LHC: the adventure continues

Christophe Delaere Université catholique de Louvain Center for Cosmology, Particle Physics and Phenomenology (CP3)

Friday, 02 October 2015

On the menu today

- Introduction
- LHC status
- CMS status
- Some physics highlights

The LHC...

- LHC started to deliver p-p collision in 2010
 - √s =7/8 TeV
 - Peak instantaneous luminosity:
 ~7.7 x 10³³ cm⁻² s⁻¹
 - 50 ns bunch crossing (BX) spacing
 - Up to 21 average pile up interactions

CMS Integrated Luminosity, pp

- Data taking interrupted by Technical Stops (TS)
 - Time used for detector calibrations
- Long shutdown (LS1) started in 2013
 - Run 2 started in spring 2015

The CMS detector

02.10.15

Challenges

- During run 2, detectors will face unprecedented conditions
 - 25ns bunch spacing (instead of 50ns)
 - Higher luminosity (1.3E34cm⁻²s⁻¹ in 2015, up to 1.7E34cm⁻²s⁻¹ by LS2)
 - Higher energy (13TeV, compared to 8TeV so far)
 - Higher cross-sections
 - Heavier resonances
 - More boosted objects
- The early days of run 2 are challenging in many ways
 - Recommissioning of the detectors after (more than) two years
 - Machine conditions do change on a daily basis
 - Physics expectations are high

up to <µ> ~ 50 (factor ~2 higher than Run 1)

Machine schedule

					30	, uc	operation	25 NS							
	July				Aug							Sep			
Wk	27	28	29	30	31		32	33	34	35		36	37	38	39
Мо	29	6	13	20	27		3	10	17	ž	24	31	7	14	21
Tu)	*			0N					
We	Leap second 1	last an aite a		MD 1								TS2			
Th		with 50	ns beam					Intensity with 25	ramp-up ns beam				Jeune G		
Fr										MD 2					
Sa					1										
Su															

Scrubbing

02.10.15

Machine status

Before looking where we are, let's glance at where we come from...

Once upon a time, was the "LS1".

- Main motivation for LS1:
 - Consolidation of the Large Hadron Collider to enable the operation at the design energy of 7 TeV.
- This goal had to be achieved through (among others...):
 - Consolidation of superconducting splices (10170 splices, 27000 shunts!);
 - Installation of 5000 new electrical insulation systems;
 - 612 new relief valves installed.
- Timeline: Feb. 2013 Dec. 2014, followed by hardware commissioning.
 - Other important activities took place in the 2 year stop!

Splices consolidation process

Total interconnects: 1695 (10170 high current splices). Number of splices redone: ~3000

Dipole training

- All LHC dipoles were trained <u>above</u> <u>nominal current</u> *before* installation.
- Training stopped after the 2008 incident: safe operation < 4 TeV.
- After removing HW limitations, training started for all sectors.

Sector	# Training quench	Flattop quenches
S12	7	0
S23	17	0
S34	15	1
S45	51	0
S56	18	3
S67	22	1
S78	19	3
S81	29	0
Total	171	8
		9

9

02.10.15

Machine parameters

Phase	Days	Physics efficiency	Integrated Iuminosity	Comment
Initial low luminosity run	7	20%	Few pb-1	low number of bunches
50 ns intensity ramp-up	21	20%	0.5 fb-1	short fills plus stepped increases in number of bunches
25 ns phase 1, beta*=80 cm	44	30%	4 fb-1	includes ramp-up and bedding in of 25 ns
25 ns phase 2, beta*=40 cm	44	35%	8 fb-1	ramp-up after reduction in beta* - should be quicker

Parameter	50 ns	25ns phase 1	25ns phase 2
Energy [TeV]	6.5 TeV	6.5 TeV	6.5 TeV
β* (1/2/5/8) [m]	0.8 / 10 / 0.8 / 3	0.8 / 10 / 0.8 / 3	0.4 / 10 / 0.4 / 3
Half X-angle (1/2/5/8) [µrad]	-145 / 120 / 145 / -250	-145 / 120 / 145 / -250	-155 / 120 / 155 / -150
Number of colliding bunches (1/5)	1368	2592	2592
Bunch population	1.2E11	1.2E11	1.1E11
Emittance into Stable Beams [µm]	2.5	2.5	2.5
Bunch length [ns] - 4 sigma	1.25	1.25	1.25
Peak Luminosity	4.88e33	9e33	1.2e34
Peak mean pile-up (visible xsection 85 mb)	26	26	36

Priorities for 2015

- The main goal of 2015 is to prepare 2016 as a physics "production run" at 25ns.
 - Aim at an integrated luminosity of 3/fb. (updated value)
- Preparation for 2016:
 - 1) Establish proton-proton collisions at 13TeV with 25 ns bunch spacing.
 - 2) Establish the operation at low β^*
 - Start with $\beta^* = 80$ cm (conservative).
 - Estimated ultimate reach in Run 2: ~ 40 cm
 - Determine optimum running conditions for 2016
- Heavy ions: 1 month of Pb-Pb physics at the end of 2015

Limiting factors

- Electron cloud
 - Reduced in dedicated
 "scrubbing runs" with
 high intensity, low energy beams
 - Impacts the beam stability

- UFOs
 - Sudden local loss triggering a preventive dump
 - Possible explanation: dust particles falling into beam creating scatter
 - 2011: Decrease from ≈10 UFOs/hour to ≈2 UFOs/hour.
 - 2012: Initially, about 2.5 times higher UFO rate than in October 2011.
- Heating and collective effects (driven by impedance, electron cloud, beam-beam)
 - TDI: heating, mechanical deformation, increase in tune shift with intensity (impedance). This is an essential component of machine protection at injection.
 - QPS: issues with radiation hardness of some components of the QPS boards.
 Fixed during the last technical stop.

Now running with ~1465 bunches, about 50% of nominal

CMS: the adventure continues

12

Performance improvements

Different strategies to improve LHC performance:

- Reduce β^* •
 - $F = 1/\sqrt{1 + \left(\frac{\theta_c \sigma_z}{2\sigma^*}\right)^2}$ Implies available beam aperture (larger beam size in the triplets, larger crossing angle for beam-beam separation)
 - Implies good control of the optics (linear and nonlinear)
 - Implies good control of orbit stability for collimator system
- Increase beam intensity
 - Number of bunches -> control of e-cloud and collective effects — (instabilities and beam-beam), removal of limitations by TDI
 - Intensity/bunch -> control of collective effects and beam losses —
- Increase beam brightness. This implies
 - better performance at the level of the LHC injectors _
 - removal of limitations at the level of the TDIs
 - good control of emittance over the LHC cycle

 $L = \frac{N_b^2 M f_{rev} \gamma_r}{4 \pi \varepsilon_n \beta^*} F$

In the meanwhile,

LHC is still a precision machine...

Earthquake in Chili

1 hour after Chile earthquake (17/9/2015)

Radial orbit changes 200um amplitude 25s period

CMS status

Operations

- Extensive commissioning needed before data-taking
 - Many changes in subdetectors
 - Fundamental changes to core infrastructure:
 - New DAQ system
 - New Trigger Control and Distribution System
 - New Calorimeter trigger
 - New luminosity detectors
- A lot could be tested prior to collisions, with cosmics, beam "splashes", circulating beams, ...
 - Initial synchronization, etc.
- Collision data needed as well
 - Fine-tuning of the timing, gain calibration, alignment, ...

For illustration: list of commissioning activities

Sylvia Goy Lopez, CMS plenary in Ischia

Muons performance

Muon Efficiency

The Z is still there!... ... good sign for the H

Electrons performance

Electrons calibration: tracker vs calorimeter

Events

Reconstruction of K^0_{s} and Λ^0

Invariant mass of the pion pairs fitted with a double gaussian and a first order polynomial for the background

Invariant mass of the proton-pion pairs fitted with a double gaussian and a first order polynomial for the background

Tracks selected with p_T >350 MeV. Selection requires displaced vertex wrt the primary vertex by 10 σ and cos θ >0.9998

CMSolenoid status

What happened to the CMS magnet?

- Nothing!

- What then?
 - The "cryo box", i.e. the system that liquefies helium and absorbs the thermal load got contaminated by oil in the end of 2014, following a routine maintenance.
 - Since then, we are suffering from the consequences of that contamination
 - Clogging filters
 - Reduced performance of heat exchangers
- This forces us to do regular interventions on the system
 - "regeneration" of filters (magnet on)
 - Reheating of heat exchangers (magnet off)
 - Installation of larger filters at the last Technical Stop (all off see next slides)
 - Long term: planing a thorough cleaning for the end of the year

Run 2 so far...

			C	NS V	WIT	ΉB	3-fie	eld =	= 3.8	8T			
					Sci	operation	25 ns						
	July				Aug					Sep			
Wk	27	28	29	30	31	32	33	34	35	36	37	38	39
Мо	29	6	13	20	27	3	10	17	2 24	31	7	14	21
Tu						*	\bigcap		Ň			\bigcap	
We	Leap second 1			MD 1						TS2			
Th		with 50	ramp-up ns beam				Intensity	ramp-up			Jeune G		
Fr							With 25	ins Dealin	MD 2				
Sa					1								
Su													
	Su Pile-up Scans in CMS & Date confimed! ATLAS Nov Dec End physics [06:00]												
1A/L	40	41	12/	42	44	45	46	47	48	49	50	51	52

	Oct	ATLA	IS	/		Nov				Dec	1	06:00]	
Wk	40 /	41	42/	43	44	45	46	47	48	49	50	51	52
Мо	2	5	5 12	19	26	2	9	16	23	30	7	¥ 14	21
Tu			sic r bc)					lons				I	
We			phy ite th				TS3	setup		MD date tbc		hnica	
Th			ecial (da									Tec	
Fr			Sp			MD 3							Xmas
Sa									IC	ONS (Pb-Pb))		
Su													

02.10.15

25

Run 2 so far...

CMS Integrated Luminosity, pp, 2015, $\sqrt{s} = 13$ TeV

Run 2 so far...

- CMS data taking efficiency has been steadily increasing.
- Now reached values similar to run 1 (>90%, approaching 95%)

Understanding the LHC and CMS screens

29

CMS	28/09/15 Mon 14:41:29	LHC: PROTON STABLE BEAMS	DAQ2 state R Running [01:10]	un Number 257682	5	Lv1 rate 9.416 kHz	 647.	Ev. <siz 75 [364</siz 	e> .38] kB	DeadTime [AB] 3.18 [0.52] %	Stream Total 10	Physics 55.80 Hz	Accepte 1.8 %	d
				DAQ	com	ponen	ts			Tot.Events In 1.8254E+6 0.0000E+0				
			FMM	FED	FRL	EVM	RU		BU	4.6477E+5 5.1000E+3				
	#Lv1 1.9299E+8	Lv1 Rate 59.416 kHz	1079	692	472	1	62		61	2.3926E+5 1.3404E+6 6.6637E+7				
	1. malifications	anilian e	TCDS	em IN	Runr	ning	FRL 1	FED 1	IN 1	3.7633E+7 3.9174E+5 2.1806E+5				
			TRG	IN	Runr	ning	21	21	8	3.9308E+5 1.4751E+4 1.9182E+8				
			PIXEL	IN	Runr	ning	40	40	40	3.9308E+5 1.0703E+5				
			PIXEL_U	P Out			1	1	0	1.9099E+8 1.9182E+8				
			TRACKE	R IN	Runn	ning	249	437	435	2.2530E+5 1.8831E+7 2.5641E+5				
) history	ES	IN	Runr	ning	26	40	40	6.7173E+6 L	1967.013 .HC: PROTON P	HYSICS, STABLE		
			ECAL	IN	Runr	ning	54	54	54					
			HCAL	IN	Runn	ning	35	35	26	er Ver vy				
			HF	IN	Runn	ning	5	5	3					
			CASTOR	Out	Rum	inig	4	4	0					
			SCAL	IN	Runn	ning	1	1	1					
	DeadTrees	e en	DAQ	IN	Runr	ning	0	0	0					
			DT	IN	Runn	ning	12	12	6	110111 110111 110111 110111 110111 110111				
			21.09.00 2 77/09/15 2	IN	Runr	ning	19	37	37	09:00:00 28/09/15 28/09/15				
			DQM	IN	Runr	ning	0	0	0	ieva 14:41, Los Ang				
			DCS	IN	Con	nected	0	0	0					

28/09/15 Mon 14:41:29	LHC: PROTON STABLE BEAMS	DAQ2 state Running [01:10]	Run Number 257682	Lv1 rate 59.416 kHz		DeadTime [AB] 3.18 [0.52] %	Stream Physics Total 1055.80 Hz	Accepted 1.8 %
			Stream		Tot.Events	Inst. Rate	(Hz)	
		Physics	GammaCom	missioning	1.8254E+6	629.052	2 httEcal httEcalPre	
		F	hysicsEndOff	ill	0.0000E+0	0.000	hltAlCaPi0Rec	
		Phy	sicsHadronsT	aus	7.3365E+5	260.818	B httAlCaEtaRec	
	andilia a		PhysicsMuon	S	4.6477E+5	164.628	B httParticleFlow	
		Phys	sicsParkingMo	nitor	5.1000E+3	1.299	hltParticleFlow hltAlCaEtaRec	
		- Un 2000.0	ALCAELECTRO	DN	2.3926E+5	86.701	hitEgammaEk	
	.1 % <out> 1.4 %</out>	Mar A	ALCALUMIPIXE	LS	1.3404E+6	368.948	B	
		Lin Co	ALCAP0		6.6637E+7	19222.49	94	
		Lin 10	ALCAPHISYN	1	3.7633E+7	14757.77	79	
	Q history		Calibration		3.9174E+5	88.052	PHYSICS, STAB	E BEAMS
			DQM		2.1806E+5	88.481		
			DQMCalibratio	n	3.9308E+5	105.403	3	
		D	QMEventDisp	lay	1.4751E+4	4.269		
		la servera de la companya de la comp	DOMHistograr	ns	1.9182E+8	66822.63	36	
			EcalCalibratio	n	3.9308E+5	105.403	3	
			Express		1.0703E+5	35.636		
DeadTinees. Little			HLTMonitor		5.7510E+3	1.805		
Acception of the second life of			HLTRates		1.9099E+8	55218.71	18	
			L1Rates		1.9182E+8	66822.63	36	
		21:00:00 27/09/15	LookArea		2.2530E+5	75.744	00 13:00:00 //15 28/09/15	
			NanoDST		1.8831E+7	5533.32	Cago 07:41, Mos	
		F	ParkingHadror	ns	2.5641E+5	71.052		
			PPCMON		671735+6	1967.01	2	

02.10.15

CMS	28/09/15 Mon 14:41:29	LHC: PROTON STABLE BEAMS	DAQ2 state Running [01:10]	Run Number 257682	Lv1 rate 59.416 kHz	Ev. <size> 647.75 [364.38] kB</size>	DeadTime [AB] 3.18 [0.52] %	Stream Total 10	Physics 055.80 Hz	Accer	oted
						-		27/09	/15 Sun 10	28. 11.0	
					↑ 1 ¹ 1 ↓	Top-20 M	licroState	25	%		
			TCDS IN TRG IN					Idle	56.4		
				Running 40 40 40 It 1 1 0			Fwl	kOvh 🗌	6.77		
				Running 249 437 435 Running 26 40 40 Running 54 54 54		hltE	calUncalibRe	ecHit	5		
		t. sullelleller	Ready HCAL IN RU Hated RPC IN	Running 34 34 34 Running 35 35 26 Running 3 3 3				EoL	1.93		
			e Faied HF IN CASTOR OL	Running 6 6 3 t 4 4 0	44	hltEcali	PreshowerRe	ecHit	1.28		
						hiti	ParticleFlow	Block	1.12		
						hltAlCaPi0R	ecHitsFilterF	Fonl	1.05		
					100		hltEcall	Digis	1.03		
						hltAlCaEtaR	ecHitsFilterF	Fonl	1.02	_	
		Q history				hltTriag	ierSummary	AOD	1 01		
						mange	hlt⊔bha	raco	0.98	_	
						hltDarticla El	nitribrie ow Biole LiteDC	llaco	0.90		
						hit article Fi	OWKechicro	Unse	0.90		
						hitrarticierio	owclusterPS	Unse	0.90		
						nitalcaetak	echitsFilterE	BONI	0.9		
						24	hltAK4Cald	oJets	0.88		
	DeadTher, 199	E 8 8 8 8 8 8 8 8						nput	0.69		
						hltEgamma	ElectronPixe	lSee	0.68		
						hltAlCaPiOR	ecHitsFilterE	Bonl	0.62		
							hltHf	reco	0.58		
						hltT	owerMakerF	orAll	0.57		

Some highlights from 13TeV data

Dn/deta: first publication at 13TeV

FSQ-15-001

Analysis performed without magnetic field and with the pixel detector. Two methods used and combined (tracklets and 3-hit tracks)

 Results in agreement with MC predictions within systematic uncertainties. At 13 TeV EPOS LHC is slightly favored.
Ttbar inclusive cross-section

TOP-15-003

First time presented at Lepton Photon 2015 ATLAS presented at EPS 2015

- Integrated lumi= 42 pb⁻¹
 - all validated data from 50ns run
- Signal tt MC reference sample:
 - PowhegV2+Pythia8, normalized to NNLO+NNLL
- Selection
 - At least 2 good (OS) leptons (1e and 1μ)
 - pt(lept)> 20 GeV and |η|< 2.4
 - If more than 2 good leptons, the two with highest pt are retained
 - Di-lepton invariant mass > 20 GeV
 - At least 2 jets (anti-kT R = 0.4)
 - pt(jets)> 30 GeV and |η|< 2.4

Inclusive σ_{tt} (13TeV)= 772 ± 60 (stat.) ± 62 (syst.) ± 93 (lumi.) pb

Ttbar differential cross-section

TOP-15-010

Analysis performed in three possible final states:

ee, μμ, eμ

Selection similar to the inclusive cross section adding:

- at least 1 b-tagged jet
- for ee, μμ reject DY background by applying MET and invariant mass cuts

Regularized unfolding used to go to parton level

Shown for the first time at LHCP 2015

15

"The ridge" @ 13TeV

Analysis very similar to the one already performed at lower center-ofmass energies:

 New treatment of pileup, N trigger threshold slightly different, zeroyield-at-minimum subtraction procedure

Effect confirmed at different energies and for different colliding beams

Di-jets: first limits

EXO-15-010

- Classical resonance search decaying in jet pairs
- Model Independent: Search results are applicable to any model of narrow qq, qg, or gg resonances.
- Already 65 pb⁻¹ are sufficient to surpass Run 1 limits for string models and resonances above 5 TeV in general. Two events observed with mass ≥ 5 TeV.
- Results with 42 pb⁻¹ already shown at LHCP. Fast publication planned with 65 pb⁻¹.
- Similar approach used for Run 1 with a fit parametrization inspired by QCD:

$$\frac{d\sigma}{dm_{jj}} = p_0 \frac{(1-x)^{p_1}}{x^{p_2}}, \qquad x = \frac{m_{jj}}{\sqrt{s}}$$

Di-jets: first limits

EXO-15-010

We exclude string resonances with masses below 5.3 TeV. This is beyond the CMS Run 1 limit of 5.0 TeV

Limits on other models of NP also set but are not yet competitive with Run 1 results with the present luminosity.

	Mass Limits (TeV)				
Model	Run 1 (20 fb ⁻¹)		Run 2 (65 <u>pb</u> ⁻¹)		
	Observed	Expected	Observed	Expected	
String Resonance (S)	5.0	4.9	5.3	5.4	10
Excited Quark (q*)	3.5	3.7	3.0	3.2	
Axigluon (A) / Coloron (C)	3.7	3.9	3.0	3.3	1
Scalar Diquark (D)	4.7	4.7	3.1,3.7-4.1	3.7	'
Color Octet Scalar (S8)	2.7	2.6	2.2	2.2]

And a beautiful event...

A beautiful di-electron event with a 2.9 TeV invariant mass!

And a beautiful event...

A beautiful di-electron event with a 2.9 TeV invariant mass!

Run1 largest masses observed: 1.8 TeV (ee), 1.9 TeV (µµ)

And a beautiful event...

	electr	on 0	elec	tron 1		
Ε _T	1260 GeV		1280 GeV			
η	-0.24		-1.31			
ф	-2.74 rad		0.42 rad			
charge	-1		+1			
mass	2.91 TeV					
$\cos \theta_{cs}^*$	-0.49					
У	-0.78					
0 10						
>1	>1 TeV		0.21			
> 2	> 2 TeV		0.007			
> 2.5	> 2.5 TeV		0.002			

Assuming the right direction for the q (inferred from the boost of the system):

 $\cos\theta_{\rm CS}$ = -0.49

(DY events with similar kinematics present a positive FB asymmetry)

Not to conclude...

There is still a long way to go...

... lets start today.

CMS: the adventure continues

Backup

Challenges

- In the case of CMS, several hardware changes are foreseen during Run 2
 - L1 Trigger upgrade
 - HCAL upgrade (photo-detectors, electronics)
 - Pixel upgrade (EYETS 2016-2017)

Reparations and LSI projects: in production

- Completion of muon coverage (ME4)
- Improve muon operations: MEI, DT electronics
- Replace HF (PMTs) and HO (SiPM) photodetectors

Trigger

larger number of triggers

Stage 1: L1 trigger in 2015

- replace the Global Calorimetric Trigger with a a prototype of the "Layer 2"
 - improved calorimetric trigger
 - pile-up subtraction for jets and energy sums
 - dedicated tau trigger candidates
- improvements to the Muon Trigger
 - make use of new muon chambers
 - increased granularity of the CSC readout
 - improve the LUTs used for track building and matching

Tracker & tracking

Pixel detector extraction & repairs

FPix

- About 2.3% of BPix channels inoperative at the end of Run 1
 - 1.2%: modules located on outer shell of Layer 3
 - 1.1%: modules placed on Layers 1 and 2 or inner shell of Layer 3
 - removal/substitution operation considered too risky to plan a replacement
 - 2 AOHs not fully operative (workaround allowed proper data taking)
- Repairs performed during LS1:
 - almost 100% of faulty modules on Layer 3 outer shell replaced (1.1% of BPix channels)
 - AOHs successfully replaced
- At the end of Run 1 ~ 7.8% of FPix channels was not operational
 - 3.6%: failing digitization of the analog signal due to distortion of the signal ("slow channels") caused by misaligned flex cables
 - 3.1%: unplugged analog electrical-to-optical converters (AOHs)
 - 1.1%: problematic panels
- Repairs performed during LS1
 - 99.9% of FPix channel is now operational

02.10.15

CMS Tracker

- In order to sustain the increased radiation levels in run 2, the tracker has to be operated at lower temperatures.
 - Run 1 operating point: +4°C
 - Run 2 operating point: -15°C
- This implied an effort to prevent humidity in the "bulkhead" region in between the tracker volume and the ECAL endcap.

Brand new dry gas (membrane) plant

02.10.15

Tracking in run 2 is a challenge due to increasing tracker occupancy: √s = 8 TeV Hit Finding Efficiency CMS preliminary 2012 ITT TO THE TAX TO THE TAX TO THE TAX TO THE is=8 TeV CMS Preliminary ×10³ 60 multipliticy 50 25ns bunch-crossing fraction of unmasked hits 0ns bunch-crossing SiStrip cluster 0.97 Layer 1 pixels Layer 2 30 Layer 3 0.96 Disk 1 Disk 2 20 strips 2000 3000 4000 5000 6000 7000 1000Instantaneous Luminosity [µb⁻¹s⁻¹] 10 -PXB1 CMS Preliminary Simulation -TIB1 √s = 8 TeV, tt + <PU>=20 10 20 15 25 0.2 TOB1 <Primary vertices> Pixels are affected by a dynamic inefficiency, 0 iter0 iter2 iter3 iter4 iter5 iter1 iter6 mainly due to saturation of chip readout buffers.

- Out of time pile-up increases the occupancy of the strip detector by ~45% (only ~5% for pixels)
- Iterative tracking is not the definitive solution, tracker is far from being empty after all iterations

Tracking in run 2 is a challenge due to increasing tracker occupancy: √s = 8 TeV Hit Finding Efficiency CMS preliminary 2012 ITT TO THE TATE OF THE TATE TO THE TATE TO THE TATE OF THE OF THE TATE OF THE is=8 TeV CMS Preliminary ×10³ 60 multipliticy 50 25ns bunch-crossing fraction of unmasked hits 0ns bunch-crossing SiStrip cluster 0.97 Layer 1 pixels Layer 2 30 Layer 3 0.96 Disk 1 Disk 2 20 strips 2000 3000 4000 5000 6000 7000 1000Instantaneous Luminosity [µb⁻¹s⁻¹] 10 -PXB1 CMS Preliminary Simulation -TIB1 √s = 8 TeV, tt + <PU>=20 10 20 25 15 0.2 TOB1 <Primary vertices> 0 iter0 iter2 iter3 iter4 iter5 New Pixel detector by the end of 2016 iter1 iter6

- Out of time pile-up increases the occupancy of the strip detector by ~45% (only ~5% for pixels)
- Iterative tracking is not the definitive solution, tracker is far from being empty after all iterations

Tracking in run 2 is a challenge due to increasing tracker occupancy: √s = 8 TeV Hit Finding Efficiency CMS preliminary 2012 ITT TO THE TATE OF THE TATE TO THE TATE TO THE TATE OF THE OF THE TATE OF THE is=8 TeV ×10³ CMS Preliminary 60 multipliticy 50 -25ns bunch-crossing fraction of unmasked hits 9.0 8.0 8.0 4 0ns bunch-crossing SiStrip cluster 40 0.97 Layer 1 pixels Layer 2 30 Layer 3 0.96Disk 1 Disk 2 20 strips 2000 3000 4000 5000 6000 7000 1000Instantaneous Luminosity [µb⁻¹s⁻¹] 10 -PXB1 CMS Preliminary Simulation -TIB1 √s = 8 TeV, tt + <PU>=20 10 20 25 15 0.2 TOB1 <Primary vertices> 0

New Pixel detector by the end of 2016

Introduction of a cluster charge cut

 Iterative tracking is not the definitive solution, tracker is far from being empty after all iterations

iter0

iter1

iter2

iter3

iter4

iter5

iter6

Tracking in run 2 is a challenge due to increasing tracker occupancy: √s = 8 TeV Hit Finding Efficiency CMS preliminary 2012 is=8 TeV ×10³ CMS Preliminary 60 multipliticy 50 -25ns bunch-crossing fraction of unmasked hits 60 0 0 80 1 1 0ns bunch-crossing SiStrip cluster 40 0.97 Layer 1 pixels Layer 2 30 Layer 3 0.96 Disk 1 Disk 2 20 strips 2000 3000 4000 5000 6000 7000 1000Instantaneous Luminosity [µb⁻¹s⁻¹] 10 PXB1 CMS Preliminary Simulation -TIB1 √s = 8 TeV, tt + <PU>=20 10 15 20 25 0.2 TOB1 <Primary vertices> 0

New Pixel detector by the end of 2016

Introduction of a cluster charge cut

Global re-optimization of the tracking sequence

iter0

iter1

iter2

iter3

iter4

iter5

iter6

From 2017: pixel phase 1 upgrade

Pixel Upgrade

Baseline L = $2x10^{34}$ cm⁻²s⁻¹ & 25ns (**50PU**) Tolerate L = $2x10^{34}$ cm⁻²s⁻¹ & 50ns (**100PU**) Survive Integrated Luminosity of 500fb⁻¹ (Evolutionary upgrade with) **minimal disruption of data taking Same detector concept:** higher rate readout, data link & DAQ w/ less material forward **Robust tracking:** 4 hit coverage

Pixel pilot blades

- New prototype modules installed in two forward half disk added to the present detector
 - New digital ROCs
 - New auxiliary electronics
 - Everything in place to test Upgrade of Pixel detector before its insertion

Cluster charge cut for OOTPU mitigation

· Clusters from out of time pile-up are characterized by low collected charge

Due to out-of-time PU, there is a factor of 2 increase

- in fake rate
- in timing
- Cutting on the cluster charge suppresses the effect
 - accounts for sensor thickness and trajectory crossing angle
 - pT dependent cut to preserve potential signal from fractional charge particles
- Stable performance ensured by gain calibration in quasi-real time
 - The regular gain monitoring will be critical

The cluster charge cut effectively restores Run 1 performance.

Tracking optimization

- Lots of efforts put in reshuffling and optimizing the iterative tracking steps
 - Factor ~5 gain in performance in run 2 conditions
 - Maintained physics performance similar to run 1

- 2 additional iterations have been designed to recover the efficiency loss seen in 2012 for muons:
 - an Outside-in iteration, seeded from the muon system, designed to recover the missing muontrack in the tracker
 - an Inside-Out iteration designed to re-reconstruct muon-tagged tracks with looser requirements to improve the hit-collection efficiency.
- The new iterations are clearly much less sensitive to the underlying PU conditions.

- On double-sided strip layers the number of ghost hits increases and in TIB1 becomes larger than true hits at <PU>=40
 - ghost hits are due to ambiguities when more than one track crosses a glued detector
- As a consequence, the effect of pile-up is dramatic on iterations seeded by pairs of strip matched hits (iter5 and 6)
 - still problematic for steps seeded by pixel pairs (iter2) and mixed triplets (iter4)
 - pixel triplet seeded steps are linear (iter0) or close to linear (iter1 and 3) with respect to pile-up

Pileup mitigation: from pairs to triplets

Performance after optimization

- Performance after optimization are very similar to those in run 1.
 - Track reconstruction efficiency vs eta
 - Fake and Duplicate rate vs eta
 - Track reconstruction efficiency vs track production radius
- With the modifications presented above, pileup is under control for run2

Vertexing

- Vertexing performance are good up to pileup of O(100)
- No special action needed for run2
- A new approach will be needed for HL-LHC

Calorimeters

Preshower repairs during LS1

- In November 2013 a problem was detected with connectors at the exterior of the ES- disc. It was promptly decided to replace the four connectors of this type.
 - This implied the removal of preshower for repair on the surface

 At the same time, we recovered non-operational channels

- 96.8% operational in 2012 \rightarrow 99.95% in 2014
- Both disks were re-installed and recommissioned.

Interventions on HCAL during LS1

72
Electrons/photons reconstruction: PU effect

Electron and photon reconstruction is moderately affected by pileup.

New clustering method using the precise shape of the expected deposit from photons from bremstrahlung.

Allows to maintain the established performance for electron reconstruction

Electrons/photons reconstruction: OOTPU

- Lead tungstate has fast scintillation response.
 - about 80% of the light emitted in 25 ns
 - excellent time resolution maintained through the signal processing
- Each pulse shape made of 10 samples

• Situation of HCAL is similar.

HCAL reconstruction

At 25 ns there is **significant leakage between adjacent Bxs,** resulting in additional neutral energy which can affect jet/MET reconstruction.

Strategy is to use a **parametrization of the pulse shape** to remove OOT PU energy.

Noise filtering needs to be updated as well to use OOT PU robust quantities.

Jet/MET Performance

- Pileup identification is based on a MVA method already used during run 1
- Pileup-jet identification efficiency remains constant at high pileup
- MET resolution is only slightly affected by pileup when using the most advanced reconstruction method.

Pileup and muon efficiency

• Muon efficiency does not suffer significantly from pile-up

Muon Identification & Isolation efficiency

- Instead, the focus during LS1 has been on repairs to improve performance
 - Improvements targeting the trigger system
 - Implies a full recommissioning of the system in early 2015.

DT interventions during LS1

- Sector Collector relocation: move DT trigger & readout concentrator from UXC to USC
 - 20 new electronic crates, ~400 boards installed
 - New fibers from UXC to USC, full trigger information available in USC
 - In preparation for the Level-1 trigger upgrade in 2016 (TwinMux, new DT/RPC/HO concentrator)

- Install FPGA version of thetatrigger-board in external wheels
 - Refurbish stock of Bunchand-Track-Identifier ASIC spares
- Reparations on electronics/HV: ~3.5k channels recovered (178k channels total)

CSC interventions during LS1

CSC reparations

02.10.15

RPC interventions during LS1

- Reparation campain (HV, LV, electronics): 99.5% working channels today
- Installation of RE4 chambers
 - 686 gaps produced in 22 months
 - Installation completed and commissioned

Completion of the forward muon system

- The completion of the muon system in the forward region increases the muon id efficiency by ~2%.
- Redundancy also improves the fake rate.
- Performance in run 2 will be better than in run 1.

Impact of out-of-time pileup on muons

- The CMS muon detectors have an excellent time resolution.
- This makes the system very robust against out-of-time pileup.

<u>Example:</u>

Reconstructed time in the DT system (Barrel muon system)

This does not use information from RPCs.

Muon time is considered as a free parameter in the track fit, as time impacts the position of reconstructed segments in the DT system.

Until now: method used in pattern recognition *From 2015:* method extended to final

determination of track parameters.

Background in the muon system

- The main sources of background in the muon system are:
 - Photon-like background (neutron capture): neutrons populating the caverns
 - Highest rates in outer chambers and in top sectors (no shielding, far from the concrete floor)
 - **Prompt background**: mostly punchthrough/flythrough
 - Inner chambers, forward region
- Rate measurements in 2011 and 2012 show linear behavior
 - Extrapolation + safety factor + cross-check with simulations to prepare for higher luminosity runs

CMS: the adventure continues

The first hurdle

A short to ground developed in sector 34 on March 21st, during current decay following a training quench.

- Fault location identified on March 24th: R < 0.2 Ω at the anode diode lead of a main dipole: suspect a metallic debris.
- After tests in the lab, it was decided to try and vaporize/displace the debris through a capacitive discharge through the short.
- The short was successfully removed on
- March 30th, later confirmed by
- re-qualification.

Courtesy A. Siemko

The second hurdle

Various dump of **B2** triggered after ~10-15 min at flat top by

BLMBI.15R8.B0T20_MBA-MBB. Suspected multiple UFO events.

- Initially, aperture scans did not identified any apparent reduction.
- After the local warm up of the beam screen a reduction of aperture has been observed corresponding to an obstacle lying on the beam screen (ULO).

4-corrector bump in V plane

3-corrector bump in H plane

Aperture measurements in 15R8.B2

• Cut applied with IR7-TCPs: $4\sigma_v$ and $3\sigma_x$

• Step of 2-3mm for H bumps, 1mm for V bumps (~1.4σ_y at MB15R8) Safe aperture (last step before losses on MB15R8)

The aperture restriction seems to get worse between injection and top energy (and sometimes even at injection)! Current strategy: continue beam commissioning, monitor the behaviour of the ULO, and check with higher intensity beams.

- Sudden local losses recorded
- No quench, but preventive dumps
- Rise time around of the order 1 ms.
- Possible explanation: dust particles falling into beam creating scatter losses and showers propagating downstream
- Distributed around the ring arcs, inner triplets, IRs

At top energy, the UFOs distribution is rather uniform

At injection

MKI region.

CMS Week September 2015