The alternative approach to QCD analysis of the structure function F_2^{γ}

Jiří Hejbal

Institute of Physics ASCR, Prague

Outline

- Basic notation
- Conventional formulation
- Alternative formulation
 - Numerical results
 - Global analysis of $F_{\gamma}^{\ 2}$
- Conclusion

Evolution equations

System of inhomogeneous evolution equations:

$$\frac{dq_{NS}(x,M)}{d\ln M^2} = \delta_{NS}k_q + P_{NS} \otimes q_{NS}$$

$$\frac{d\Sigma(x,M)}{d\ln M^2} = \delta_{\Sigma}k_q + P_{qq} \otimes \Sigma + P_{qG} \otimes G$$

$$\frac{dG(x,M)}{d\ln M^2} = k_G + P_{Gq} \otimes \Sigma + P_{GG} \otimes G$$
Where
$$q_{NS}(x,M) = \sum_{k=1}^{n_f} \left(e_{k}^2 - \langle e_{k}^2 \rangle^2 \right) \left(q_{NS}(x,M) + \overline{q_{NS}}(x,M) \right)$$

$$\Sigma(x, M) = \sum_{i=1}^{n_f} \left[q_i(x, M) + \overline{q_i}(x, M) \right]$$

$$\delta_{NS} = 6n_f \left(\left\langle e^4 \right\rangle - \left\langle e^2 \right\rangle^2 \right), \qquad \delta_{\Sigma} = 6n_f \left\langle e^2 \right\rangle$$

Evolution equations

...and

$$k_{q}(x,M) = \frac{\alpha}{2\pi} \left[k_{q}^{(0)}(x) + \frac{\alpha_{s}(M)}{2\pi} k_{q}^{(1)}(x) + \left(\frac{\alpha_{s}(M)}{2\pi}\right)^{2} k_{q}^{(2)}(x) + \dots \right]$$

$$k_{g}(x,M) = \frac{\alpha}{2\pi} \left[\frac{\alpha_{s}(M)}{2\pi} k_{g}^{(1)}(x) + \left(\frac{\alpha_{s}(M)}{2\pi}\right)^{2} k_{q}^{(2)}(x) + \dots \right]$$
P_{ij}(x,M) =
$$\frac{\alpha_{s}(M)}{2\pi} P_{ij}^{(0)}(x) + \left(\frac{\alpha_{s}(M)}{2\pi}\right)^{2} P_{ij}^{(1)}(x) + \dots$$
Splitting functions

$$C_{q}(x,M) = \delta(1-x) + \frac{\alpha_{s}(M)}{2\pi}C_{q}^{(1)}(x) + \left(\frac{\alpha_{s}(M)}{2\pi}\right)^{2}C_{q}^{(2)}(x) + \dots$$
Coefficient functions
$$C_{G}(x,M) = \frac{\alpha_{s}(M)}{2\pi}C_{g}^{(1)}(x) + \left(\frac{\alpha_{s}(M)}{2\pi}\right)^{2}C_{G}^{(2)}(x) + \dots$$

$$C_{\gamma}(x,M) = C_{\gamma}^{(0)}(x,M) + \frac{\alpha_{s}(M)}{2\pi}C_{\gamma}^{(1)}(x) + \left(\frac{\alpha_{s}(M)}{2\pi}\right)^{2}C_{\gamma}^{(2)}(x) + \dots$$

Photon structure F_2^{γ}

Photon stucture function

 $\frac{1}{x}F_{2}^{\gamma}(x,Q^{2}) = \underbrace{q_{NS}(x,Q^{2}) \otimes C_{q}(x)}_{\gamma} + \underbrace{\langle e^{2} \rangle \Sigma(x,Q^{2}) \otimes C_{q}(x)}_{\gamma} + \underbrace{\langle e^{2} \rangle G(x,Q^{2}) \otimes C_{G}(x)}_{\gamma} + \underbrace{\langle e^{2} \rangle$

Non-singlet Singlet

Gluon

Photon

contribution

Solution of evolution equations

 $q(x,Q^2) = q^{PL}(x,Q^2) + q^{HAD}(x,Q^2)$

Pointlike solution LO

$$q_{PL}^{\gamma}(n,Q^{2}) = \frac{4\pi}{\alpha_{s}(Q^{2})} \left(1 - \left(\frac{\alpha_{s}(Q^{2})}{\alpha_{s}(Q^{2})}\right)\right) \frac{\alpha}{2\pi\beta_{0}} \frac{k^{(0)}(n)}{1 - \frac{2}{\beta_{0}}} P^{(0)}(n)$$

Pointlike solution NLO

$$q_{PL}^{\gamma}(n,Q^{2}) = \frac{4\pi}{\alpha_{s}(Q^{2})} \left(1 - \left(\frac{\alpha_{s}(Q^{2})}{\alpha_{s}(Q^{2})}\right)\right) \frac{\alpha}{2\pi\beta_{0}} \frac{k^{(0)}(n)}{1 - \frac{2}{\beta_{0}}} \left(1 + \frac{\alpha_{s}(Q^{2})}{2\pi}\right) + \left[1 - L^{-(2/\beta_{0})P^{(0)}(n)}\right] \frac{1}{-P^{(0)}(n)} \frac{\alpha}{2\pi} \left(k^{(1)}(n) - \frac{\beta_{1}}{2\beta_{0}}k^{(0)}(n) - Uk^{(0)}(n)\right)$$

Conventional formulation

$$\frac{1}{x}F_{2}^{\gamma}(x,Q^{2}) = \begin{bmatrix} q_{NS}(x,Q^{2}) + \frac{\alpha_{S}(Q^{2})}{2\pi}q_{NS}(x) \otimes C_{q}^{(1)}(x) + \cdots \end{bmatrix} + \\ \left\langle e^{2} \right\rangle \begin{bmatrix} \Sigma(x,Q^{2}) + \frac{\alpha_{S}(Q^{2})}{2\pi}\Sigma(x) \otimes C_{q}^{(1)}(x) + \cdots \end{bmatrix} + \\ \left\langle e^{2} \right\rangle \\ \delta \left(\begin{bmatrix} \alpha_{S}(Q^{2}) \\ 2\pi \end{bmatrix} + \frac{\alpha_{S}(Q^{2})}{2\pi} \begin{bmatrix} \alpha_{S}(Q^{2}) \\ 2\pi \end{bmatrix} + \frac{\alpha_{S}(Q^{2})}$$

 $\frac{1}{x} F_{2,L0}^{\gamma}(x,Q^2) = q_{NS}(x,Q^2) + \Sigma(x,Q^2)$

Next to leading order

$$\frac{1}{x}F_{2,NLO}^{\gamma}(x,Q^{2}) = \frac{1}{x}F_{2,LO}^{\gamma} + \frac{\alpha_{s}(Q^{2})}{2\pi}q_{NS}(x) \otimes C_{q}^{(1)}(x) + \frac{\alpha_{s}(Q^{2})}{2\pi}\Sigma(x) \otimes C_{q}^{(1)}(x) + \frac{\alpha_{s}(Q^{2})}{2\pi}G(x) \otimes C_{G}^{(1)}(x) + \frac{\alpha_{s}(Q^{2})}{2\pi}C_{r}^{(0)}(x) + \frac{\alpha_{s}(Q^{2})}{2\pi}G(x) \otimes C_{r}^{(1)}(x) + \frac{\alpha_{s}(Q^{2})$$

Next-to-next to leading order

$$= F_{2,NNLO}^{\gamma} (x,Q^2) = \cdots + \frac{\alpha_s(Q^2)}{2\pi} \frac{\alpha}{2\pi} C_{\gamma}^{(1)}$$

Conventional formulation

Summary: the conventional approach is based on the assumptions:

- $F_{2,1,0}^{\gamma}$ is related to $q(x,Q^2)$ in the same way as for hadrons
- $q_{LO}(x,Q^2)$ are solutions of evolution equations including $k_q^{(0)}$ and $P_q^{(0)}$ only

• This leads to mixing the terms of α and α_s order in QCD expansion

$$\frac{1}{x} F_{2,LO}^{\gamma}(x,Q^2) = q_{LO}(x,Q^2)$$
$$\frac{1}{x} F_{2,NLO}^{\gamma}(x,Q^2) = q + \frac{\alpha_s}{2\pi} q \otimes C_q^{(1)} + \frac{\alpha}{2\pi} C_{\gamma}^{(0)}$$

For example the **<u>pure QED</u>** quantity $C_{\gamma}^{(0)}$ is assigned to NLO order of QCD!

• Moreover, consistency with the factorization scale independence of F_2^{γ} reguires that:

$$q_{LO}^{PL}(x,Q^2) = O(\alpha / \alpha_s)$$

Note, that provided M_0 is kept fixed when $\alpha_s \rightarrow 0$

$$q_{NS}^{PL}(x, M, M_0) \to \frac{\alpha}{2\pi} k_{NS}^{(0)}(x) \ln \frac{M^2}{M_0^2}$$

...pure QED term describing splitting $\gamma
ightarrow qq$

Alternative formulation

Alternative approach is based on:

- Systematic separation of genuine QCD effects from those of pure QED origin, which leads to unambiguous definition of the concepts "leading" and "next-to-leading"
- Accepting the fact, that PL distribution functions of the photon are proportional to α

$$\frac{1}{x}F_{2,LO}^{\gamma,PL}(x,Q^{2}) = q_{NS}^{PL}(x,Q^{2}) + \frac{\alpha}{2\pi}C_{\gamma}^{(0)} + \frac{\alpha_{S}(Q^{2})}{2\pi}q_{NS}^{PL}(x)\otimes C_{q}^{(1)}(x) + \frac{\alpha}{2\pi}\frac{\alpha_{S}(Q^{2})}{2\pi}C_{\gamma}^{(1)}$$

$$\left(+ \left\langle e^{2} \right\rangle q_{\Sigma}^{PL}(x,Q^{2}) + \frac{\alpha}{2\pi}C_{\gamma}^{(0)} + \frac{\alpha_{S}(Q^{2})}{2\pi}q_{\Sigma}^{PL}(x)\otimes C_{q}^{(1)}(x) + \frac{\alpha}{2\pi}\frac{\alpha_{S}(Q^{2})}{2\pi}C_{\gamma}^{(1)} \right)$$

We can conclude that in LO the alternative approach differs from the conventional:

- by the presence of the photonic coefficient functions $C_v^{(0)}$ and $C_v^{(1)}$
- by the presence of the convolution of quark coefficient function $C_q^{(1)}$ with $q^{PL}(x,Q^2)$
- by the fact $k_q^{(1)}$ is included in the evolution equation for $q^{PL}(x,Q^2)$

Alternative formulation in LO

Pointlike structure function $F_2^{\gamma, PL}$

- The terms ~ $k_q^{(1)}$ represents an important positive contribution for x > 0.65
- $C_{\gamma}^{(0)}$ and $C_{\gamma}^{(1)}$ brings the numericicly important positive contribution up to x = 0.7
- In region x > 0.7 the negative contribution of $C_{\gamma}^{(0)}$ dominates.
- $C_q^{(1)}$ entering throught the convolution with q, compensates the negative contribution of $C_{\gamma}^{(1)}$

Numerical difference of conventional and alternative approach in comparision with experimental data errors

Comparison F_2^{γ} in conventional and alternative approach

Alternative formulation

	Conventioanal	Alternative		
LO QCD	$k^{(0)}, P^{(0)}$	+ $C_{\gamma}^{(0)}$, $k^{(1)}$, $C_{\gamma}^{(1)}$, $C_{q}^{(1)}$ \checkmark		
NLO QCD	$k^{(0)}, P^{(0)}, k^{(1)}, C_{\gamma}^{(0)}, P^{(1)}, C_{q}^{(1)}$	+ $C_{\gamma}^{(1)}$, $k^{(2)}$, $C_{q}^{(2)}$, $C_{\gamma}^{(2)}$ ×		

All quantities except $C_{\gamma}^{(2)}$ are known

- both LO and NLO analysis of F_2^{γ} in conventional approach is possible to perform
- In alternative approach only LO of F_2^{γ} analysis is possible to perform •

Global analysis of photon structure function F_2^{γ} in LO

- follows FFNS_{CJKL} model (3 active quarks, Λ =313 MeV)
- 182 data points used
- $\chi^2 = 357/182$ reached

Parameterization:

$$f_{had}^{\gamma}(x,Q_0^2) = \kappa \frac{4\pi\alpha}{\hat{f}_{\rho}^2} f^{\rho}(x,Q_0^2,\alpha,\beta)$$

	χ^2	К	S	β	
conventional	357	1.726	0.465	0.127	
alternative	work in progress				

Global analysis

Next-to-leading order – nonsinglet case

In conventional approach:

• qPL satisfy the evolution equation, where splitting functions k⁽¹⁾ and P⁽¹⁾ are included

$$\frac{dq_{NS}(x,M)}{d\ln M^2} = \frac{\alpha}{2\pi} k_q^{(0)} + \frac{\alpha}{2\pi} \frac{\alpha_s}{2\pi} k_q^{(1)} + \left(\frac{\alpha_s}{2\pi} P_{NS}^{(0)} + \left(\frac{\alpha_s}{2\pi}\right)^2 P_{NS}^{(1)}\right) \otimes q_{NS}$$

In alternative approach:

These

• qPL satisfy the evolution equation, where, moreover, splitting functions k⁽²⁾ is included

$$\frac{dq_{NS}(x,M)}{d\ln M^{2}} = \frac{\alpha}{2\pi}k_{q}^{(0)} + \frac{\alpha}{2\pi}\frac{\alpha_{s}}{2\pi}k_{q}^{(1)} + \left(\frac{\alpha}{2\pi}\left(\frac{\alpha_{s}}{2\pi}\right)^{2}k_{q}^{(2)}\right) + \left(\frac{\alpha_{s}}{2\pi}P_{NS}^{(0)} + \left(\frac{\alpha_{s}}{2\pi}\right)^{2}P_{NS}^{(1)}\right) \otimes q_{NS}$$

we approaches
liffers by
$$q_{NLO}^{PL,ALT}(n) - q_{NLO}^{PL,CON}(n) = \frac{\alpha_s(M)}{-1 - \frac{2P^{(0)}(n)}{\beta_0}} \frac{\alpha k^{(2)}(n)}{2\pi^2 \beta_0} \left(1 - \left(\frac{\alpha_s(M)}{\alpha_s(M_0)}\right)^{-1 - \frac{2P^{(0)}(n)}{\beta_0}} \right)$$

 this contribution is significantly smaller than the corresponding contribution in leading order (~k⁽¹⁾)

Next-to-leading order – nonsinglet case

Photonic splitting function:

$$k(x) = \frac{\alpha}{2\pi} k^{(0)}(x) + \frac{\alpha}{2\pi} \frac{\alpha_s}{2\pi} k^{(1)}(x) + \frac{\alpha}{2\pi} \left(\frac{\alpha_s}{2\pi}\right)^2 k^{(2)}(x)$$

Including the terms ~ $k^{(2)}$ to the evolution equation for PL NS distribution function has only small numerical effect for its solution

- The terms ~ $k^{(2)}$ represents very small positive correction for x close to 1
- $C_{\gamma}^{(0)}$ and $C_{\gamma}^{(1)}$ brings the numericicly important positive contribution up to x = 0.7
- In region x > 0.7 the negative contribution of $C_{\gamma}^{(0)}$ dominates.
- $C_q^{(1)}$ entering throught the convolution with q, compensates the negative contribution of $C_{\gamma}^{(1)}$
 - $C_{a}^{(2)}$ has only small numerical effect in region x close to 1

Next-to-leading order – nonsinglet case – pointlike part

- the difference between LO and NLO in conventional approach is much bigger than in the alternative one
- this difference is comparable with effect of including $k^{(1)}$ to standard LO \rightarrow LO in alternative approach
- PL distribution function in NLO in conventional approach is comparable with the PL distribution function in LO in alternative one

Conclusion

The alternative approach to QCD analysis of F₂^γ was proposed

In LO it differs

- by including terms ~ $k^{(1)}$ to the evolution equations for photonic distribution functions
- by including terms ~ $C_{\gamma}^{(0)}$, $C_{\gamma}^{(1)}$ and $C_{q}^{(1)}$ to the formula for F_{2}^{γ}

In NLO it differs

- by including terms ~ $k^{(2)}$ to the evolution equations for photonic distribution functions
- by including terms ~ $C_{\gamma}^{(2)}$ and $C_{q}^{(2)}$ to the formula for F_{2}^{γ}
- The numerical difference with the conventional approach was shown

In LO in the alternative approach

- the pointlike distribution functions are significantly bigger and they are numerically comparable with the pointlike distribution functions in NLO in conventional approach
- numerical difference of F_2^{γ} is significant in comparison to the errors of experimental data

In NLO in the alternative approach

- the pointlike distribution functions are numerically comparable to those of conventional approach
- in order to compare F_2^{γ} , the photonic coefficient function $C_{\gamma}^{(2)}$ is need
- Global analysis of the structure function F_2^{γ} in alternative approach in LO was performed

In FFNS_{CJKL} model the quality of the fit is unsatisfactory —> work in progress