

Two-photon exclusive production of supersymmetric pairs at LHC

Nicolas Schul

Université catholique de Louvain Center for Particle Physics and Phenomenology (CP3)

Workshop on HE photon interactions, CERN, April 25th, 2008

Outline

γγ physics Supersymmetry

OUTLINE

- 1. The physics of $\gamma\gamma \longrightarrow pair of charged particle$
- 2. Supersymmetric pairs:
 - SUSY content
 - LM1 benchmark (slepton)
 - LM9 benchmark (chargino)
 - Sweet Spot (NLSP stau)
 - --> Detection and mass measurement for sparticles

N. Schul

γγ physics

Supersymmetry

Outline $\gamma\gamma$ physics **Supersymmetry** LM1

Slepton left:

Stau:

Chargino :

Neutralino :

Higgs :

H⁺

LM9

Sweet Spot

Susy content

MSSM plane:

Outline γγ physics **Supersymmetry** LM1 LM9 Sweet Spot

LM1 spectrum

$$m_0 = 60 \text{ GeV}, \quad m_{1/2} = 250 \text{ GeV}, \quad tg(\beta) = 10, \quad A_0 = 0$$

Slepton right:
$$\sim e_{R}^{+}$$
, $\sim \mu_{R}^{+}$ 118 GeVSlepton left: $\sim e_{L}^{+}$, $\sim \mu_{L}^{+}$ 187 GeVStau : $\sim \tau_{1}^{+}$, $\sim \tau_{2}^{+}$ 111, 190 GeVChargino : $\sim \chi_{1}^{+}$, $\sim \chi_{2}^{+}$ 178, 360 GeVHiggs : H^{+}381 GeVNeutralino : $\sim \chi_{1-24}^{0}$ 96 -> 369 GeV

Outline γγ physics Supersymmetry LM1 detection VFD significance mass LM9

Sweet Spot

Susy detection

Very clean final state:

2 fwd protons + 2 isolated leptons + missing energy + acoplanarity

Only one irreducible background $\gamma\gamma \rightarrow W^+ W^- \rightarrow I^+ v I^- \overline{v}$

 $\gamma\gamma \rightarrow e^+ e^-$, $\gamma\gamma \rightarrow \mu^+ \mu^-$, $\gamma\gamma \rightarrow \tau^+ \tau^$ are suppressed because of E_{miss} and acoplanarity

Susy detection

Very clean final state:

2 fwd protons + 2 isolated leptons + missing energy + acoplanarity

NB: If no tagging, we have to add inelastic contribution --> improved S/B

flavour sharing

N. Schul

Outline γγ physics Supersymmetry

LM1

detection

VFD

significance

mass

LM9

Sweet Spot

for LM1, 90% of events are with same flavour leptons

while for WW background:

$$W^+W^- \rightarrow e^+e^-\nu's$$
 25%
 $W^+W^- \rightarrow e^+\mu^-\nu's$
 $W^+W^- \rightarrow \mu^+\mu^-\nu's$
 25%
 $W^+W^- \rightarrow \mu^+e^-\nu's$

25%

25%

Very Forward Detectors **Principle** CMS / ATLAS 220m420m р $\wedge \wedge \wedge$ р 2mm 4mm N. Schul RP RP KP 420m 220m X. Rouby, Tagging photon interactions Outline <u>Two-photon invariant mass :</u> $\gamma\gamma$ physics **Supersymmetry** $W_{\gamma\gamma} = 2 \sqrt{\omega_1 \omega_2}$ Center of mass energy in $\gamma\gamma$ system LM1 detection VFD • Missing energy : significance mass

- LM9
- Sweet Spot
- $E_{miss} = \omega_1 + \omega_2 E_{\ell_1} E_{\ell_2}$ Energy carried away by neutrinos and neutralinos

• Missing invariant mass :

$$W_{miss} = \sqrt{E_{miss}^2 - P_{miss}^2}$$

Missing mass --> better bkg rejection

$\gamma\gamma$ invariant mass

$\gamma\gamma$ invariant mass

Allow for Right and Left slepton masses determination !

Just have to wait for enough statistic

$\gamma\gamma$ invariant mass

Allow for background rejection !

missing invariant mass

 $E_{miss} = \omega_1 + \omega_2 - E_{\ell_1} - E_{\ell_2}$ Assume **smearing** of proton energy : Gaussian, max(0.01 E_p, 1.5 GeV)

missing invariant mass

 $E_{miss} = \omega_1 + \omega_2 - E_{\ell_1} - E_{\ell_2}$ Assume **smearing** of proton energy : Gaussian, max(0.01 E_p, 1.5 GeV)

Allow for (large) background rejection !

Outline

 $\gamma\gamma$ physics

Supersymmetry

LM1

detection

VFD

significance

mass

LM9

Sweet Spot

Significance

+ W_{miss} + kinematic cuts on $\Delta\eta$, ΔR + flavour : W γγ

 $\sigma(LM1 \text{ signal}) = 2.23 \text{ fb} \rightarrow \sigma_{acc+cut}(LM1 \text{ signal}) = 0.508 \text{ fb}$

 σ (WW bkg) = 108.5 fb --> $\sigma_{acc+cut}$ (WW bkg) = 0.255 fb

==> 5 σ detection after L = 25 fb⁻¹

Mass measurement

Outline γγ physics Supersymmetry LM1 detection VFD

significance

mass

LM9 Sweet Spot

Mass measurement

==> mass determination with few GeV resolution

250

300

350

400

450

2*m_{reco} [GeV]

500

 $\gamma\gamma \rightarrow \tilde{\tau}_{,}^{\dagger}\tilde{\tau}_{,}^{\dagger}\tilde{\tau}_{,}^{\dagger}\tilde{\tau}_{,}^{\dagger}$

100

150

200

50

0

0

Outline γγ physics Supersymmetry LM1 LM9 Sweet Spot

LM1 benchmark

- Light supersymmetry (right slepton ~120 GeV)
- Very clean final state, easy to detect with high resolution
- Significant cross section after acceptance cuts $~\sigma \sim 1~\text{fb}$
- High background rejection possibilities (Wyy, W_{miss}, kinematics, ...)
- Detection of LM1 sleptons after 25 fb⁻¹ integrated luminosity
- Two-photon physics give a possibility to specify SUSY scheme
- VFD needed for precise mass measurement (LSP and charged sparticles)
- Same analysis can be done for similar points (LM2, LM4, LM6)

Outline γγ physics Supersymmetry LM1 LM9 Sweet Spot

LM9 spectrum

$$m_0 = 1450 \text{ GeV}, m_{1/2} = 175 \text{ GeV}, \text{ tg}(\beta) = 50, A_0 = 0$$

Slepton right:
$$\sim e_{R}^{+}, \sim \mu_{R}^{+}$$
 1450 GeV
Slepton left: $\sim e_{L}^{+}, \sim \mu_{L}^{+}$ 1450 GeV
Stau : $\sim \tau_{1}^{+}, \sim \tau_{2}^{+}$ 1054, 1267 GeV
Chargino : $\sim \chi_{1}^{+}, \sim \chi_{2}^{+}$ 107, 223 GeV
Higgs : H⁺ 495 GeV
Neutralino : $\sim \chi_{1-24}^{0}$ 65 -> 224 GeV

Could be further improved considering semi-leptonic final states (S[↑]), or other constraints like spin measurements (B[↓])

γγ physics

```
Supersymmetry
```

LM1

LM9 Sweet Spot

Sweet spot susy

2 ~Heavy Stable Charged Particles + 2 forward protons

Summary

Two-photon physics offer a complementary way to study new physics

- --> Detection of sleptons (with $L = 25 \text{ fb}^{-1}$)
- --> Constraint the MSSM plane (for low mass scenario)
- --> Measure mass of the LSP

-->

--> Measure mass of light SUSY charged particles (resolution of few GeV)

since the detection of scattered protons give us lot of information about the event kinematics.

Backup slides

Left-Right symmetry

Doubly charged higgs bosons exist in some models with Left-Right symmetry. Ex: $SU(2)_L \times SU(2)_R \times U(1)_{B-L}$

==> predict H_{R}^{++} and H_{L}^{++} particles

Production cross section (computed with an implemented LR-CalcHEP) is model independent:

H++ decay

- DCH decays into 2 lepton, violating the *lepton number conservation*
- Very exotic 4-leptons final state is than possible:

pp -> pp(γγ) -> pp H⁺⁺H⁻⁻ -> pp e⁺e⁺μ⁺μ⁺ -> pp e⁻e⁻μ⁺μ⁺

• Only two backgrounds: $\gamma\gamma \rightarrow \tau^+\tau^-\tau^ \sigma = 1.8 \text{ fb}$ $\gamma\gamma \rightarrow W^+ W^+ W^- W^ \sigma = 0.14 \text{ fb}$

We assume no SM contribution at the LHC

H++ decay

- DCH decays into 2 lepton, violating the lepton number conservation
- Very exotic 4-leptons final state is than possible:

1425 Sanase wintersizing

Photon spectrum

$$E_{miss} = \omega_1 + \omega_2 - E_{\ell_1} - E_{\ell_2} \qquad W_{miss} = \sqrt{E_{miss}^2 - P_{miss}^2}$$

E_{miss} [GeV]

900 10 W_{miss} [GeV]

Mass measurement

$$(2m)^2 = W_{\gamma\gamma}^2 - \left(\left[W_{miss}^2 - 4m_{\tilde{\chi}_1^0}^2 \right]^{1/2} + \left[W_{lep}^2 - 4m_{lep}^2 \right]^{1/2} \right)$$

 $\sqrt{2}$

N. Schul

