

Associated W and Higgs boson photoproduction and other electroweak photon induced processes at the LHC

S. Ovyn

Université catholique de Louvain Center for Particle Physics and Phenomenology (CP3)

on behalf of the Louvain Photon group :

J.de Favereau, V. Lemaître, Y. Liu, <u>S. Ovyn</u>, T. Pierzchala,

K. Piotrzkowski, X. Rouby, N.Schul, M. Vander Donckt High energy photon collisions at the LHC - CERN

1

γp processes Experimental

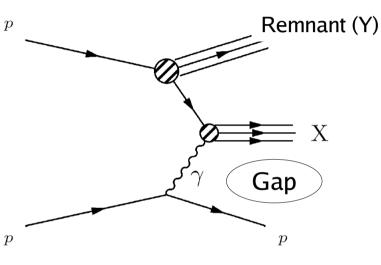
γp -> WHq' Single Top Summary High energy photoproduction at the LHC : introduction

yp processes

Experimental

 $\gamma p \rightarrow WHq'$

Single Top


Summary

Introduction to photon-proton processes

LHC : a new HERA collider !

Photoproduction is traditionally studied at e-p collisions

pp (γq/g → XY) p

- γp events can also be tagged at the LHC
 - e.g. Using Large Rapidity Gaps (LRG)
- Higher luminosity than $\gamma\gamma$ events
- Probe electroweak sector up to/beyond 2 TeV !

Using EPA

$$\sigma_{pp} = \int \sigma_{\gamma q/g} (\hat{W}_{\gamma q/g}) f_{\gamma}(x_1) f_{q/g}(x_2, Q^2) dx_1 dx_2$$

where $\hat{W}_{\gamma q/g}^2 = 4 E_p x_1 x_2$

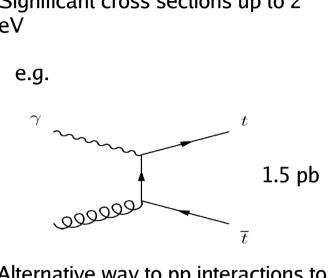
BUT pp events are more dangerous backgrounds than in $\gamma\gamma$ interactions!

High energy photon collisions at the LHC - CERN

3

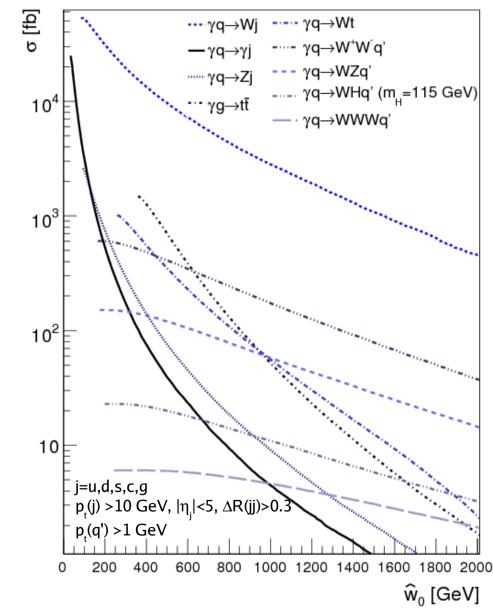
yp processes

yp cross sections


• Large variety of processes

• Significant cross sections up to 2 TeV

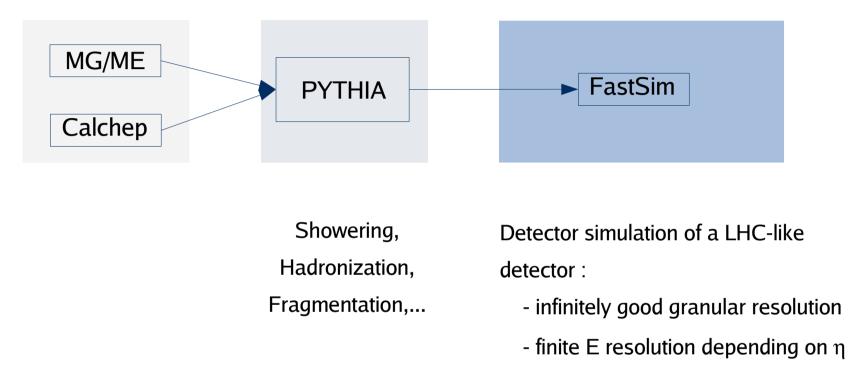
yp processes **Experimental** $\gamma p \rightarrow WHq'$ Single Top Summary


S.Ovyn

 Alternative way to pp interactions to study

- 1. Higgs search
- 2. Top physics (e.g. |V_{tb}|)
- 3. New phenomena up to 2 TeV
- Very good S/B expected

High energy photon collisions at the LHC - CERN


Simulation procedure

S.Ovyn

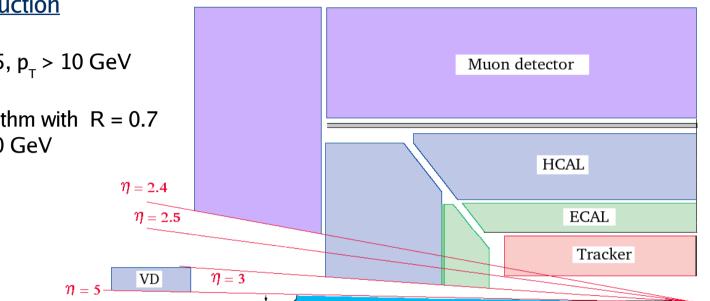
γp processes
Experimental
γp -> WHq'
Single Top
Summary

• Jets in the final state require careful simulation of acceptance cuts!

All results are obtained using LHC detectors with parametrized resolutions and acceptances on generated events

• Only photo-induced backgrounds have been studied in the present analysis

Fast simulation


<u>Leptons</u> : $|\eta| < 2.5$, $p_{_T} > 10$ GeV

<u>Jets</u> : cone algorithm with R = 0.7 for $|\eta| < 3$, $p_{_T} > 10$ GeV

γp processes

S.Ovyn

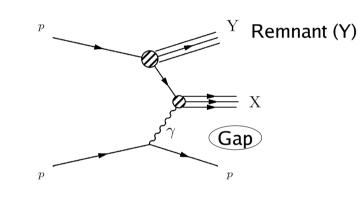
Experimental γp -> WHq' Single Top Summary

- <u>b-tagging</u> : for $|\eta| < 2.5$
- - tagging efficiency : 40%,
- - mistagging of 1% for j=u,d,s,g
- - mistagging of 10% for j=c.

- $\underline{\tau}$ -tagging : for $|\eta| < 2.5$ and $p_{\tau} > 10 \text{ GeV}$
- - typical efficiency : 60%,
- Other jets retained if $p_{T} > 20 \text{ GeV}$

Observability of photo-induced processes is determined using acceptance cuts with these thresholds

Detection and tagging


RESERVENTION OF STREAM

S.Ovyn

<u>Potential backgrounds</u> : topologies similar to signal γp events produced from parton-parton collisions

Need a large rejection against pp events

1) Escaping proton signature

 \bullet In γp interactions, the proton emitting the photon does not break up

- no energy in one of the Forward Calorimeter

- tagging of the escaping proton using very forward detectors

See X. Rouby's talk

2) Use of exclusivity conditions

• In pp interactions, presence of additional particles with low transverse energy due to color flow

The calorimetric and/or the tracking information can be used to look for additional energy in the central detector

γp processes Experimental γp -> WHq' Single Top Summary

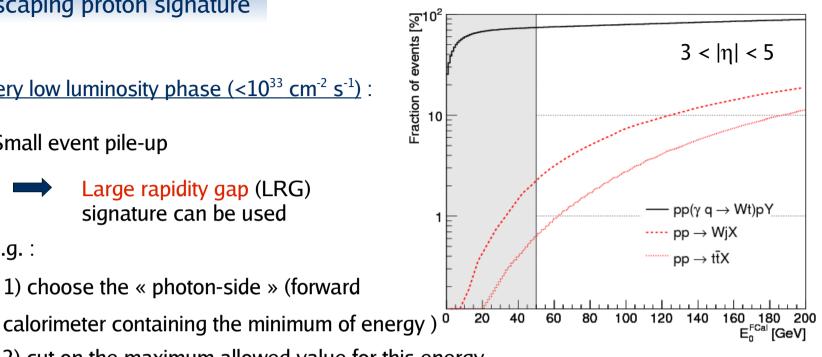
25/04/2008

Escaping proton signature

Very low luminosity phase ($<10^{33}$ cm⁻² s⁻¹) :

Large rapidity gap (LRG)

signature can be used


1) choose the « photon-side » (forward

Small event pile-up

e.g. :

S.Ovyn

yp processes Experimental $\gamma p \rightarrow WHq'$ Single Top Summary

2) cut on the maximum allowed value for this energy

Advantage : independent from very forward detectors features (Roman Pots) Drawback : - low integrated luminosity expected : 1 fb^{-1}

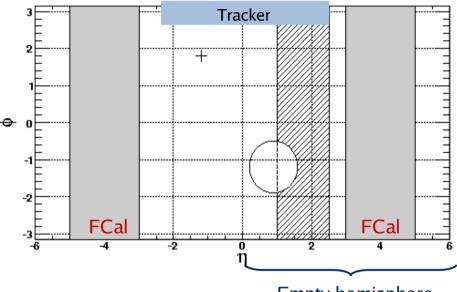
kinematics is less constrained

Low luminosity phase (~ 10³³ cm⁻² s⁻¹)

• Use of very forward detector is mandatory !

Expected integrated luminosity of 10-30 fb⁻¹

Use of exclusivity conditions



Exclusivity based on the tracker

e.g.: 1 lepton and 1 jet expected

S.Ovyn

yp processes Experimental γp -> WHq' Single Top Summary

• Exclusivity cuts can be applied to reject soft tracks from event vertex

e.g. :

Require no additional track with $p_{T} > 0.5$ GeV outside jet cones (R = 0.7) with $1 < \eta < 2.5$

Reduction factor :

- γp events : ~ 0.5

- pp events : ~ 0.001

Empty hemisphere

After the application of rapidity gap and exclusivity cuts, contribution of pp events is similar to the one from γp events

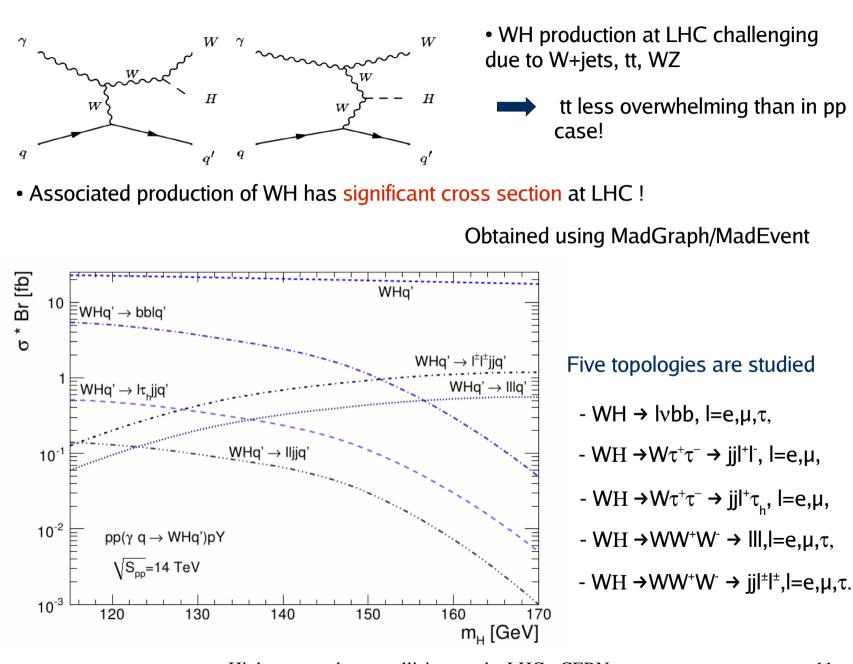
• Only irreducible γp backgrounds have been studied in this presentation

Exclusivity based on the calorimeters

An additional cut based on the energy measured in the central calorimeters can also be applied

γp processes Experimental γp -> WHq' Single Top Summary

Associated WH photoproduction


Associated WH photoproduction

Motivation

S.Ovyn

γp processes Experimental γp -> WHq'
Introduction
Acceptance cuts
WHq' → lvbbq'
WHq' → jjl[±]l[±]q'
WHq' → lllq'
Single Top
Summary

Associated WH photoproduction

Visible cross section after acceptance cuts

S.Ovyn

yp processes

Experimental

Introduction

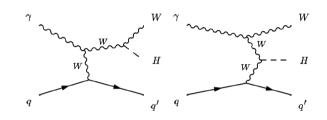
Acceptance cuts

WHq' \rightarrow lvbbq'

WHq' \rightarrow jjl[±]l[±]q'

WHq' \rightarrow Illq'

Single Top


Summary

 $\gamma p \rightarrow WHq'$

<u>Goal</u> : assess a possible alternative way to observe a light Higgs, in channel with different systematics from $H \rightarrow \gamma \gamma$

pp vs γp cross sections

	рр	γp
WH-channel	~ 1.5 pb	~ 23 fb
tt	~ 730 pb	~ 1.5 pb

S/B improved by more than one order of magnitude

Results after application of acceptance cuts

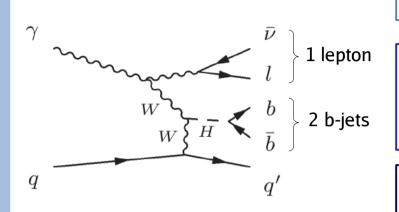
	Ν	M _H =115 GeV			M _H =170 GeV		
Topology	lvbb	jjl+l-	jjl⁺τ _h		jjl±l±)	
σ WHq' [fb]	5.42	0.14	0.52	0.55	1.17		
σ_{acc}	0.12	0.01	0.04	0.07	0.22		
Irreducible backg	rounds	(tt, Wt, W	'zq', WV	/W, Wllc	' Wbb	q')	
σ _{acc} bkg	3.73	30.8	6.68	1.44	0.28		

- Very small statistics
 not a discovery channel
- For analysis, more specific cuts can be applied.
- Interesting sensitivity for 2 topologies : lvbb and jjl[±]l[±]

yp processes

Experimental

Introduction


Acceptance cuts

 $\gamma p \rightarrow WHq'$

Associated WH photoproduction

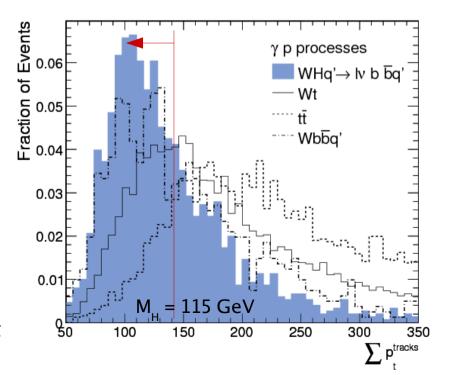
$\gamma p \rightarrow$	WHq'	\rightarrow	lvbbq'	topo	logy
					- 31

Topology :

Signal selection :

• E^{FCal} < 50 GeV

- 1 isolated lepton with $p_{_{\rm T}} > 15 \text{ GeV}$
- 2 b-jets with $p_{t} > 20 \text{ GeV}$
- No other additional jet with $p_{_{t}} > 20$ GeV and $|\eta| < 3$


•
$$\Sigma(\mathsf{P}_{\mathrm{tracks}}^{\mathrm{T}}) < 140 \, \mathrm{GeV}$$

Considered backgrounds : tt, Wt, Wbbq'

[fb]	WHq'	Bkg					
σ	5.42	1051					
σ_{acc} (HF tag)	4.77	822.9					
σ_{acc} (topology)	0.10	1.85					
σ_{acc} (final cuts)	0.06	0.31					
Signifiance after 10	Signifiance after 100 fb ⁻¹ : 1.5 σ						

Physics goal :

- sensitive to $g_{_{Hbb}}$ which is very difficult to measure in pp collisions

25/04/2008

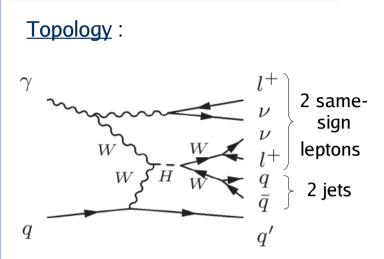
WHq' \rightarrow lvbbq' WHq' $\rightarrow jjl^{\pm}l^{\pm}q'$

Single Top

WHq' \rightarrow Illq'

Summary

Associated WH photoproduction


$\gamma p \rightarrow WHq' \rightarrow jjl^{\pm}l^{\pm}q'$ topology

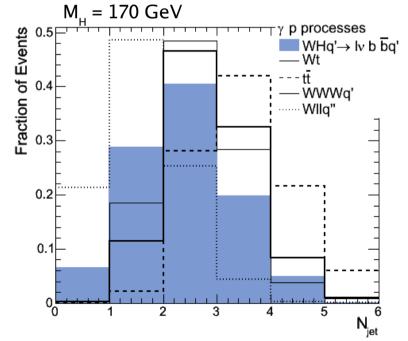
S.Ovyn

 γp processes $E \times perimental$ $\gamma p \rightarrow WHq'$ IntroductionAcceptance cuts $WHq' \rightarrow lvbbq'$ $WHq' \rightarrow jjl^{\sharp}l^{\sharp}q'$ $WHq' \rightarrow Illq'$ Single Top

Summary

Signal selection :

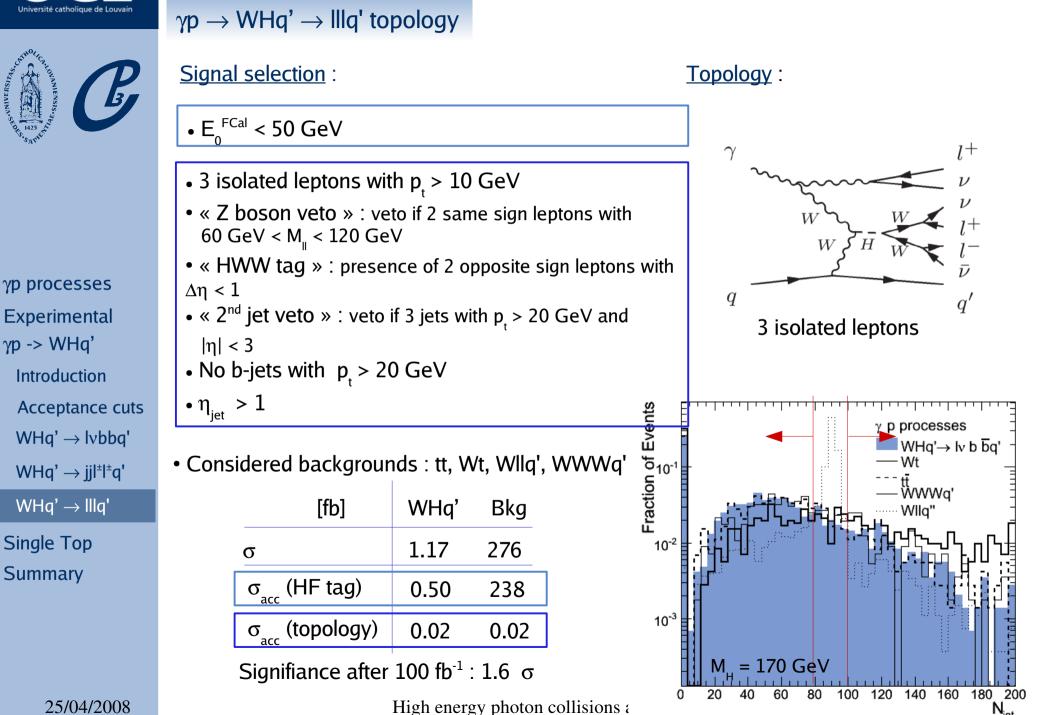
• E₀^{FCal} < 50 GeV


- 2 same sign isolated leptons with $p_t > 10 \text{ GeV}$
- \geq 2 jets with p_t > 20 GeV and $|\eta|$ < 3
- No $\tau\text{-jets}$ with $p_{_{t}}$ > 10 GeV and $|\eta|$ < 2.5
- No b-jets with $p_{t} > 20 \text{ GeV}$

• Considered backgrounds : tt, Wt, Wllq', WWWq'

[fb]	WHq'	Bkg				
σ	1.17	1041				
$\sigma_{_{acc}}$ (HF tag)	0.73	805				
$\sigma_{_{acc}}$ (topology)	0.19	0.80				
Signifiance after 100 fb ⁻¹ : 2.3 σ						

<u>Physics goal</u> :

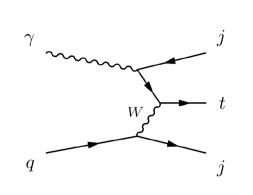

- sensitive to $g_{_{HWW}}$
- crucial for a fermiophobic Higgs

High energy photon collisions at the LHC - CERN

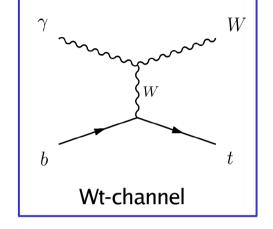
Associated WH photoproduction

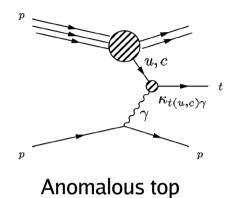
γp processes
Experimental
γp -> WHq'
Single Top
Summary

High energy single top photoproduction at the LHC



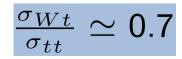
The LHC is a Top factory!




S.Ovyn

γp processes
Experimental
γp -> WHq'
Single Top
Introduction
Wt-channel
Anomalous top
Summary

t-channel


Physics highlights

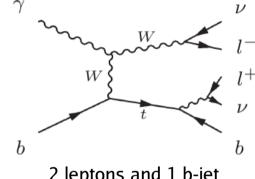
- Wt and t-channel related to V_{tb}
- Sensitivity to new physics : FCNC
- Possibility to study top properties (mass, charge,...)

<u>pp vs γp cross sections</u>

pb	рр	γp	
Wt-channel	~ 60	~ 1	
t-channel	~ 245	~ 0.006	
Wjjj	~ 35000	8.7	
tt	~ 720	1.5	

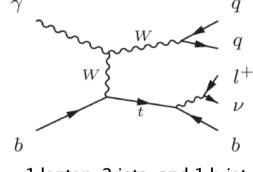
- Wt-channel : more favorable background condition than pp case
- What kind of uncertainty is reachable on $|V_{th}|$?

High energy photon collisions at the LHC - CERN


<u>SM single top production</u> :

W associated single top production

S.Ovyn


yp processes Experimental $\gamma p \rightarrow WHq'$ Single Top Introduction Wt-channel Anomalous top Summary

Semi and di-leptonic topologies are studied :

2 leptons and 1 b-jet

Results after acceptance cuts						
Topology	lbjj	llb				
σ Wt [fb]	440	103.7				
σ_{acc}	34.1	8.69				
Irreducible backgrounds (Wjjj,Wbbq', WWq',tt)						
$\sigma_{_{acc}}$ bkg	63.0	3.00				

 γp events : Wt / total top production = ~50%

pp events : Wt / total top production = $\sim 5\%$

1 lepton, 2 jets and 1 b-jet

<u>Measurement of V_{th} after 10 fb⁻¹:</u>

• $\Delta |V_{th}| / |V_{th}| \approx 10\%$ in the di-lepton Wt channel

- $\Delta |V_{tb}| / |V_{tb}| \approx 16\%$ in the semi-lepton Wt channel See J. de Favereau's talk
- \bullet Assuming $V_{_{th}}$, one can also measure the top electric charge

Ideal to

study |V_{th}|

Anomalous top production

See J. de Favereau's talk

Effective Lagrangian for anomalous coupling :

S.Ovyn

γp processes
Experimental
γp -> WHq'
Single Top
Introduction
Wt-channel
Anomalous top
Summary

$L = ie_{t} t \frac{-\sigma_{\mu\nu} q^{\nu}}{\Lambda} k_{tuy} u A^{\mu} + ie_{t} t \frac{-\sigma_{\mu\nu} q^{\nu}}{\Lambda} k_{tcy} c A^{\mu} + h.c.$

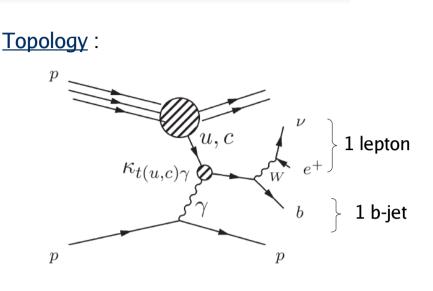
Where $\sigma^{\mu\nu} = \frac{\gamma^{\mu}\gamma^{\nu} - \gamma^{\nu}\gamma^{\mu}}{2}$

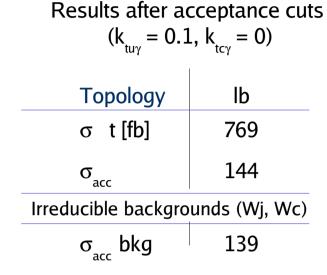
Therefore, the cross section takes the form : $\sigma_{pp \to t} = \alpha_u k_{tuy}^2 + \alpha_c k_{tcy}^2$ with $\alpha_u = 368 \ pb$ and $\alpha_c = 122 \ pb$, computed using CalcHEP

Physics highlights

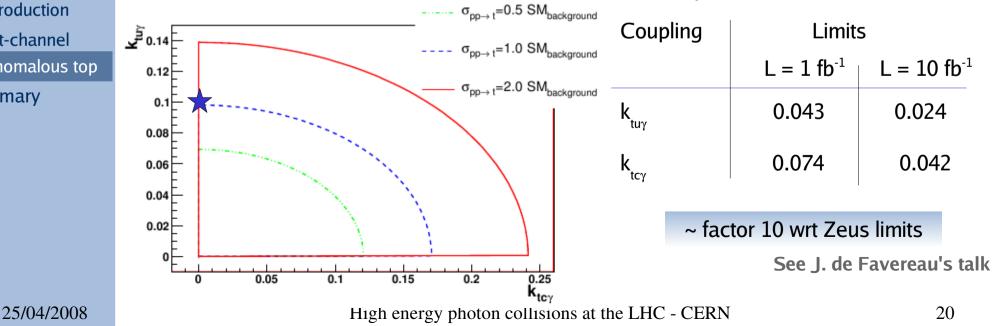
- Sensitivity to new physics : FCNC
- Current limit obtained by Zeus : $k_{tuy} \approx 0.17$
- At HERA only u-quark relevant, at LHC also c-quark contributes

Limit on k_{tuy} could be significantly improved even at start-up luminosity !


 $\kappa_{t(u,c)}$



Limits for anomalous couplings



Cross section contours as a function of anomalous couplings :

Expected limits at 95% CL

Summarv

Summary - outlook

S.Ovyn

yp processes Experimental $\gamma p \rightarrow WHq'$ Single Top Summary

- High energy γp interactions have significant cross section at the LHC
- γ p -> WHq' (100 fb⁻¹)
 - $\gamma p \rightarrow WHq' \rightarrow lvbbq'$ topology : sensitive to $g_{_{Hhh}}$ which is very difficult to assess in pp events
 - $\gamma p \rightarrow WHq' \rightarrow jjl^{\pm}l^{\pm}q'$ topology $\gamma p \rightarrow WHq' \rightarrow Illq'$ topology

For $m_{_{H}} = 170 \text{ GeV}$ a combined significance close to 3 σ is achieved

- Wt-channel (10 fb⁻¹)
 - Wt related to V_{th} \implies seems very promising even after 10 fb⁻¹
 - Possibility to study top properties (mass, charge,...)
- Anomalous top
 - Large improvement of sensitivity is expected on current searches for anomalous couplings (FCNC) with 1 fb⁻¹

Backup slides

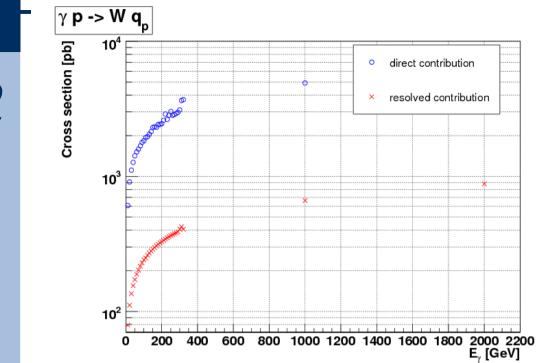
Photon-proton cross sections

Processes		ob]	Generator	Cut
$\gamma g \longrightarrow t\overline{t}$	1.54		MG/ME	-
$\gamma q \longrightarrow Wt$	1.01		11	-
WWWq'	6.04	$\times 10^{-3}$	11	-
W^+W^-q'	0.605		11	-
$W\gamma q'$	0.349		11	cut 1
WZq'	0.151		11	-
Wc	11.4		11	-
W^+j	28.1		11	-
$W^{-}j$	25.0		11	-
$\gamma q/g \rightarrow W j j$	19.2		11	-
W j j j	8.68		11	-
$\gamma q \longrightarrow Zj$	2.62		CalcHEP	-
$\gamma q/g \rightarrow Z j j$	1.34		MG/ME	-
Zjjj	0.827		11	-
$\gamma q \longrightarrow ZZq'$	1.73	$\times 10^{-3}$	11	-
γj	25.3		CalcHEP	cut 2
$\gamma q/g \rightarrow \gamma j j$	12.9		MG/ME	cut 2
$\gamma j j j$	8.48		11	cut 2
$\gamma q \longrightarrow \gamma \gamma \gamma q'$	30.4	$\times 10^{-3}$	11	cut 2
$Wb\overline{b}q'$	45.8	$\times 10^{-3}$	11	cut 3
$W\tau^+\tau^-q'$	1.62	$\times 10^{-3}$	11	$\operatorname{cut} 4$
$W\ell^+\ell^-q'$	19.6	$\times 10^{-3}$	CalcHEP	$\operatorname{cut} 5$
$W\ell^+\ell^-q'$	4.43	$\times 10^{-3}$	//	$\operatorname{cut} 4$

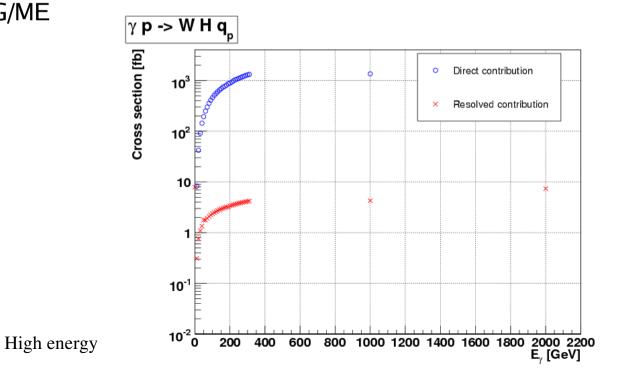
cut 1 : $p_T^{\gamma} > 20$ GeV,

cut 2 : $p_T^{\gamma} > 20$ GeV, $|\eta^{\gamma}| < 5$, $\Delta R(\gamma, j) > 0.3$ and $\Delta R(\gamma, \gamma) > 0.3$

cut 3 : $M_{b\overline{b}} > 80~{\rm GeV},$


cut 4 : $M_{\ell^+\,\ell^-}\,>\,110$ GeV,

cut 5 : 10 GeV < $M_{\ell^+ \ell^-}$ < 70 GeV,


25/04/2008

High energy photon collisions at the LHC - CERN

Obtained using MG/ME

WH and Wt acceptance cuts

WHq' events

Cross section [fb]	$\ell b j j$	$\ell\ell b$
$\sigma = Wt$	440	103.7
σ_{acc}	34.1	8.69
Irreducible p	processes	
$\sigma_{acc} t \overline{t}$	46.37	2.80
W j j j	15.61	-
$Wb\overline{b}q'$	1.01	-
W^+W^-q'	-	0.18
σ_{acc} total	62.99	2.99

Wt events

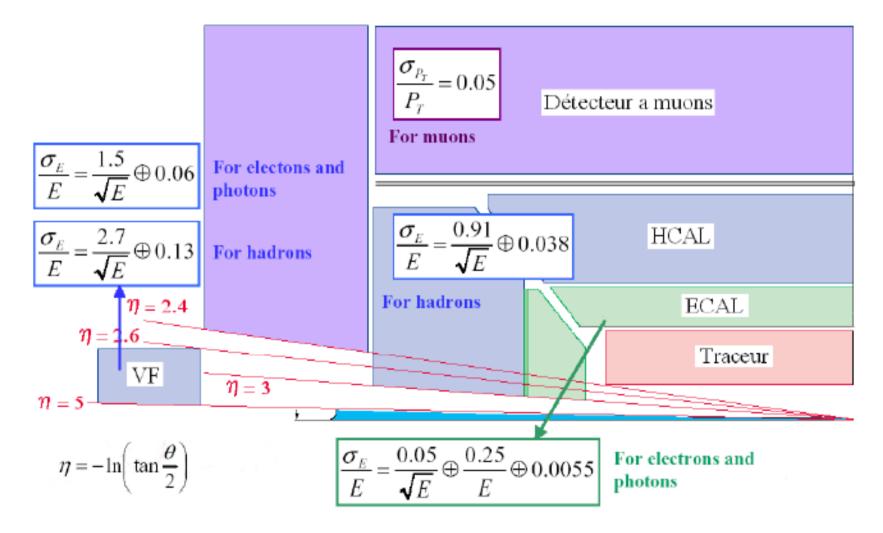
Acceptance cut	$\ell b j j$	$\ell\ell b$
N_ℓ	1	2
$\rm N_{jet}$	2 + 1 b-tag	1 b-tag
$ \eta_{\max}^{ m jet} $	3	2.5

Acceptance cut	$\ell b \overline{b}$	$jj\ell\ell$	$jj\ell\tau_h$	$\ell\ell\ell$	$\ell^{\pm}\ell^{\pm}jj$
N_ℓ	1	2	1	3	2
$ m N_{ au_h}$	-	-	1	-	-
N_jet	2 b-tag	2	2	≤ 1	≥ 2
$ \eta_{ m max}^{ m jet} $	3	3	3	3	3

Cross section [fb]	$\ell b \overline{b}$	$jj\ell^+\ell^-$	$jj\ell\tau_h$	lll	$jj\ell^{\pm}\ell^{\pm}$
	<i>m</i>	$m_H = 115 \text{ GeV}$ $m_H = 170$		$=170 \mathrm{GeV}$	
$\sigma = WHq'$	5.42	0.14	0.52	0.55	1.17
σ_{acc}	0.12	0.01	0.04	0.07	0.22
	Irredu	cible proc	esses		-
σ_{acc} Wt	1.18	4.25	0.98	-	-
$t\overline{t}$	2.47	24.7	6.40	-	-
$Wb\overline{b}q'$	0.19	-	-	-	-
$W\ell\ell q'$	-	0.42	0.07	0.43	0.11
WZq'	-	1.51	0.12	0.98	0.06
WWWq'	-	0.25	0.08	0.03	0.10
σ_{acc} total	3.84	31.2	7.63	1.44	0.28
	-			-	-

25/04/2008

ERN


25

Fast simulation of a LHC-like detector

Longitudal view of the detector

