

Single W and Anomalous Single Top Production at HERA

David South (Technische Universität Dortmund)

on behalf of the H1 and ZEUS Collaborations

Contents

- Introduction to HERA and Isolated Leptons
- Standard Model Signal Processes
- Search for Isolated Leptons and P_T^{Miss} at H1 and ZEUS
- Combined H1 and ZEUS Results
- Cross Section and W Polarisation Measurements
- Search for Anomalous Single Top Production
- Summary and Conclusions

H1 and ZEUS at HERA 1994-2007

Introduction to Isolated Leptons

- H1 observation of events containing P_T^{Miss} and high P_T leptons (electron or muon) in the HERA I analysis (118 pb⁻¹):
 - 19 events in the data (1 in e^{-p}) compared to SM expectation of 14.5 ± 2.0
 - Excess of data events observed at large hadronic transverse momentum, P_T^X
 - Result not confirmed by ZEUS HERA I analysis (more limited phase space)

H1 Results from HERA I Analysis

Standard Model Signal Processes

- Main SM contribution to signal from real W production via photoproduction with subsequent decay to leptons
 - Total cross section of order 1.3 pb, with 10% of W decays to each lepton flavour
 - Modelled using the EPVEC generator with a NLO QCD correction (Diener et. al.): modifies LO cross section by about 10%, reduces theoretical error to 15%
 - Hadronic system of **typically low** P_T^X

• Two additional processes included that contribute to the signal topology:

Standard Model Background

- Main SM Background processes:
 - Neutral and Charged Current and lepton pair production (also photoproduction)

Isolated Lepton Event Selection

Variable	Electron	Muon		
θ_1	$5^{\circ} < \theta_{l} < 140^{\circ} (H1), 1$	Analysis phase		
P_T^{-1}	> 10	GeV	space selection.	
$P_{\mathrm{T}}^{\mathrm{calo}}$	> 12	GeV	H1: extended polar	
P _T ^{miss}	> 12	GeV	J angle range	
P _T ^X	-	> 12 GeV		
D _{jet}	>	Isolation of lenton		
D _{track}	> 0.5 for $\theta_e \ge 45^\circ$	> 0.5		
ζ_l^2	$> 5000 \text{ GeV}^2 \text{ for } P_T^{\text{calo}} < 25 \text{ GeV}$	_	Cuts designed to	
V_{ap}/V_{p}	< 0.5 (< 0.15 for P_T^{e} < 25 GeV)	< 0.5 (< 0.15 for P_T^{calo} < 25 GeV)	background,	
$\Delta \varphi_{1\text{-}X}$	< 160°	< 170°	whilst preserving	
$\delta_{\rm miss}$	> 5 GeV ^{\$}	-	large signal purity	
# isolated µ	0	1]	

H1: only if one e candidate is detected, with the same charge as the beam lepton

Display of an Isolated Electron Event

- Elastic $e + P_T^{Miss}$ event in the H1 HERA II e^+p data
- $P_T^e = 47 \text{ GeV}, P_T^{Miss} = 47 \text{ GeV}, P_T^X = 0 \text{ GeV}$

Display of an Isolated Electron Event

- High $P_T^X e + P_T^{Miss}$ event in H1 HERA II e⁺p data
- $P_T^e = 37 \text{ GeV}, P_T^{Miss} = 44 \text{ GeV}, P_T^X = 29 \text{ GeV}$

H1 Results from HERA I+II

Analysis lepton polar angle range $5^{\circ} < \theta_1 < 140^{\circ}$

- Total H1 luminosity from HERA I and II datasets: 478 pb⁻¹
- Significant increase in statistics of e⁻p data compared to HERA I
- An overall excess still visible at large values of hadronic transverse momentum

H1 e [±] p data HERA I+II (478 pb ⁻¹)	e channel obs. / exp. (signal)	μ channel obs. / exp. (signal)	e and μ channels obs. / exp. (signal)
Full sample	42 / 46.7 ± 6.5 (69%)	17 / 12.2 ± 1.8 (82%)	59 / 58.9 ± 8.2 (72%)
$P_T^X > 25 \text{ GeV}$	14 / 8.5 ± 1.5 (68%)	10 / 7.3 ± 1.2 (79%)	24 / 15.8 ± 2.3 (73%)

H1 Results from e⁺p and e⁻p Data

• **Excess at 3.0** *or level in e+p data only* - difference between data sets

H1 Tau Results from HERA I+II

- Complementary results to the electron and muon channels
- Signature of 1-prong tau decay (45% branching ratio)
 - 1 charged track (the "prong") giving a narrow, pencil like jet
- Good agreement seen of complete H1 data with the SM prediction
- Dominated by background processes, only 14% signal (other channels up to 85%)
 - Main source of background: CC events with narrow jets

ZEUS Results from HERA I+II

Analysis lepton polar angle range: $15^{\circ} < \theta_1 < 120^{\circ}$

Display of an Isolated Muon Event

- High $P_T^X \mu + P_T^{Miss}$ event in the ZEUS e⁻p HERA II data
- $\theta^{\mu} = 32^{\circ}, M_{T}^{\mu\nu} = 79 \text{ GeV}, P_{T}^{\chi} = 82 \text{ GeV}$

ZEUS Results from HERA I+II

Isolated e Candidates	$P_T^X < 12 \text{ GeV}$	$12 < P_T^X < 25 \mathrm{GeV}$	$P_T^X > 25 \text{ GeV}$
ZEUS (prel.) e^-p 206 pb ⁻¹	$9/11.3 \pm 2.0 \ (55\%)$	$5/3.4 \pm 0.8~(62\%)$	$3/3.2 \pm 0.6 \ (69\%)$
ZEUS (prel.) e^+p 286 pb ⁻¹	$7/12.3 \pm 1.9~(66\%)$	$5/4.1 \pm 0.7~(67\%)$	$3/3.9\pm0.6~(76\%)$
ZEUS (prel.) $e^{\pm}p \ 492 \ \text{pb}^{-1}$	$16/23.6\pm 3.8~(60\%)$	$10/7.5 \pm 1.4 \; (65\%)$	$6/7.1 \pm 1.1 \ (73\%)$

Isolated μ Candidates	$12 < P_T^X < 25 \text{ GeV}$	$P_T^X > 25 \text{ GeV}$
ZEUS (prel.) e^-p 206 pb ⁻¹	$1/1.7\pm0.3~(77\%)$	$2/2.4 \pm 0.4 \; (85\%)$
ZEUS (prel.) e^+p 286 pb ⁻¹	$3/2.3\pm0.3~(82\%)$	$3/3.6\pm0.5~(81\%)$
ZEUS (prel.) $e^{\pm}p \ 492 \ \text{pb}^{-1}$	$4/4.1 \pm 0.6 \ (80\%)$	$5/6.0 \pm 0.8~(82\%)$

- Like H1, full HERA I+II data set has been analysed
 - 41 events observed in 492 pb⁻¹ of data
- Good agreement between data and SM in both lepton channels and in all data sets
- No excess seen at high P_T^X in the e⁺p data as seen by H1

Combining H1 and ZEUS Results

- The H1 analysis is redone using the ZEUS event selection
 - Few changes to the H1 selection: a more restricted polar angle range: $15^{\circ} < \theta_{|} < 120^{\circ}$, as well as relaxing of the condition on δ_{miss}
- This common phase space was studied using HERA II samples
 - Excellent agreement found between signal rates of the experiments
 - Some background is still higher in the ZEUS analysis, but within reasonable level of agreement
- H1 and ZEUS signal contributions added together and 15% correlated systematic (theory error) applied
- All others added separately in quadrature with individual (level of agreement) uncorrelated systematic error

H1+ZEUS Results from HERA I+II

H1+ZEUS: Results at High P_T^X

H1+ZEUS HERA I+II $P_T^X > 25 \text{ GeV}$	e channel obs. / exp. (signal)	μ channel obs. / exp. (signal)	e and μ channels obs. / exp. (signal)
e ⁺ p data (0.58 fb ⁻¹)	12 / 7.4 ± 1.0 (70%)	11 / 7.2 ± 1.0 (85%)	23 / 14.6 ± 1.9 (81%)
e ⁻ p data (0.39 fb ⁻¹)	4 / 6.0 ± 0.8 (67%)	2 / 4.8 ± 0.7 (87%)	6 / 10.6 ± 1.4 (76%)

- High P_T^X excess in e⁺p data remains, even after inclusion of the ZEUS data, with a lower significance of 1.8σ
- For the H1 contribution in this phase space: 17 / 7.1 \pm 0.9, the significance is 2.9 σ

H1 Cross Section Measurements

- H1 selection results in the electron and muon channels are used to calculate production cross sections (excess only at high P_T^X)
- Two cross section definitions: I) topology based and ii) for W production

$$\sigma_{IsoLep} = \frac{N_d - N_{bg}^{MC}}{\mathcal{L}\epsilon} \qquad \sigma_W = \frac{N_d - N_{bg}^{MC}}{\mathcal{L}\Gamma\epsilon} \qquad \epsilon = \frac{N_{rec}^{MC}}{N_{gen}^{MC}}$$
Isolated Lepton Cross Section Total Single W Cross Section
$$\frac{\mathbf{H1} \quad \mathbf{HERA I+II Data} \quad \mathbf{SM}}{\sigma_{\sigma_{\ell+P_T}} \quad 0.24 \pm 0.05 \text{ (stat)} \pm 0.05 \text{ (sys)} \quad 0.26 \pm 0.04 \text{ (th.sys)}}{\sigma_W} \quad 1.23 \pm 0.25 \text{ (stat)} \pm 0.22 \text{ (sys)} \quad 1.31 \pm 0.20 \text{ (th.sys)}}$$

• Both measured cross sections in good agreement with the SM predictions

H1 Measurement of W Polarisation Fractions

- Measurement makes use of the cos θ^* distributions in the decay W \rightarrow I + ν
- Cross section can be expressed in three terms of the polarisation fractions, with $F_+ \equiv 1 F_- F_0$

H1 Measurement of W Polarisation Fractions

- Additional selection criteria employed to reconstruct W and neutrino
- Most events have two neutrino solutions: forward / backward

- For events with $\theta_{lepton} < 35^{\circ}$, choose forward solution

- Require $\theta > 20^{\circ}$ and lepton charge
 - $\cos \theta^*$ is weighted with the sign of the charge of the identified lepton q_I
- Charge from track with > 1 curvature significance
 - Results in < 1% charge miss-ID
- The measured H1 cross section is fit using the 2 parameter W helicity model

H1 Measurement of W Polarisation Fractions

- F₀ and F₂ simultaneously extracted (2D fit)
- Result in agreement with the SM prediction and compatible with Single Top production

 Polarisation fractions also extracted in 1D fits where one parameter is fixed to the SM

H1	HERA I+II Data	SM
F_{-}	$0.58 \pm 0.15 (\text{stat}) \pm 0.12 (\text{sys})$	0.61 ± 0.01 (stat)
F_0	$0.15 \pm 0.21 (\text{stat}) \pm 0.09 (\text{sys})$	$0.19\pm0.01(\text{stat})$

Single Top Production at HERA

- Excess of observed events at high P_T^X unlikely to be due to W production (typically low P_T^X)
 - But! Observed topology is typical signature of top decay $t \rightarrow bW$
 - Tiny SM top production cross section < 1 fb
 - Anomalous top production via Flavour Changing Neutral Current ?
 - However: This process cannot explain asymmetry between datasets
- HERA I analyses:
 - − H1: $\sigma(ep \rightarrow etX) < 0.55 pb$
 - − ZEUS: σ (ep \rightarrow etX) < 0.23 pb

κ_{tuγ} : Anomalous γ magnetic couplingV_{tuZ} : Anomalous Z vector coupling

H1: Single Top using HERA I+II Data

- Top pre-selection is subset of the $I + P_T^{Miss}$ selection
 - Good top quark reconstruction required
 - Positive charge of lepton, where possible

ELECTRON CHANNEL

MUON CHANNEL

- Multivariate discriminator then used to separate signal and background
 - $P_{T}{}^{b}$, $M_{I\nu b}$ and $\theta^{I}{}_{W}$
 - Top:signal, W:background

H1: HERA I+II Exclusion Limits

- Cross section limits on FCNC single top extracted from discriminator using a maximum likelihood method
- New H1 upper bound on the cross section at 95% CL:

− σ (ep \rightarrow etX) < 0.16 pb

• Upper bound on the anomalous coupling $- \kappa_{tuv} < 0.14$

• New limit extends into region of phase space uncovered by other colliders: H1 ($\kappa_{tu\gamma}$) and CDF (V_{tuZ}) best limits on FCNC couplings

A quick mention: Multi-leptons at HERA

- Multi electron (2e, 3e) events studied in combined H1 and ZEUS analysis, using full HERA I+II data
- Electrons at high P_{τ} , in central region of detectors

Main process at HERA is two photon **Bethe-Heitler**

agreement between data and SM

H1 also studies combinations of electron and muon final states

H1+ZEUS Multi-electron analysis HERA I+II (0.94 fb⁻¹, preliminary)

Selection	Data	SM	Pair Production	NC-DIS + Compton
2e	937	937 ± 67	756 ± 48	181 ± 39
3e	148	161 ± 10	160 ± 10	0.4 ± 0.01
All	1085	1098 ± 75	916 ± 58	182 ± 39

Summary

- A search for events with isolated leptons and missing P_T performed by H1 and ZEUS using the full HERA I+II dataset, luminosity ~ 1 fb⁻¹
 - Measurement of W production at HERA
- The H1 and ZEUS analyses are <u>coherently combined</u> for the first time
- H1 excess at large P_T^X in e⁺p data <u>persists</u> in full HERA I+II data set
 - Excess drops to 1.8 sigma significance with full H1+ZEUS data
- Cross section and W Helicity measurements performed by H1
- Exclusion limit on anomalous top cross section extended to $\sigma < 0.16$ pb - *Currently the best limit on the anomalous magnetic coupling:* $\kappa_{tuv} < 0.14$

Display of an Isolated Muon Event

- High $P_T^X \mu + P_T^{Miss}$ event in H1 HERA II e⁺p data
- $P_T^{\mu} = 51 \text{ GeV}, P_T^{\text{Miss}} = 39 \text{ GeV}, P_T^{\chi} = 48 \text{ GeV}$

Display of an Isolated Muon Event

- High $P_T^{X} \mu + P_T^{Miss}$ event in H1 HERA II e⁻p data
- $P_T^{\mu} = 38 \text{ GeV}, P_T^{\text{Miss}} = 51 \text{ GeV}, P_T^{X} = 24.7 \text{ GeV}$

H1+ZEUS: HERA I+II e⁺p Data

H1+ZEUS: HERA I+II e⁻p Data

H1+ZEUS: HERA I+II Data

H1+ZEUS Preliminary		Electron	Muon	Combined
$l+P_T^{\text{miss}}$ events at		obs./exp.	obs./exp.	obs./exp.
HERA I+II		(Signal contribution)	(Signal contribution)	(Signal contribution)
1994-2007 e^+p	Full Sample	39 / 41.3 ± 5.0 (70%)	18 / 11.8 ± 1.6 (85%)	57 / 53.1 ± 6.4 (73%)
$0.58 {\rm fb}^{-1}$	$P_T^X > 25 \text{ GeV}$	$12 / 7.4 \pm 1.0 (78\%)$	$11 / 7.2 \pm 1.0 (85\%)$	23 / 14.6 \pm 1.9 (81%)
1998-2006 e^-p	Full Sample	25 / 31.6 ± 4.1 (63%)	5 / 8.0 ± 1.1 (86%)	$30/39.6\pm5.0~(68\%)$
$0.39 \ {\rm fb}^{-1}$	$P_T^X > 25 \text{ GeV}$	$4 / 6.0 \pm 0.8 (67\%)$	2 / 4.8 ± 0.7 (87%)	$6 / 10.6 \pm 1.4 (76\%)$
1994-2007 $e^{\pm}p$	Full Sample	$64 / 72.9 \pm 8.9 \ (67\%)$	23 / 19.9 ± 2.6 (85%)	87 / 92.7 ± 11.2 (71%)
$0.97 \ {\rm fb}^{-1}$	$P_T^X > 25 \text{ GeV}$	$16 / 13.3 \pm 1.7 (73\%)$	$13 / 12.0 \pm 1.6 (86\%)$	$29 / 25.3 \pm 3.2 \ (79\%)$