THE ATLAS FORWARD DETECTORS AND THEIR PHYSICS POTENTIAL

Benedetto Giacobbe on behalf of the ATLAS collaboration

WORKSHOP ON HIGH ENERGY PHOTON COLLISIONS AT THE LHC CERN, 21-25 April 2008

Benedetto Giacobbe

outline

- no *Luminosity*, less physics ...
- the ATLAS Forward Detectors
- luminosity measurements
- physics with **FD**: σ_{tot}
- FD upgrades
- extended physics program with FD

summary

relative and absolute luminosity

the ATLAS Forward Detectors

LUCID: where and why

• Monitor instant. L:

- BC-to-BC structure
- beam degradation
- indep. of LVL1 trigger
- indep. of TDAQ

\Rightarrow Requirements:

- relative *L* sufficient
- fast response (single BC)
- online monitoring
- Measure absolute *L* :
 - Needed for phys. analysis
- \Rightarrow Requirements:
 - calibration needed
 - final precision ~ 2-3%
- Physics capability:
 - provide trigger for Forw.Phys. and MB

LUCID design for phase I

Ready to be mounted in the final position !

21/04/08

LUCID test beam & simulation

LUCID has been tested and calibrated with a beam of 180 GeV pions (SPS H8)

LUCID electronics and trigger

LUCID calibration

- Relative *L* provided by LUCID from t=0
 - nonitor beam stability and structure
 - allow fast reaction to LHC in case of problems
- Absolute *L* needs calibration:

- Beam parameters (~10% precision)
- Physics channels (W, Z) (5-10% precision)
- ALFA detector (from ~2010) (2-3% precision)

LUCID: absolute *Lucion* determination

- Two methods foreseen depending on LHC operation:
 - only @ low luminosity: zero counting
 - low and high luminosity: hit or particle counting
- zero counting method: $n_{pp}/n_{BC} = 1 \exp(-A \cdot \mathcal{L}), A = \varepsilon_{pp} \sigma_{inel}$
 - A from calibration
 - no need for particle counting capabilities
 - □ \bigcirc linear at low luminosity ($n_{pp}/n_{BC} \sim A \cdot \pounds$) but \oslash not at high luminosity
 - Can be spoiled by pile up
- Particle counting method: $\mathfrak{L} = \langle M \rangle / (\langle C \rangle \cdot A), A = \varepsilon_{pp} \sigma_{inel}$
 - A from calibration
 - Need for particle counting capabilities
 - □ Linear relation between <M> and 𝔅
 - Suitable at both low and high luminosity

ALFA where and why

Determine absolute *L*

with elastic proton scattering:

ALFA Roman Pots concept

Extracted position

• precise positioning given by Overlap Detectors

STRINGENT LIMITS IMPOSED BY LHC CONSTRAINTS

- OD: scintillating fibres
- measure vertical coord. only
- detect beam halo
- each made of 3 planes of 30 fibres

- Requirements:
 - measure $|t| \sim 6 \cdot 10^{-4} (\theta \sim 3 \mu rad)$
 - $\sigma_{xy} << \sigma_{beam}$ (~ 130 µm) \Rightarrow 30 µm
 - radiation \leq 100 Gy/yr
 - time resolution ~ 5 ns
 - \bullet top/bottom alignm. \sim 10 μm
 - vacuum tight
- Solution: scintillating fibres detector
 - edgeless (~ 10 μ m)
 - 10 x 64 U + 10 x 64V fibres @ 90°
 - planes staggered by 70.7 μ m
 - fibre eff. pitch $50\mu m (\sigma xy \sim 20 \ \mu m)$
 - MAPMT read out fibres
 - FE mounted directly on top of pot

Plastic scintillators cover active fibers area and provide local trigger

Goal: detector ready in ~ 1 year from now

absolute luminosity & σ_{tot}

Elastic scattering in CNI region: L~10²⁷ cm⁻²s⁻¹, large β* optics (beam div.~0.2µrad)

optical theorem as complementary solution

$$\begin{cases} L = \frac{(1+\rho^2)}{16\pi} \frac{N_{\text{tot}}^2}{\frac{dN_{\text{el}}}{dt}} \\ \sigma_{\text{tot}} = \frac{N_{\text{tot}}}{L} \end{cases}$$

N_{tot},
$$dN_{el}/dt |_{t=o} \implies L \& \sigma_{tot}$$

⊗ need MC for η extrapolation
⇔ ρ shouldn't be a problem

Provide high precision (2-3%) LUCID calibration

ZDC where and why

- Requirements:
 - measure neutral particles at $O^{o}(n, \gamma, \pi^{o})$
 - both EM and HAD sections
 - beam monitoring and tuning
 - crossing angle
 - IP position
 - lumi monitor at the single BC level
 - tune LHC parameters in first times
 - radiation hard
- Physics program:
 - pp physics: very forward (η >8.3) cross sections
 - Heavy Ions: event centrality, trigger

LOI presented in January 2007 (CERN-LHC-2007-001) Status: installed both arms in a simplified version system and electronics ready for first protons

ZDC

ZDC with glass rods

Benedetto Giacobbe

test beam campaign organised

diffractive physics

Total and elastic cross sections: precision of O(%)

Soft diffraction: RP220 & FP420

- sizeable fraction of inelastic cross section
- understand inclusive diffraction mechanisms
- study gluon content of the proton
- W, Z, Upsilon diffractive production

hard diffraction:

• Exclusive Higgs production (possible discovery channel in MSSM: O^{++} & mass resolution ~ GeV!) • gluon factory, exotics, anomalous W/Z prod.

See talk by M. Tasevski

conclusions

- ATLAS Forward Detectors will allow *L* determination at 2-3% level, monitor beam conditions down to the BC scale and measure *o*_{tot}
 - **LUCID and ZDC installed and ready for beam**
 - □ ALFA ready in ~ 1 year
- RP220-FP420 upgrade of ATLAS under study
 - R&D advanced. Conclusions ready and submitted by end 2008 for final decision.
- forward physics program extension foreseen
 - wide diffractive physics program possible
 - **can prove to be a key field for new physics**

Backup slides

ZDC time, space and energy resolution (average over active area)

ATLAS Detectors for Luminosity Determination and Forward Physics

Baseline ATLAS detector covers $-5 < \eta < 5$ Tracking $-2.5 < \eta < 2.5$ However $\eta_{max} \sim \ln s/m_p \sim 9.5$ Large region in rapidity not covered (Angles from 0.8 degree to 0 degrees)

Trigger conditions

- For the special run (~100 hrs, L=1027cm-2s-1)
- 1. ALFA trigger
 - coincidence signal left-right arm (elastic trigger)
 - each arm must have a coincidence between 2 stations
 - rate about 30 Hz
- 2. LUCID trigger
 - coincidence left-right arm (luminosity monitoring)
 - single arm signal: one track in one tube
- 3. ZDC trigger
 - single arm signal: energy deposit > 1 TeV (neutrons)
- 4. Single diffraction trigger
 - □ ALFA.AND.(LUCID.OR.ZDC)
 - central ATLAS detector not considered for now (MBTS good candidate)

Single diffraction: trigger conditions

Efficiency [%]	Pythia	Phojet
Preselection		
ξ<0.2	97.1	94.8
ZDC [E>1 TeV]	51.5	38.7
LUCID [1 track]	45.1	57.3
[Central ATLAS E> 100 GeV]	24.9	38.7
Total preselection	75	74
RP selection		
ALFA (Relative to preselection)	60.1	54.2
Total acceptance	44.9	40.1

Exclusive Higgs production

Generator studies with detector cuts

Standard Model Higgs

b jets : $M_H = 120 \text{ GeV s} = 2 \text{ fb}$ (uncertainty factor ~ 2.5) $M_H = 140 \text{ GeV s} = 0.7 \text{ fb}$

 $M_{\rm H}$ = 120 GeV : 11 signal / O(10) background in 30 fb⁻¹ hep-ph/0207042 with detector cuts

WW*: $M_{\rm H} = 120 \text{ GeV s} = 0.4 \text{ fb}$ $M_{\rm H} = 140 \text{ GeV s} = 1 \text{ fb}$ M = 140 CoV: 8 signal (Q(a) background in

 $M_{\rm H}$ = 140 GeV : 8 signal / O(3) background in 30 fb⁻¹ hep-ph/0505240 with detector cuts

•The b jet channel is possible, with a good understanding of detectors and clever level 1 trigger (need trigger from the central detector at Level-1, possibly with O(10) KHz rate)

•The WW^{*} (ZZ^{*}) channel is extremely promising : no trigger problems, better mass resolution at higher masses (even in leptonic / semi-leptonic channel)

Higgs Studies

Cross section factor > 10 larger in MSSM (high tan β) \Rightarrow Few 100 events with ~ 10 background events for 30 fb⁻¹

> Kaidalov et al., hep-ph/0307064

 \Rightarrow Study correlations between the outgoing protons to analyse the spin-parity structure of the produced boson

A way to get information on the spin of the Higgs ⇒ADDED VALUE TO LHC