XXXIX European Cyclotron Progress Meeting Château de Limelette 23-26 September 2015

Production of H₂⁺ beams for high intensity Cyclotrons: status and perspectives

G. Castro, G. Torrisi, L. Celona, D. Mascali, L. Neri, O. Leonardi and S. Gammino

Outline

• Motivations:

The perveance and the space charge limitations; The dae δ alus and ISODAR experiments;

• Overview on H₂⁺ physics;

the state of art; the physical problem: limitations and solutions; plasma physics and modelling;

• Experimental set-up and results:

The Versatile ion source The project for a new plasma chamber Extracted current, H₂⁺ fraction and emittance measurements;

Conclusions and perspectives;

Ion sources @ INFN-LNS

Proton sources

- (1993) Midas
- (1997) Midas2
- (1999) Trips Ion Source
- (2006) P.M. TRIPS
- (2007) VIS Ion Source
- (2007) Plasma Reactor
- (2012) Start of design of PSESS

TRIPS

ECRIS for highly charged ion beams

(1999) Caesar

(1998) Serse

(2007) MS eCRIS

(2013) AiSha

	The Euro	pean spa	llatio	n source
← 1.6 m → Source + LEBT + A 75 keV	$\leftarrow 4.7 \text{ m} \rightarrow \leftarrow 1.0 \text{ m} \rightarrow \\ \hline RFQ \rightarrow MEBT \\ \hline 11 \\ \hline 3.6 \text{ MeV} \\ \hline 3.6 \text{ MeV} $	2.31 MHz $\rightarrow \leftarrow 19 \text{ m} \rightarrow \leftarrow 58$ $\rightarrow DTL \rightarrow Spc$ $\uparrow OTL \rightarrow Spc$	$3 \text{ m} \rightarrow \leftarrow 108 \text{ m}$ $0 \text{ kes} \leftarrow 108 \text{ m}$ 188 MeV	704.42 MHz $n \rightarrow \leftarrow 196 \text{ m} \rightarrow \leftarrow 100 \text{ m} \rightarrow$ $\beta \rightarrow \text{High } \beta \rightarrow \text{HEBT} \rightarrow \text{Target}$ $\beta \rightarrow \text{GO6 MeV}$ 2000 MeV
Beam para	meters	requirement		
Average beam p	oower [MW]	5.0		
Macro-pulse l	ength [ms]	2.86		
Pulse repetitio	on rate [Hz]	14		
Proton kinetic e	nergy [GeV]	2		100 mA proton
δ l/l (beam	ripple)	<2%		current for ESS
Duty fa	ctor	4%		
Proton current at target [mA]		64		proton source
lon source cu	rrent [mA]	90		
Total linac le	ngth [m]	418		

DAESALUS

(Decay At rest Experiment for δ_{CP} At Laboratory for Underground Science)

ISOtope Decay At Rest)

<u>Physics goal:</u> measuring δ_{CP} using Decay-at-Rest Neutrino Sources

Searches for light sterile neutrinos with mass 1 eV trough the neutrino oscillations' L/E signature

Requirements

50 mA H₂⁺ @ target by cyclotron acceleration

Space charge limitations

Space charge effects limit axial injection of proton beams in cyclotrons to 2mA @ 30 keV

A measure of space charge effects is given by the generalized perveance:

$$K = \frac{qI}{2 \cdot \pi \cdot \varepsilon_o \cdot m \cdot \gamma^3 \beta^3}$$

Space charge effects decrease with the mass of particles to be accelerated

are H₂⁺ molecules an option?

Considering 10% capture, 50 mA H_2 + @35 KeV/amu should be produced

Mitigation possibilities

• In Ion source:

Collisional dissociation of weakly-bound states with noble gases (He, Ne) $H_2^+ + He \rightarrow HeH^+ + H_0$ exothermic for n > 3

- Lorentz strip in transport line at 60 MeV/amu 10T to dissociate highest vibrational states (a 20T magnetic field should be sufficient to dissociate all the vibrational states)
- Controlled loss at high energy Selected magnetic bumps to contain lost particles
- Further ideas are welcome

Very interesting atomic physics challenges ahead!

(Chupka & Russell, J. Chem Phys 48 (1968) 1518) Sen et al., J. Phys. B: At. Mol. Phys. **20** (1987) 1509-1515 Kaplan et al., Phys. Rev. Lett. 7, 3 (1961)

State of art (1)

R. F. King *et al.* proposed a one-dimensional plasma model for a volume arc source, expected to produce up to 140 mA of ion beam with 73% H₂⁺ fraction, but it wasn't realized.

R. F. King, E. Surrey, and A. J. T. Holmes, Fusion Eng. Des. 83, 1553 (2008).

N. Joshi *et al.* developed a volume type ion source at Frankfurt University, with *91% H₂⁺ fraction*, but *only 2.84 mA* were extracted.

N. Joshi M. Droba, O. Meusel and U. Ratzinger, Physics Research A, 606 (2009) 310-313

In 2013 The Beijing ion source produced up to 40 mA H₂⁺ beam and more than 50% H₂⁺ fraction by using a PM ECRIS

Hu et al. Review of Scientific Instruments 85, 02A943 (2014);

State of art (2)

Chance to intra-plasma diagnotics by means of optical (390-700 nm) spectroscopy:

Balmer-alpha (656.3 nm), Fulcher band (around 600 nm)

Cortazar et al Nucl. Instrum. and Methods A 781 (2015) 50–56

Y. Xu et al. Rev. of Scie. Instrum. 85, 02A943 (2014);

Room for improvements

Our Approach: More efforts on plasma physics

Steps of plasma modelling

0) Zero- dimensional modelling (solving of balance equations);

1) Single particles modelling (particle motion in superimposed electric field);

2) Full self-consistent modelling (plasma particles motion affect plasma chamber electric field and viceversa);

The balance equations approach

1) $H + e^{-} - H^{+} + 2e^{-}$ 2) $H_2 + e^2 - H + H^+ + 2e^2$ 3) $H_{2}^{+} + e^{-} - H + H^{+} + e^{-}$ 4) $H_2^+ + e^- -> H^+ + H^+ + 2e^-$ 5) $H_{2}^{+} + H --> H_{2} + H^{+}$ 6) $H_3 + H^+ - H_3^+ + H_3^+$ 7) $H_2 + e^{-->} H_2^+ + 2e^{--}$ 8) $H_3^+ + e^- - H_2^+ + H + e^-$ 9) $H_2^+ + e^- - H^* + H$ 10) $H_{2}^{+} + H_{2} - H_{3}^{+} + H_{3}^{+}$ 11) H₃⁺ + e⁻ --> 3H 12) $H_3^+ + e^- - H_2 + H_3$ 13) $H_2 + e^- -> 2H + e^-$

INFN

LNS

reactions at the walls

1) $H + walls --> H_2$ $\gamma = 0.03$ 2) $H^+ + walls --> H$ $\gamma = 0.9$ 3) $H_3^+ + walls --> H_2 + H$ $\gamma = 0.9$

Generation of H₂⁺ in hydrogen discharge Fixed density: $n_e = 1 \cdot 10^{11} \text{ cm}^{-3}$ Fixed ion lifetime: $\tau_i = 1 \cdot 10^{-3} \text{ s}$ **Fixed ion lifetime:** $\tau_i = 1 \cdot 10^{-3} \text{ s}$ **Fixed ion lifetime:** $\tau_i = 1 \cdot 10^{-3} \text{ s}$ **Fixed ion lifetime:** $\tau_i = 1 \cdot 10^{-3} \text{ s}$ **Fixed ion lifetime:** $\tau_i = 1 \cdot 10^{-3} \text{ s}$

In the MDIS range, Electron temperature is a less important parameter w.r.t. ion lifetime and electron density for H₂⁺ fraction determination

Generation of H₂⁺ in hydrogen discharge

Decrease of electron density:

Decrease of ion lifetime:

Decrease of ion lifetime:

39° ECPM 23-26 September 2015 – Château de Limelette

Influence of chamber radius on ion lifetime

- $n_e = 1.10^{11} \text{ cm}^{-3}$
- t_i = 0.500 ms (estimated by experimental results)

L=100 mm

Simulated H₂⁺ fraction increase with the chamber radius decrease.

A Smaller plasma chamber radius enables higher H₂⁺ currents

Steps of plasma modelling

2) Full self-consistent modelling (plasma particles motion affect plasma chamber electric field and viceversa);

Ionizations and neutralizations 3-D distribution inside the plasma chamber

Creation: **Protons**, **Electrons**, H_2^+ Distruction: **Electrons**, H_2^+

Preliminary results!!

TABLE I. Counts for the reactions taken into account.							
ID	1	2	3	4	5		
Counts	8766	16521	710	1069	24		
ID	6	7	8	9	10		
Counts	5757	7014	858	0	138		

TABLE II. Production of particles.							
ID	Н	H ₂	\mathbf{H}^+	e-	H_2^+		
Counts	5958	-25997	7584	22874	15290		

50

Neri et. Al., Recent progress in plasma modelling at INFN-LNS, accepted for publication on Rev. of Scie. Instrum. 21

39° ECPM 23-26 September 2015 – Château de Limelette

From theory and models to experimental results

Proof of principle tests @ BEST- Vancouver

10-15 mA needed for proof-ofprinciple injection tests:

Electrostatic Spiral Inflector and Central region to be tested

INFN-LNS Ion source group has been involved by BEST for high power H₂⁺ beam generation for tests

The Versatile Ion Source

MDIS optimized for high intensity proton beam generation (up to 70 mA proton generated!) But only few mA of H₂⁺

Test-bench for studies towards PS-ESS source moved to Vancouver in late 2013

Permanent magnets

The shift of permanent magnets

The new plasma chamber

 Physical constraints impede to modify magnetic field shape or extraction electrodes

NS

Standard chamber:

10 cm length x 5 cm radius

 Results from zero-dimension modelling suggested that a lower plasma chamber radius could allow higher H₂⁺ fraction

R

Toward a smaller chamber radius: new waveguide for E.M coupling with plasma chamber

No resonant mode inside the plasma chamber because the fundamental mode TE₁₁₁ (3.8 GHz) > RF signal (2.45 GHz) Plasma chamber

EM-ES coupling and plasma injection?

BEST-company testbench

Work configuration

Alonso et al., The IsoDaR High intensity H₂⁺Transport and Injection tests, submitted to Journal of Instrumentation (2015)

VIS test configuration

39° ECPM 23-26 September 2015 – Château de Limelette

H₂⁺ fraction for different magnets' positions and pressures

- Magnets' position strongly affects H₂⁺ fraction!
- 40-50% H₂⁺ fraction obtained at 4 mm magnets' shift

39° ECPM 23-26 September 2015 – Château de Limelette

NS

9 mA: best results obtained by standard plasma chamber

- 9 ----->12.2 mA H₂⁺@F.C.
 - (+ 35% improvement w.r.t. standard chamber)
- 75% transmission factor implies that source generates >16 mA H₂⁺ beam

12.2 mA H₂⁺ @ F.C. absolute maximum obtained during tests

Castro et al., A new H₂⁺ source: conceptual study and experimental test of an upgraded version of the VIS - Versatile Ion Source, submitted to Phis. Rev. STAB (2015)

Emittance plots

Measurements has been carried out in best experimental conditions: Emittance < 0.2 π mm.mrad Evidence of Hollow beam!

v (mm)

39° ECPM 23-26 September 2015 – Château de Limelette

Causes of hollow beam

Over focalized protons generate large space charge affecting H₂⁺ beam

Bending Magnet needed!

Room for improvement in beam transport

How to increase further H₂⁺ current?

- 1) Real time modification of ion lifetime: Flexible magnetic field needed!
- 2) Capability to favor reactions leading to H₂⁺ production: ability to modify ion lifetime and EEDF through different heating mechanisms;
- 3) Development of an **extraction system** focused on H₂⁺ beam;
- 4) More and more efforts on plasma diagnostics!

.NS

Flexible magnetic field!

Room for R&D of new sources for generating 50 mA of $\rm H_{2}^{+}$

Optical spectroscopy for plasma diagnostics

Intra-plasma determination of expected values of H⁺ and H₂⁺ concentration:

Conclusions

- The demand for H_2^+ sources is rapidly growing;
- Different approaches are ongoing to improve the performances of $\rm H_{2}{}^{\scriptscriptstyle +}$ sources;
- Numerical modelling (from zero dimensional balance equation towards the self-consistency) is an option to describe the hydrogen plasma environment;
- VIS performances have been upgraded from 9 to 12.2 mA H₂⁺ beam @F.C.
 Considering 75% transmission, 16 mA are generated by VIS
- Bending magnet needed to separate protons from H_{2}^{+}
- Further studies and diagnostics about the cooling of the H_2^+ vibrational excited states are needed;

perspectives

- A new testbench for studies on fundamental plasma physics is being commissioned at LNS: the Flexible Plasma Trap;
- Self-consistent numerical models could represent a fundamental tool to describe and develop new source devoted to H_2^+ generation;
- Plasma diagnostic will play a fundamental role in future upgrades, in particular Optical Spectroscopy;
- By coupling the FPT to the VIS LEBT, in future will be possible to extract higher $\rm H_{2^{+}}$ current;
- Much room for improvements;

Thank You for Your attention