Matrix Element Method for H->ττ

F. Beaudette, L.Cadamuro, O. Davignon,G. Grasseau, L. Mastrolorenzo, G. Ortona,P. Paganini, R.Salerno, <u>T. Strebler</u>

Laboratoire Leprince-Ringuet (LLR) - Ecole Polytechnique - CNRS-IN2P3

Preliminary results

MEM workshop UCL-CP3 - 01/12/2015

Introduction

 ATLAS-CMS Higgs couplings measurement combination recently brought evidence of H->ττ decay with a 5.5σ significance (exp. 5.0σ)

• Yet no independent discovery by either of the two experiments

Channel	References for		Signal strength $[\mu]$		Signal significance $[\sigma]$	
	individual publications		from results in this paper (Section 5.2)			
	ATLAS	CMS	ATLAS	CMS	ATLAS	CMS
$H \to \tau \tau$	[58]	[59]	$1.41_{-0.35}^{+0.40}$	$0.89^{+0.31}_{-0.28}$	4.4	3.4
			$\binom{+0.37}{-0.33}$	$\binom{+0.31}{-0.29}$	(3.3)	(3.7)

CMS-PAS-HIG-15-002

[58] arxiv:1501.04943 [59] arxiv:1401.5041

T. Strebler – MEM workshop UCL-CP3 – 01/12/2015

Introduction

- Di-τ mass reconstruction based on a likelihood approach in ATLAS (MMC) and CMS (SVFitMass)
- Signal extraction in ATLAS based on Boosted Decision Tree (BDT) while CMS analysis uses directly di- τ mass estimation

 New analysis method for H->ττ, based on Matrix Element Method (MEM) will be presented here

Introduction

arviv:1101 5011			1		1	
aixiv.1401.3041		0-jet	1-jet		2-jet	
				p _T ^π > 100 GeV	m _{ij} > 500 GeV Δη _{ij} > 3.5	p _T ^π > 100 GeV m _{jj} > 700 GeV Δη _{jj} > 4.0
	$p_T^{\tau h} > 45 \text{ GeV}$	high-p _T ^{τh}	high-p _T ^{τh}	high-p _T ™ boosted	loose	tight VBE tag
μτ _h	baseline	$low-p_T^{Th}$	low-p _T ^{τh}		VBF tag	(2012 only)

- 0-jet and 1-jet categories dominated by ggF production mode: di-τ mass estimator contains already most of the kinematic
- 2-jet categories dominated by VBF production mode: jet kinematics very powerful to increase discrimination => good target for MEM

MEM tools for H->ττ searches

0

- Observables y:
 - leptons
 - $au_{
 m h}$
 - jets
 - MET

• The final discriminant used is in principle

$$\mathcal{L}(\mathbf{y}) = rac{w_S(\mathbf{y})}{w_S(\mathbf{y}) + w_B(\mathbf{y})}$$

with

$$w_i(\mathbf{y}) = \frac{1}{\sigma_i} \sum_p \int d\mathbf{x} dx_a dx_b \frac{f(x_a, Q) f(x_b, Q)}{x_a x_b s} \delta^2(x_a P_a + x_b P_b - \sum p_k) |\mathcal{M}_i(\mathbf{x})|^2 W(\mathbf{y} || \mathbf{x})$$

- Matrix Element computed at LO with MadGraph
- Signal: VBF H->ττ (qq->qqH)
 Irreducible background: DY+2jets (gg->qqZ, qg->qgZ, qq->ggZ, qq->qqZ)

 A lot of contributing processes (48 VBF, 64 DY + permutations): can we discard some of them?

- Matrix Element computed at LO with MadGraph
- Compare response of different MEs with gen-level 4-momenta and put together MEs with similar responses

 ME v2 shown to have similar performance as full ME and reduces ME computation time by around a factor 10

T. Strebler – MEM workshop UCL-CP3 – 01/12/2015

Transfer functions

- Gaussians for energy of the jets
- For leptonic τ decay, analytic computation of differential decay width for the energy of the final state lepton
- For hadronic τ decay, analytic computation as well, assuming 2-body decay
- Direction of jets + 4-momentum of muon assumed to be perfectly reconstructed

- Transfer functions
- For recoil + MET, standard MEM procedure used:

 $\vec{P}_T = \sum_{taus} \vec{P}_T + \sum_{quarks} \vec{P}_T$ "True" recoil (dependent on integration point)

$$\vec{\rho}_T = \vec{E}_T^{miss} + \vec{p}_{T_{\tau-vis}} + \vec{p}_{T_{\mu}} + \sum_{recojets} \vec{p}_{T_{jet}}$$
 Measured recoil

- Use 2D Gaussian to constrain recoil: MET covariance matrix estimated in situ

$$\mathcal{R}\left(\vec{\rho_{T}}|\vec{P_{T}}\right) = \frac{1}{2\pi\sqrt{|\mathbf{V}_{cov}|}} exp\left[-\frac{1}{2}\left(\vec{\rho}_{T} - \vec{P}_{T}\right)^{T}\mathbf{V}_{cov}^{-1}\left(\vec{\rho}_{T} - \vec{P}_{T}\right)\right]$$

- Boost applied to 4-vectors for ME computation

Monte-Carlo integration (VEGAS)

 Because of mass-shell constraints for τ + narrow width of the Higgs, change of variables required for the integration

=> complex reconstruction of the di- τ system from those variables + measured observables

- Non-trivial kinematic constraints taken into account to optimize integration

- Monte-Carlo integration (VEGAS)
 - 7 particles in the final state for VBF H-> $\tau\tau$ -> $\mu\tau_h$: 21 dimensions with brute force MEM

- After dimensionality reduction, signal weight = 4 dimensions / background weight = 5 dimensions

Variable	Integration boundaries
2 * E(quark)	95% CI of jet TF
$d ec{ au_l} d\cos heta_{ auar{ au}}$	<i>Kinematic constraints from au decay</i> <i>+ numeric evaluation of maximal</i> <i>phase space allowed (see prev. slide)</i>
$dm^2_{ auar au}$	For signal fixed at (125 GeV) ² For background, integrated between m _{vis} ² and (180 GeV) ²

0

- Validation of the MEM with H->ττ first done for VBF production mode in Run 1 data since CMS analysis already existing and can be used as benchmark
- Standard analysis defines VBF categories based on kinematic of two forward jets and uses SVFitMass distribution for signal extraction
- Main background from DY+2 jets production: for now, only background considered in MEM integration (ongoing studies to include W+jets background)

· Since kinematics of the process well-known, possible to crosscheck the correlations between the MEM likelihood ratio and the relevant observables

0

a.u. 0.4

0.35

0.3

0.25

0.2

0.15 0.1

0.05

• As expected, signal-like events show large $\Delta \eta(jj)$ and m(jj)

Δη_{jj}

Legend:

*L<*0.1

📈 L>0.995

VBF sample

T. Strebler – MEM workshop UCL-CP3 – 01/12/2015

10

9 $\Delta \eta_{ii}$ Likelihood Ratio with k = 0.00000375

 Performance of the MEM compared to SVFitMass alone and BDT using SVFitMass + Mjj + Δη
 => with current MEM settings, significant improvement with respect to default analysis

- Full CMS H-> $\tau\tau$ analysis set-up reproduced including MEM (only in VBF categories)
- Evaluation of the final limits already performed in $\mu\tau$ channel
- If improvement confirmed in other channels, can use the MEM for Run 2 analysis and contribute to the discovery of H-> $\tau\tau$ independently by CMS

with

Results from L. Mastrolorenzo's PhD thesis

0

Results from L. Mastrolorenzo's PhD thesis

Improvement in the VBF only categories

Improvement in the VBF only categories ~27%!!

0

Prospects for ttH H->ττ

- ATLAS-CMS combination confirmed observed excess in ttH production mode
- Interesting channel to look at for Run 2: direct measurement of top-Higgs coupling
- Among all the ttH channels looked for by CMS at Run 1, H->ττ has the less precise measurement: large margin for improvement with MEM T. Strebler – MEM workshop UCL-CP3 – 01/12/2015

- Presence of τ_h in final-state can be used to decouple from ttH multi-lepton analysis
- Multiple leptons in addition can still be used to reduce the background (possibility to require 2I OS / 2I SS / 3I)
- Preselections: \geq 2 leptons, \geq 1 τ_h , \geq 3 jets

- Although final-state more complex than VBF, possibility to rely on btagging to identify b-jets + sum over ambiguous permutations with MEM
- Categorization based on btagging requirements (2 CSVmedium tagged / 1 CSV-medium + 1 CSV-loose)
- Further categorization based on compatibility of untagged jets with W mass (M(jj) = M_W ± 20 GeV)
 => if no W-tagged pair of jets, possibility to integrate over the missing jet direction

- Cat. 1: ≥ 2 leptons, ≥ 1 τ_h, ≥ 4 jets, W-tagged pair of light jets Cat. 2: ≥ 2 leptons, ≥ 1 τ_h, ≥ 4 jets, no W-tagged pair of light jets Cat. 3: ≥ 2 leptons, ≥ 1 τ_h, 3 jets
- Use of narrow-width approximation for top, W and Higgs to keep the number of dimensions for integration as low as possible (VBF H->ττ 4 dim.)

In each category, 2 CSVM / 1 CSVM + 1 CSVL distinction

2 lep. Cat. 1	2 lep. Cat. 2	2 lep. Cat. 3	3 lep.
5 dim.	7 dim.	7 dim.	6 dim.

• Performance on various backgrounds under study (tt+jets, ttW, ttZ)

Goals for 2016

GPU implementation

Should reduce computing time (~1 week for full VBF analysis with MPI implementation, 250k h of computation time over the last 2 months) See G. Grasseau's presentation

VBF H->ττ

Implementation for Run 2 analysis ongoing Ongoing studies to include W+jets background in MEM computation Possible spin/CP measurements

• ttH H->ττ

Method already implemented

Performance evaluation ongoing (requires dedicated background evaluation as low statistics available)

Conclusion

- MEM has been successfully implemented for H-> $\tau\tau$ analyses: first implementation of MEM for di- τ resonance search
- Shows very promising results for VBF H-> $\tau\tau$ analysis and could lead to the 5 σ discovery of H-> $\tau\tau$
- Could also provide good sensitivity to deal with complex final state in the ttH H-> $\tau\tau$ analysis

Back-up

0

Principles of the Matrix Element Method $w_i(\mathbf{y}) = \frac{1}{\sigma_i} \sum_{n} \int d\mathbf{x} dx_a dx_b \frac{f(x_a, Q) f(x_b, Q)}{x_a x_b s} \delta^2(x_a P_a + x_b P_b - \sum p_k) |\mathcal{M}_i(\mathbf{x})|^2 W(\mathbf{y} || \mathbf{x})$ $\frac{1}{2}$ normalization coefficient (independent of **y**) σ_i sum over all the potential associations between the \sum_{p} reconstructed objects and the final-state particules + over the potential processes integration over the phase space of the final-state particles $\int d\mathbf{x} dx_a dx_b$ **x** and over the momentum fractions x_a , x_b of the incoming

 $f(x_a, Q)f(x_b, Q)$ PDFs of the incoming partons, evaluated with LHAPDF

partons

 δ -function enforcing the conservation of energy and $\delta^2(x_a P_a + x_b P_b - \sum p_k)$ longitudinal momentum between the incoming partons and the final-state particles

Principles of the Matrix Element Method $w_i(\mathbf{y}) = \frac{1}{\sigma_i} \sum_p \int d\mathbf{x} dx_a dx_b \frac{f(x_a, Q) f(x_b, Q)}{x_a x_b s} \delta^2(x_a P_a + x_b P_b - \sum p_k) |\mathcal{M}_i(\mathbf{x})|^2 W(\mathbf{y} || \mathbf{x})$ $|\mathcal{M}_i(\mathbf{x})|^2$ matrix element (ME) squared of the process *i* at LO (for instance ud->udH,H-> $\tau\tau$) $W(\mathbf{y}||\mathbf{x})$ transfer function = probability of measuring **y** given a point **x** in the phase space of the final-state particles describes the decay of the unstable final-state particles of the hard-scattering (τ) + takes into account the resolution of the detector on the energy of the jets and on the MET

Principles of the Matrix Element Method

- Higgs (Z) decay to $\tau\tau$
 - => 2 integrations over $d|\vec{\tau_l}|d\cos\theta_{\tau\bar{\tau}}$
 - + optional integration over $dm^2_{\tau \bar{\tau}}$
- Leptonic top decay

Enu determined from lepton momentum + M_W constraint

Eb determined from W momentum + M_t constraint

=> 2 integrations over neutrino direction

Hadronic top decay

Eqbar determined from q momentum + M_W constraint

Eb determined from W momentum + M_t constraint

=> 1 integration over Eq

