Constraining higher-order operators in $t\overline{t}$ production using a Matrix Element Method

Vincent Lemaître, Sébastien Brochet, Sébastien Wertz

Université catholique de Louvain Center for Cosmology, Particle Physics and Phenomenology

December 1st, 2015

S. Wertz (UCL/CP3)

Search for eff. operators in $t\bar{t}$ using a MEM

- LHC Runl:
 - Standard Model Higgs discovered
 - No evidence for New Physics at the EW scale
- LHC Runll has just started! Entering new territory!
- What if new degrees of freedom out still of reach of direct searches?

 → look for indirect effects: precision measurements of SM observables
 → compass for future direct searches
- Where to look? This work: $t\overline{t}$ production:
 - Special role of the top in EWSB? (Yuwaka $\sim 1 \dots$?)
 - Many NP models predict deviations in the top sector
 - Only quark decaying before hadronizing
 - Abundant process at the LHC
- How to parametrise & search for possible deviations?

Effective Field Theory

• Effective Field Theory:

$$\mathcal{L} = \mathcal{L}_{\mathsf{SM}}^{d=4} + \sum_{d>4,i} rac{\mathcal{C}_i^{(d)}}{\Lambda^{d-4}} \mathcal{O}_i^{(d)}$$

- \mathcal{O}_i are operators satisfying SM symmetries, with "couplings" c_i
- Λ is a New Physics scale
- $\bullet\,$ Some operators can be removed $\rightarrow\,$ define minimal subset
- Global fit necessary
- In tt
 production, dominant effect expected from interference of dim.
 6 operators with SM amplitude:

$$|\mathcal{M}|^2 = |\mathcal{M}_{\mathsf{SM}}|^2 + \sum_i \frac{c_i}{\Lambda^2} 2 \operatorname{\mathfrak{Re}}(\mathcal{M}^*_{\mathsf{SM}} \mathcal{M}_{\mathcal{O}_i^{(6)}}) + \mathcal{O}(\Lambda^{-4})$$

• Partial Λ^{-4} term can be used to assess validity of expansion

[S.Weinberg (1979)], [W.Buchmuller et al. (1986)], [C.N.Leung et al. (1986)], [B.Grzadkowski et al. - 0310159,1008.4884],
 [J.A.Aguilar-Saavedra et al. - 0811.3842], ...

S. Wertz (UCL/CP3)

Search for eff. operators in $t\bar{t}$ using a MEM

Top Effective Field Theory

- For now, exclude operators affecting top decay
- Some (reasonable) simplifying assumptions:
 - Consider only leading color structure
 - Flavour universal in first two generations
 - No CP violation
 - \Rightarrow 10 interfering dim. 6 operators
- \mathcal{O}_{tG} (gt \overline{t} , ggt \overline{t}), \mathcal{O}_{G} (ggg,...), $\mathcal{O}_{\phi G}$ (ggh,...)
- Seven four-fermion operators (variations of $q\overline{q}t\overline{t}$)
- Implemented in MadGraph (LO)
- Proof-of-principe global fit at parton level using σ , unfolded differential $p_T(t)$, $|y(t)|, |y(t\overline{t})|, M_{t\overline{t}} \longrightarrow$

[C.Zhang et al. - 1008.3869], [C.Degrande et al. - 1010.6304], [D.B. Franzosi et al. - 1503.08841], [A.Buckley et al. - 1506.08845], ...

Signal generation (1)

- Aim: constrain operators in a global fit
 - \rightarrow how to disentangle operators' effects?
 - \rightarrow generate events, use all final state information?
- Probe parameter space: for each operator, generate *only* interference \rightarrow "signals" linear in c_i/Λ^2 (real), #samples = #operators
- Want to keep spin correlations in the decays
 - \rightarrow For now, use full matrix element in $\mathrm{MadEvent}$
 - \rightarrow Use of $\rm MADSPIN$ (necessary at NLO) being investigated
 - \rightarrow Focus on dileptonic $t\overline{t}$ final state
- Not possible out-of-the-box:
 - In MADGRAPH, generate matrix element: $|\mathcal{M}(c_i)|^2 = |\mathcal{M}_{SM}|^2 + 2c_i\Lambda^{-2} \operatorname{\mathfrak{Re}}(\mathcal{M}^*_{SM}\mathcal{M}_{\mathcal{O}_i}) + (c_i\Lambda^{-2})^2 |\mathcal{M}_{\mathcal{O}_i}|^2$
 - Hack matrix elements to return $(|\mathcal{M}(c_i)|^2 |\mathcal{M}(-c_i)|^2)/2$
 - Validated by checking ${ ilde \sigma}_i \propto c_i/\Lambda^2$

Details on generation:

- $\bullet~\text{SM}~t\overline{t},~\mathcal{O}_{tG}$ at LO for now; more detailed studies using NLO planned
- PDF: NNPDF2.3LO
- $\bullet\,$ Scale, PDF uncertainties not (yet) included ($\rightarrow\,$ reweighting)
- $m_t = 173.2$ GeV, investigations ongoing on propagation of uncertainty
- Showered using Pythia 8.2, tune $\rm CUETP8M1$
- DELPHES 3.3.0 fast detector simulation: CMS, <PU>=50

Event selection:

- "Standard" selection yielding almost pure $t\overline{t}$ sample
- Two opposite charge leptons: $p_T > 20$ GeV, $|\eta| < 2.4$, Rellso < 0.12(0.25), $m_{ll} > 20$ GeV
- At least two b-jets, $p_{T}>$ 30 GeV, $|\eta|<$ 2.4, $\Delta R_{lb}>$ 0.3
- For $ee/\mu\mu$ channels: 76 $> m_{II} >$ 106 GeV, MET > 40 GeV

Total cross sections (branching fraction to $\mu\mu/ee/\mu e$: 4.9%):

"Process"	σ (pb) ($c_i \Lambda^{-2} = 1$ TeV ⁻²), 13 TeV			
SM tt	815.96 @NNLO			
\mathcal{O}_{tG}	275.47			
\mathcal{O}_{G}	22.74			
$\mathcal{O}_{\phi G}$	-7.49			
$\mathcal{O}_{qq}^{(8,1)}$	5.23			
$\mathcal{O}_{qq}^{(8,3)}$	1.04			
$\mathcal{O}_{ut}^{(8)}$	3.13			
$\mathcal{O}_{dt}^{(8)}$	2.08			

3 four-fermion operators not yet included (proof of principle)

Parton level distribution examples

As expected, operators' relative contributions tend to be larger at high energies:

Figure : Top p_T

Figure : $t\overline{t}$ invariant mass

Analysis level distribution examples

Distributions: spin correlations

- Define θ⁺⁽⁻⁾ as the angle between the direction of the (anti-)top in the tt̄ restframe, and the direction of the positive (negative) lepton in the (anti-)top rest frame

 → cos θ⁺ × cos θ⁻ sensitive to spin correlations between t, t̄
- $\Delta \phi(l^+,l^-)$ is also sensitive, without the need to reconstruct the tops

Matrix Element Method

 Compute a likelihood to observe event x under a theoretical hypothesis α (=LO matrix element of a chosen process)

$$P(\mathbf{x}|\alpha) = \frac{1}{\sigma_{\alpha}} \int dx_1 dx_1 d\Phi(\mathbf{y}) f(x_1) f(x_2) |\mathcal{M}_{\alpha}(\mathbf{y})|^2 T(\mathbf{x}|\mathbf{y}) \equiv \frac{W_{\alpha}}{\sigma_{\alpha}}$$

- Normalization using visible cross-section σ_{α} s.t. P is a likelihood
- f: PDFs, x_i : Björken-x, $d\Phi(\mathbf{y})$: phase-space density & flux factor
- $|\mathcal{M}_{\alpha}(\mathbf{y})|^2$: matrix element for hypothesis α , evaluated on partonic event \mathbf{y}
- Transfer Function $T(\mathbf{x}|\mathbf{y})$: probability density to reconstruct event \mathbf{x} , given partonic configuration \mathbf{y} . Usually, one assumes

$$T = \prod_{i \in \text{vis.objects}} \delta(\phi_i^{\text{gen}} - \phi_i^{\text{rec}}) \,\delta(\eta_i^{\text{gen}} - \eta_i^{\text{rec}}) \,T_i(E_i^{\text{rec}} | E_i^{\text{gen}})$$

• Average over jet assignment permutations

December 1st, 2015 11 / 17

Matrix Element Method & effective operators

- \bullet Use MEM to construct variables most sensitive to the operator's effects \to use all the available information
- $\bullet~\mbox{Distributions} \rightarrow \mbox{template fits, propagate systematics}$
- In principle, most discriminating variable between hypotheses "SM $t\bar{t}$ " and "SM modified by operator *i* with coef. c_i/Λ^2 " is:

$$\mathfrak{R}(c_i) = \frac{(W_{t\bar{t}} + \frac{c_i}{\Lambda^2} W_i) / (\sigma_{t\bar{t}}^{\mathsf{vis}} + \frac{c_i}{\Lambda^2} \tilde{\sigma}_i^{\mathsf{vis}})}{W_{t\bar{t}} / \sigma_{t\bar{t}}^{\mathsf{vis}}}$$

- $W_{t\overline{t}}$ is the weight under the SM $t\overline{t}$ hypothesis
- *W_i* is the unphysical "weight" from integrating the interference of operator *i* with the SM
- In practice, all that counts is $W_i/W_{t\bar{t}}$. So, define:

$$D_i = (\arctan(\log(|W_i|/W_{t\overline{t}})) + \pi/2)/\pi$$

(arctan \rightarrow normalize output between 0 and 1)

Matrix Element Method: implementation

- Private C++ code (Memter EM++)
- CUBA, LHAPDF, MADWEIGHT's phase-space mappings
- $\bullet~$ Using ${\rm C}{\rm UBA}{}'s$ vector integrand capabilities \rightarrow 8 weights at once
- New MadGraph C++ matrix element exporter
- Edited C++ matrix element by hand \rightarrow keep interference part only, minimise unnecessary operations (re-using diagrams)
- Validated by checking that $W_i \propto c_i$, $W_{t \overline{t}}$ independent of c_i
- Binned transfer functions on electrons, muons, b-jets from SM tt sample
- Example: electron transfer function:

December 1st, 2015 13 / 17

Weights and discriminants

Discrimination power

- Compare constraining power of different variables using binned maximum likelihood fit
- Consider statistical uncertainties only (assuming 100 fb^{-1})
- SM $t\bar{t}$ fixed, float one operator at a time:

Operator	Uncertainty on $c_i \Lambda^{-2}$ (TeV ⁻²)			
	Yields only	$\Delta \phi(I^+,I^-)$	Variable D_i	
\mathcal{O}_{tG}	0.0057	0.0057	0.0057	
\mathcal{O}_{G}	0.072	0.071	0.049	
$\mathcal{O}_{\phi G}$	0.19	0.18	0.17	
$\mathcal{O}_{qq}^{(8,1)}$	0.32	0.31	0.24	
$\mathcal{O}_{qq}^{(8,3)}$	2.23	2.06	1.29	
$\mathcal{O}_{ut}^{(8)}$	0.55	0.46	0.36	
$\mathcal{O}_{dt}^{(8)}$	0.73	0.63	0.50	

- Already substantial improvements using MEM-based discriminants
- Expect real gain to be seen in global fit

S. Wertz (UCL/CP3)

Weights and systematics

- Propagation of Jet Energy Scale uncertainty to the weights
- Weights for nominal & up/down variations computed simultaneously:

$$\int dE_{gen} |\mathcal{M}(E_{gen})|^2 \times \begin{bmatrix} T(E_{rec}^+ | E_{gen}) \\ T(E_{rec} | E_{gen}) \\ T(E_{rec}^- | E_{gen}) \end{bmatrix} \times \dots$$

• Impact of (pessimistic) 5% variation of JES on shapes:

S. Wertz (UCL/CP3)

Search for eff. operators in $t\bar{t}$ using a MEM

- EFT: complete description of indirect New Physics effects
- Define strategy to search for/fit effective operators in $t\overline{t}$ production, in the dileptonic final state
- $1/\Lambda^2$ expansion \to consider only interferences with Dim6 operators \to Limited number of samples to generate
- Generation of "interference samples" feasible
- Matrix Element-based approach using new C++ implementation \rightarrow build variables most sensitive to operators' effects
- Work in progress: recursive subdivision of phase-space based on ME discriminants → global fit of operators, minimizing correlations

Backup!

List of perators

List of dimension 6 operators interfering with the SM in $t\bar{t}$ production (1):

$$\begin{aligned} \mathcal{O}_{tG} &= (\overline{q}\sigma^{\mu\nu}\lambda^{A}t)\widetilde{\phi}G^{A}_{\mu\nu} \\ \mathcal{O}_{G} &= f_{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho} \\ \mathcal{O}_{\phi G} &= \frac{1}{2}(\phi^{\dagger}\phi)G^{A\mu\nu}_{\mu\nu}G^{A\mu\nu} \\ \mathcal{O}^{(8,1)}_{qq} &= \frac{1}{4}(\overline{q}^{i}\gamma_{\mu}\lambda^{A}q_{j})(\overline{q}\gamma^{\mu}\lambda^{A}q) \\ \mathcal{O}^{(8,3)}_{qq} &= \frac{1}{4}(\overline{q}^{i}\gamma_{\mu}\tau^{I}\lambda^{A}q_{j})(\overline{q}\gamma^{\mu}\tau^{I}\lambda^{A}q) \\ \mathcal{O}^{(8)}_{ut} &= \frac{1}{4}(\overline{u}^{i}\gamma_{\mu}\lambda^{A}u_{j})(\overline{t}\gamma^{\mu}\lambda^{A}t) \\ \mathcal{O}^{(8)}_{dt} &= \frac{1}{4}(\overline{d}^{i}\gamma_{\mu}\lambda^{A}d_{j})(\overline{t}\gamma^{\mu}\lambda^{A}t) \\ \mathcal{O}^{(8)}_{qu} &= (\overline{q}u^{i})(\overline{u}^{j}q) \\ \mathcal{O}^{(1)}_{qd} &= (\overline{q}d^{i})(\overline{d}^{j}q) \\ \mathcal{O}^{(1)}_{at} &= (\overline{q}^{i}t)(\overline{t}q^{i}) \end{aligned}$$

- qⁱ (uⁱ, dⁱ) are the left-handed doublets (right-handed singlets) of the first two generations
- q (t) is the left-handed doublet (right-handed singlet) of the third generation
- ϕ is the Higgs doublet
- Considering only $t\bar{t}$ total & differential cross sections, reduction to 4 linear combinations of the 4-fermion operators

Parton level distributions

Parton level distributions

Analysis level distributions

Analysis level distributions

Weights & discriminants

Weights & discriminants

