text{ mb}$

Photonuclear ρ production in d \times Au collisions $\pi^+\pi^-\pi^+\pi^-$ production in Au \times Au collisions e^+e^- -pair production in Au \times Au collisions

e^+e^- -Pair Production in Au imes Au @ $\sqrt{s_{_{NN}}} = 200\,{ m GeV}$

New QED calculation with realistic phenomenological treatment of Coulomb excitation Baltz, PRL 100, 062302 (2008)

Lowest order QED

Overshoots data

 $\sigma_{\rm QED} = 2.34 \text{ mb vs.} \ \sigma_{\rm exp} = 1.6 \pm 0.2_{\rm stat.} \pm 0.3_{\rm syst.} \text{ mb}$

- Including higher order corrections
 - Good agreement with data, $\sigma_{\text{QED}} = 1.67 \text{ mb}$

Photonuclear ρ production in d \times Au collisions $\pi^+\pi^-\pi^+\pi^-$ production in Au \times Au collisions e^+e^- -pair production in Au \times Au collisions

Conclusions

Summary

- Published new measurement of photonuclear ρ production in Au × Au @ $\sqrt{s_{_{NN}}} = 200 \text{ GeV}$ collisions
 - Cross section agrees with theoretical models
 - Spin density matrix elements consistent with *s*-channel helicity conservation
- e^+e^- -pair production in Au × Au @ $\sqrt{s_{_{NN}}} = 200 \text{ GeV}$ collisions seems to deviate from lowest order QED calculations
- Work in progress:
 - STAR sees interference effects in *ρ* production close to expected level
 - Slope parameter for incoherent photonuclear ρ production in $d \times Au @ \sqrt{s_{_{NN}}} = 200 \text{ GeV}$ collisions compatible with results from $Au \times Au$
 - Resonant $\pi^+\pi^-\pi^+\pi^-$ production in Au × Au @ $\sqrt{s_{_{NN}}} = 200 \text{ GeV}$ collisions

Photonuclear ρ production in d \times Au collisions $\pi^+\pi^-\pi^+\pi^-$ production in Au \times Au collisions e^+e^- -pair production in Au \times Au collisions

Conclusions

Summary

- Published new measurement of photonuclear ρ production in Au × Au @ $\sqrt{s_{_{NN}}} = 200 \text{ GeV}$ collisions
 - Cross section agrees with theoretical models
 - Spin density matrix elements consistent with *s*-channel helicity conservation
- e^+e^- -pair production in Au × Au @ $\sqrt{s_{_{NN}}} = 200 \text{ GeV}$ collisions seems to deviate from lowest order QED calculations
- Work in progress:
 - STAR sees interference effects in *ρ* production close to expected level
 - Slope parameter for incoherent photonuclear ρ production in $d \times Au @ \sqrt{s_{_{NN}}} = 200 \text{ GeV}$ collisions compatible with results from $Au \times Au$
 - Resonant $\pi^+\pi^-\pi^+\pi^-$ production in Au × Au @ $\sqrt{s_{_{NN}}} = 200 \text{ GeV}$ collisions

Photonuclear ρ production in d \times Au collisions $\pi^+\pi^-\pi^+\pi^-$ production in Au \times Au collisions e^+e^- -pair production in Au \times Au collisions

Conclusions

Outlook

- Run 7 Au × Au @ $\sqrt{s_{_{NN}}}$ = 200 GeV data soon ready for analysis
 - Expect increase in statistics to study rarer processes $(J/\psi, \pi^+\pi^-\pi^+\pi^-, ...)$
- STAR upgrades for 2009+
 - Time of flight detector
 - Replaces Central Trigger Barrel scintillators
 - Improved particle ID
 - Better trigger performance
 - Data acquisition upgrade
 - TPC can be read out with (1 kHz) at low dead-time
- LHC will open new horizons
 - Heavy flavors
 - Photon-photon collisions

Photonuclear ρ production in d \times Au collisions $\pi^+\pi^-\pi^+\pi^-$ production in Au \times Au collisions e^+e^- -pair production in Au \times Au collisions

Conclusions

Outlook

- Run 7 Au × Au @ $\sqrt{s_{_{NN}}}$ = 200 GeV data soon ready for analysis
 - Expect increase in statistics to study rarer processes $(J/\psi, \pi^+\pi^-\pi^+\pi^-, ...)$
- STAR upgrades for 2009+
 - Time of flight detector
 - Replaces Central Trigger Barrel scintillators
 - Improved particle ID
 - Better trigger performance
 - Data acquisition upgrade
 - TPC can be read out with (1 kHz) at low dead-time
- LHC will open new horizons
 - Heavy flavors
 - Photon-photon collisions

Photonuclear ρ production in d \times Au collisions $\pi^+\pi^-\pi^+\pi^-$ production in Au \times Au collisions e^+e^- -pair production in Au \times Au collisions

Conclusions

Outlook

- Run 7 Au × Au @ $\sqrt{s_{_{NN}}}$ = 200 GeV data soon ready for analysis
 - Expect increase in statistics to study rarer processes $(J/\psi, \pi^+\pi^-\pi^+\pi^-, ...)$
- STAR upgrades for 2009+
 - Time of flight detector
 - Replaces Central Trigger Barrel scintillators
 - Improved particle ID
 - Better trigger performance
 - Data acquisition upgrade
 - TPC can be read out with (1 kHz) at low dead-time
- LHC will open new horizons
 - Heavy flavors
 - Photon-photon collisions

Outline

Backup slides

- Introduction
- Results on photonuclear ρ production in Au \times Au collisions
- Other results

Ultra-Peripheral Heavy Ion Collisions (UPC) at STAR

- Nuclei surrounded by cloud of quasi-real virtual photons
- Number of photons large ($\propto Z^2$)
- Fast-moving heavy ions produce intense photon flux
 - Described by Weizsäcker-Williams approximation ("nuclear flashlight")
- Nuclear collisions: long range interaction via electromagnetic fields in addition to hadronic interactions
- Require $b > R_A + R_B$ to exclude (otherwise inseparable) hadronic interactions

Introduction Results on photonuclear ρ production in Au \times Au collisions Other results

The Relativistic Heavy Ion Collider (RHIC) at BNL

Various particle species and collision energies

- Au + Au
 - $\sqrt{s_{_{NN}}} = 19.6, 62.4, 130, \text{ and}$ 200 GeV
- Cu + Cu
 - $\sqrt{s_{_{NN}}} = 62.4$ and 200 GeV
- d + Au
 - $\sqrt{s_{_{NN}}} = 200 \,\mathrm{GeV}$
- polarized p + p
 - $\sqrt{s_{_{NN}}} = 200$ and (future) 500 GeV

Boris Grube Photoproduction in Ultra-Peripheral Heavy Ion Collisions at

Introduction Results on photonuclear ρ production in Au \times Au collisions Other results

The STAR Experiment at RHIC

Solenoidal Tracker At RHIC (STAR)

Big collaboration

- 533 scientists
- 52 institutes
- 12 countries

Boris Grube Photoproduction in Ultra-Peripheral Heavy Ion Collisions at

Introduction Results on photonuclear ρ production in Au \times Au collisions Other results

The STAR Experiment at RHIC

Trigger detectors

Introduction Results on photonuclear ρ production in Au \times Au collisions Other results

Ultra-Peripheral Relativistic Heavy Ion Collisions (UPC)

Ultra-Peripheral Relativistic Heavy Ion Collisions (UPC)

UPC kinematics for RHIC Au \times Au @ $\sqrt{s_{_{NN}}}=$ 200 GeV and LHC Pb \times Pb @ $\sqrt{s_{_{NN}}}=$ 5500 GeV

- Photons emitted coherently by whole nucleus
- Maximum photon energy in lab frame: ω_{max} = γ_Lħc/R_A ω_{max} ≈ 3 GeV (RHIC), 80 GeV (LHC)
- Photon-photon collisions: $\sqrt{s_{\gamma\gamma}^{\text{max}}} = 2\gamma_L \hbar c / R_A$ $\sqrt{s_{\gamma\gamma}^{\text{max}}} \approx 6 \text{ GeV} \text{ (RHIC), 160 GeV (LHC)}$
- Photonuclear interactions: $\sqrt{s_{\gamma N}^{\max}} = \sqrt{2\omega_{\max}\sqrt{s_{NN}}}$

 $\sqrt{s_{\gamma N}^{\text{max}}} \approx 35 \,\text{GeV}$ (RHIC), 950 GeV (LHC)

Introduction Results on photonuclear ρ production in Au \times Au collisions Other results

UPC Triggers — Neutron tagging

Measuring nuclear breakup neutrons in Zero Degree Calorimeter (ZDC)

- Resolution good enough to see 1*n*, 2*n*, ... neutron peaks
 - Allows to select different excited states
- Neutron tag selects smaller impact parameters

Introduction Results on photonuclear ρ production in ${\rm Au} \times {\rm Au}\,$ collisions Other results

UPC Triggers

Other triggers used at STAR

Multi-prong trigger (CTB and ZDC)

- Coincident neutrons in both ZDCs
- Low CTB multiplicity
- Veto from large-tile BBCs

*J*ψ trigger (CTB, ZDC, and BEMC)

- Multi-prong trigger with additional calorimeter requirement
- BEMC subdivided into 6 sectors
- 2 high towers in non-neighboring BEMC sectors required
Backup slides

Introduction Results on photonuclear ρ production in Au \times Au collisions Other results

ρ Production Cross Section

Run 1 Au imes Au @ $\sqrt{s_{_{NN}}}=$ 130 GeV data

Rapidity distribution (Min. Bias)

- Total cross section: $\sigma_{tot} = (460 \pm 220_{stat.} \pm 110_{sys.}) \text{ mb}$ PRL **89**, 272302 (2002)
- Theoretical prediction: $\sigma_{tot} = 350 \text{ mb}$ S. Klein *et al.*, PR **C60**, 014903 (1999)

Boris Grube Photoproduction in Ultra-Peripheral Heavy Ion Collisions at

Backup slides

Introduction Results on photonuclear ρ production in Au \times Au collisions Other results

Spin Structure of ρ Production Amplitudes

Extraction of spin density matrix elements from $\pi^+\pi^-$ angular distribution

$$\frac{1}{\sigma} \frac{d^2 \sigma}{d\cos\theta \ d\phi} = \frac{3}{4\pi} \left[\frac{1}{2} (1 - r_{00}^{04}) + \frac{1}{2} (3r_{00}^{04} - 1)\cos^2\theta \right]$$

$$-\sqrt{2}\mathfrak{Re}[r_{10}^{04}]\sin 2\theta\,\cos\phi-r_{1-1}^{04}\,\sin^2\theta\,\cos 2\phi$$

where
$$r_{ik}^{04} \equiv \frac{\rho_{ik}^0 + \epsilon R \rho_{ik}^4}{1 + \epsilon R}$$
, $R = \frac{\sigma_L}{\sigma_T}$ Schilling, Wolf NP **B61**, 381 (1973)

- θ is polar angle between beam direction and \vec{p}_{π^+} in ρ RF
- ϕ is angle between ρ decay and production plane (w.r.t. beam)
- r_{00}^{04} represents probability that $\lambda_{\rho} = 0$ for $\lambda_{\gamma^*} = \pm 1$
- $\Re e[r_{10}^{04}]$ related to interference between helicity non-flip and single-flip
- r_{1-1}^{04} related to interference between helicity non-flip and double-flip

Introduction Results on photonuclear ρ production in Au \times Au collisions Other results

Star Upgrades for 2009+

Time of Flight (ToF) Detector

- Replaces central trigger barrel
- Multi-gap resistive plate chambers (MRPC) using ALICE technology
- 23 000 channels (6 slats × 32 plates × 120 trays)
- Full coverage of TPC acceptance (2π in ϕ , $|\eta| < 1$)
- Intrinsic time resolution $\approx 85 \, \mathrm{ps}$

Upgrade of data acquisition (DAQ)

- New TPC front-end electronics based on ALICE's ALTRO chip
- Will permit trigger rates $O(1 \text{ kHz}) \implies DAQ1000$