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Proton sources

(1993) Midas

(1997) Midas2 

(1999) Trips Ion Source 

(2006) P.M. TRIPS

(2007) VIS Ion Source

(2007) Plasma Reactor

(2012) Start of design of PSESS

(1999) Caesar

(1998) Serse

(2007) MS eCRIS

(2013) AiSha

ECRIS for 
highly charged ion beams
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TRIPS SERSE

Ion sources @ INFN-LNS
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The European spallation source

Beam parameters requirement

Average beam power [MW] 5.0

Macro-pulse length [ms] 2.86

Pulse repetition rate [Hz] 14

Proton kinetic energy [GeV] 2

𝜹I/I (beam ripple) <2%

Duty factor 4%

Proton current at target [mA] 64

Ion source current [mA] 90

Total linac length [m] 418

3.6 MeV 90 MeV 188 MeV 606 MeV 2000 MeV75 keV
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100 mA proton
current for ESS 
proton source



DAE𝛿ALUS
(Decay At rest Experiment for 𝛿CP At 
Laboratory for Underground Science)

IsoDAR
(ISOtope Decay At Rest)

Physics goal: measuring δCP using 

Decay-at-Rest Neutrino Sources

Searches for light sterile neutrinos

with mass 1 eV trough the  neutrino

oscillations'  L/E signature

50 mA H2
+ @ target

by cyclotron acceleration

Requirements
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Space charge effects limit axial injection of proton beams in 

cyclotrons to 2mA @ 30 keV

A measure of space charge effects is given by the generalized 

perveance:

332  


m

qI
K

o

Space charge effects decrease with the 

mass of particles to be accelerated
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Space charge limitations

6



𝑬𝒑=30 keV, 

𝑬𝑯𝟐
+ =30 keV

H+:10 mA Kp:1.245 10-3

H2
+: 5 mA 𝑲𝑯𝟐

+: 0.881 10-3

𝐾𝐻2+

𝐾𝑝
= 0. 707

𝑬𝒑=30 keV, 

𝑬𝑯𝟐
+=70 keVH2

H+: 2 mA Kp: 0.249 10-3

H2
+: 5 mA 𝑲𝑯𝟐

+: 0.247 10-3

𝐾𝐻2+

𝐾𝑝
= 0. 992

5 mA H2
+ @ 35 keV/amu2 mA protons @ 30 keV/amu Perveance

H2
+ is then stripped after acceleration into protons

5 mA H2+  ---------->10 mA protons @target 

are H2
+ molecules an option?
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Considering 10% capture, 50 mA H2+ @35 KeV/amu should be produced
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Vibrational States in H2
+

19 vibrational states

10% with n > 8

Relativistic well distortion leads to 

unbound upper vibrational states
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Upper vibrational states (n>7) should be 

eliminated to avoid power loss during 

acceleration

Main drawback
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Mitigation possibilities

• In Ion source:
Collisional dissociation of weakly-bound states with noble gases (He, Ne)

H2
+ + He  HeH+ + H0                  exothermic for n > 3

• Lorentz strip in transport line at 60 MeV/amu
10T to dissociate highest vibrational states (a 20T magnetic field should be sufficient to 
dissociate all the vibrational states)

• Controlled loss at high energy
Selected magnetic bumps to contain lost particles

• Further ideas are welcome

9
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Sen et al., J. Phys. B: At. Mol. Phys. 20 (1987) 1509-1515

Very interesting atomic physics challenges ahead!

(Chupka & Russell, J. Chem Phys 48 (1968) 1518)

Kaplan et al., Phys. Rev. Lett. 7, 3 (1961 )



• R. F. King et al. proposed a one-dimensional plasma model for a volume arc source, expected to 
produce up to 140 mA of ion beam with 73% H2 

+ fraction, but it wasn’t realized.
R. F. King, E. Surrey, and A. J. T. Holmes, Fusion Eng. Des. 83, 1553 (2008).

• N. Joshi et al. developed a volume type ion source at Frankfurt University, with 91% H2
+ fraction, but

only 2.84 mA were extracted. 
N. Joshi M. Droba, O. Meusel and U. Ratzinger, Physics Research A, 606 (2009) 310–313

• In 2013 The Beijing ion source produced up to 40 mA H2
+ beam and more than 50% H2

+ fraction by 
using a PM ECRIS

State of art (1)
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Hu et al. Review of Scientific Instruments 85, 02A943 (2014); 
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State of art (2)

Chance to intra-plasma diagnotics by means of optical (390–700 nm) spectroscopy:

Balmer-alpha (656.3 nm), Fulcher band (around 600 nm) 

Cortazar et al Nucl. Instrum. and Methods A
781 (2015) 50–56

Y. Xu et al. Rev. of Scie. Instrum. 85, 02A943 (2014); 

Room for improvements
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Our Approach:
More efforts on plasma physics
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0)    Zero- dimensional modelling (solving of balance equations);
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Steps of plasma modelling

1)     Single particles modelling (particle motion in superimposed electric
field);

2)     Full self-consistent modelling (plasma particles motion affect plasma 
chamber electric field and viceversa ); 
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1) H + e- --> H+ + 2e-

2) H2 + e- --> H + H+ + 2e-

3) H2
+ + e- --> H + H+ + e-

4) H2
+ + e- --> H+ + H+ + 2e-

5) H2
+ + H --> H2 + H+

6) H2 + H+ --> H2
+ + H

7) H2 + e---> H2
+ + 2e-

8) H3
+ + e- --> H2

+ + H + e-

9) H2
+ + e- --> H* + H

10) H2
+ + H2 --> H3

+ + H 
11) H3

+ + e- --> 3H
12) H3

+ + e- --> H2 + H
13) H2 + e- --> 2H + e-

The balance equations approach

1) H + walls --> H2                                              γ= 0.03
2) H+ + walls --> H                               γ= 0.9
3) H3

+ + walls --> H2 + H                     γ= 0.9

reactions at the walls
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Generation of H2
+ in hydrogen discharge

In the MDIS range, Electron temperature is a less important parameter w.r.t. ion lifetime
and electron density for H2

+ fraction determination
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Decrease of electron density:

Decrease of ion lifetime:

Iextr. ∝ ne/ i

If ne is decreased, also Iextr is decreased

High H2
+ fraction, but very low currents

Iextr. ∝ ne/i

If i is decreased, also Iextr is increased

High H2
+ fraction, high currents

Generation of H2
+ in hydrogen discharge

1616• 39° ECPM 23-26 September 2015 – Château de Limelette
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Decrease of electron density:

Decrease of ion lifetime:

Iextr. ∝ ne/ i

If ne is decreased, also Iextr is decreased

High H2
+ fraction, but very low currents

Iextr. ∝ ne/i

If i is decreased, also Iextr is increased

High H2
+ fraction, high currents

Generation of H2
+ in hydrogen discharge
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ne=1.1011 cm-3

ti = 0.500 ms (estimated by experimental results)
L=100 mm
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Simulated H2
+ fraction increase with 

the chamber radius decrease. 

A Smaller plasma chamber radius 
enables higher H2

+ currents

Influence of chamber radius on ion lifetime
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0)    Zero- dimensional modelling (solving of balance equations);
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Steps of plasma modelling

1)     Single particles modelling (particle motion in superimposed electric
field);

2)     Full self-consistent modelling (plasma particles motion affect plasma 
chamber electric field and viceversa ); 
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NONO

NONO
In Matlab code
Stationary PIC

“Particle Mover”

COMSOL as
“3D Maxwell eq.

Solver”

STOP

“Boris method”
Integration 

Self-
consistency

check

Particle
“life”
end

YESYES

Computing tensor ε
Maxwell eq.

FEM solution of
Maxwell eq.

START
ne=0

YESYES

Diagram showing our “Stationary” PIC strategy
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Ionizations and neutralizations 3-D 
distribution inside the plasma chamber

Creation:     , , 
Distruction:    , 
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Neri et. Al., Recent progress in plasma modelling at INFN-LNS, accepted for publication on Rev. of Scie. Instrum. 

• 39° ECPM 23-26 September 2015 – Château de Limelette

21

Preliminary results!!



From theory and models to 
experimental results
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Proof of principle tests @ BEST- Vancouver

10-15 mA needed for proof-of-
principle injection tests:

Electrostatic Spiral Inflector
and Central region to be tested

INFN-LNS Ion source group has been involved by BEST 
for high power H2

+ beam generation for tests 
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The Versatile Ion Source

ARMCO
IRON

NdFeB

ALUMINUM

STAINLESS 
STEEL

Bres=875 Gauss

Injection Extraction

Permanent magnets

MDIS optimized for high intensity proton beam 
generation  (up to 70 mA proton generated!)
But only few mA of H2

+

Test-bench for studies towards PS-ESS source
moved to Vancouver in late 2013
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The new plasma chamber

Standard chamber:

10 cm length x 5 cm radius

New chamber:

10 cm length x 2.5 cm radius
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• Results from zero-dimension modelling
suggested that a lower plasma chamber radius
could allow higher H2

+ fraction
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• Physical constraints impede to modifiy
magnetic field shape or extraction
electrodes
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The new 2.45 Ghz plasma source with 25 mm 
radius chamber was simulated and tested. Injection

No resonant mode inside the plasma 
chamber because the fundamental mode 
TE111 (3.8 GHz) > RF signal (2.45 GHz) 

Plasma 
chamber

|E| Electric field on a multislice (log scale)

Toward a smaller chamber radius: new waveguide 
for E.M coupling with plasma chamber

EM-ES coupling and plasma injection?

27• 39° ECPM 23-26 September 2015 – Château de Limelette

27



BEST-company testbench
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Work configuration
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Alonso et al., The IsoDaR High intensity H2
+ Transport and Injection tests, submitted to Journal of Instrumentation (2015)
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VIS test configuration
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Total currents @ F.C. for different magnets positions 
and pressures 

The new plasma chamber has been tested by 
modifying Pressure, Microwave power and 

permanent magnets’ position
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40-50% 
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+ fraction

H2
+ fraction for different magnets’ positions and pressures 

• Magnets’ position strongly affects  H2
+ fraction!

• 40-50% H2
+ fraction obtained at 4 mm magnets’ 

shift
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Vancouver Test Results

12.2 mA

12.2 mA H2
+ @ F.C. absolute 

maximum obtained during 
tests
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• 9 ------>12.2 mA H2
+ @F.C. 

• (+  35% improvement w.r.t. standard chamber)

• 75% transmission factor implies that source 
generates >16 mA H2

+ beam 

Castro et al., A new H2
+ source: conceptual study and experimental test of an upgraded version of the VIS - Versatile Ion Source, submitted to Phis. 

Rev. STAB (2015)
32

9 mA: best results obtained by standard 
plasma chamber



Is = =335 AIs =330 AIs = 320 A

Measurements has been carried out in best experimental conditions:
Emittance < 0.2 𝝅 mm.mrad
Evidence of Hollow beam!

Emittance plots 
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Is = 340 A Is = 345 A Is = 350 A Is = 355 A
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Causes of hollow beam
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protons

Over focalized protons generate large 
space charge affecting  H2

+ beam

Bending Magnet needed!

Room for improvement in beam 
transport
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How to increase further H2
+ current?  

1) Real time modification of ion lifetime:
Flexible magnetic field needed!

2) Capability to favor reactions leading to H2
+ production:

ability to modify ion lifetime and EEDF through different
heating mechanisms;

3) Development of an extraction system focused on H2
+ beam;

4) More and more efforts on plasma diagnostics!
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The Flexible  plasma trap

Room for R&D of new sources for generating 50 mA of H2
+
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Flexible magnetic field!

Different heating mechanisms can be 
provided to affect EEDF
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Optical spectroscopy for plasma diagnostics
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Intra-plasma determination of expected values of 
H+ and H2

+ concentration: 
37

Courtesy of D. Nicolosi



• The demand for H2
+ sources is rapidly growing;

• Different approaches are ongoing to improve the performances of H2
+

sources;

• Numerical modelling (from zero dimensional balance equation towards the 
self-consistency) is an option to describe the hydrogen plasma environment;

• VIS performances have been upgraded from 9 to 12.2 mA H2
+ beam @F.C. 

Considering 75% transmission, 16 mA are generated by VIS

• Bending magnet needed to separate protons from H2
+

• Further studies and diagnostics about the cooling of the H2
+ vibrational 

excited states are needed;

Conclusions
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• A new testbench for studies on fundamental plasma physics is being 
commissioned at LNS: the Flexible Plasma Trap;

• Self-consistent numerical models could represent a fundamental tool to  
describe and develop new source devoted to H2

+ generation;

• Plasma diagnostic will play a fundamental role in future upgrades, in 
particular Optical Spectroscopy;

• By coupling the FPT to the VIS LEBT, in future will be possible to extract 
higher H2

+ current;

• Much room for improvements;

perspectives

• 39° ECPM 23-26 September 2015 – Château de Limelette
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Thank You
for Your attention
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