# HYBRID CONFIGURATION, SOLID STATE – TUBE, REVAMPS AN OBSOLETE FULL TUBE AMPLIFIER FOR THE INFN K-800 SUPERCONDUCTING CYCLOTRON

Antonio Caruso INFN-LNS

ECPM XXXIX Louvain-la-Neuve (Belgium), 23 - 26 September 2015



# **Talking points**

- Overview of the block diagram and RF amplification stages
- Main reasons to modify the existing amplifiers;
- Solid state vs tube amplifier as 1<sup>st</sup> stage;
- Matching between the new 1<sup>st</sup> stage and the existing 2<sup>nd</sup>
   "tube" stage;
- Test, measurements and operation with our cyclotron;
- Conclusion;
- References and discussion.

## The general RF system block diagram







6



However, considering our very good business relationships with INFN Catania over the past years, TED agrees to postpone the above deadline for the electron tube RS1054LSC and kindly accepts to receive your last order for this very reference by January 31<sup>st</sup>, 2011 according to our offer S<sup>-</sup>





### Tetrod@a

| Reference  | OHON             | Gen<br>tomor | eral cha | aracteri | stics | He<br>powe | ather<br>er supply | Ma  | ximum ra<br>F<br>dis: | atings<br>Power<br>sipation | Di  | mensio | ns<br><sup>Noigh</sup> | Cooling    | Cavity   |
|------------|------------------|--------------|----------|----------|-------|------------|--------------------|-----|-----------------------|-----------------------------|-----|--------|------------------------|------------|----------|
|            | kW               | dB           | kV       | ٧        | A     | ٧          | А                  | kV  | kW                    | W                           | mm  | mm     | kg                     |            |          |
| YL 1057    | 1.1              | 17.5         | 3.4      | 600      | 0.75  | 3.8        | 20                 | 3.8 | 2.2                   | 30                          | 95  | 110    | 1.1                    | forced air | -        |
| TH 347     | 2.2              | 15           | 4.5      | 400      | 1.15  | 5.8        | 34                 | 5   | 4.5                   | 25                          | 110 | 135    | 2.3                    | forced air | TH 18363 |
| TH 393     | 2.5              | 15.5         | 5.5      | 600      | 1.6   | 6          | 65                 | 6   | 7.5                   | 75                          | 135 | 145    | 3.6                    | forced air | TH 18665 |
| RS 1054 L  | <mark>2.6</mark> | 16           | 4.6      | 800      | 1.5   | 2.8        | 135                | 5   | 5                     | 80                          | 120 | 117    | 1.9                    | forced air | -        |
| RS 1054 SK | 2.6              | 16           | 4.6      | 800      | 1.5   | 2.8        | 135                | 5   | 5                     | 80                          | 98  | 141    | 1.9                    | water (4)  | -        |
| TH 382     | 5.25             | 15.5         | 5.5      | 600      | 2.7   | 4.2        | 125                | 6.5 | 12.5                  | 120                         | 170 | 158    | 7                      | forced air | TH 18482 |
| RS 1034 L  | 6.3              | 16           | 5.1      | 800      | 2.8   | 4.5        | 200                | 5.5 | 13                    | 180                         | 160 | 154    | 5.3                    | forced air | -        |
| TH 582     | 10.5             | 15           | 5.5      | 600      | 3.45  | 4.2        | 146                | 7.5 | 25                    | 120                         | 128 | 166    | 4.1                    | water (4)  | TH 18582 |
| RS 1036 L  | 11.5             | 15           | 6        | 800      | 3.7   | 4.5        | 200                | 7   | 20                    | 180                         | 200 | 152    | 7.8                    | forced air | -        |
| RS 1034 SK | 12.6             | 15.5         | 6.3      | 800      | 3.9   | 4.5        | 200                | 7.5 | 25                    | 180                         | 160 | 152    | 7                      | water (4)  | -        |
| TH 563     | 31.5             | 14.5         | 8.5      | 800      | 6.45  | 4.2        | 210                | 9   | 42                    | 200                         | 126 | 190    | 6.5                    | water (3)  | TH 18550 |

(1) Common amplification.

| Def      | Output | Турі     | Typical operating conditions |         | Heater power<br>supply |         | Maximum ratings |                   | Dimensions |                |          | Casling | Caultur | DDE     |               |     |
|----------|--------|----------|------------------------------|---------|------------------------|---------|-----------------|-------------------|------------|----------------|----------|---------|---------|---------|---------------|-----|
| Kei.     | power  |          | And                          | ode     | Screen<br>grid         | Filar   | nent            | Anode<br>voltage  | Anode      | Screen<br>grid | Diameter | Length  | Weight  | Cooling | Cavity        | PDF |
| J L      |        | Gain     | Voltage                      | Current | Voltage                | Voltage | Current         |                   | Power di   | ssipation      |          |         |         |         |               |     |
|          | kW     | db       | kV                           | А       | V                      | V       | А               | kV                | kW         | W              | mm       | mm      | kg      |         |               |     |
| TH 298   | 3      | 23       | 5                            | 0.8     | 400                    | 6       | 50              | 5                 | 5          | 60             | 104      | 140     | 2       | Air     | -             |     |
| TH 341   | 10     | 17       | 7                            | 2       | 400                    | 6.5     | 85              | 8                 | 6          | 150            | 130      | 150     | 3.5     | Air     | TH 18108<br>G |     |
| differen | *      | differen |                              | •       | different              | B       | UT T            | <sup>-</sup> H298 | B COI      | JLD E          | BE NE    | ARLY    | OBS     | OLET    | E TO          | 0   |

PLATE

HEATER

GRID

SCREEN

CATHODE

# Proposed solution by Eimac

As a possible **alternative** to the originally used RS1054L the **CPI tube 4CX3500A** has been selected. This tube is less powerful than the original one but was selected because we thought than the **final power of 30kW** was enough as regards normal cyclotron activity.

The most critical parameter is the input capacitance of the 4CX3500A as it influences the input circuit negatively. The existing wide band circuit has to be redesigned in order to cope with the higher tube capacitance:





```
RS1054 Cin = 57 to 60 pF
4CX3500A Cin = 111 pf
```

## Main modifications for the installation of the 4CX3500A

- Most critical point, input capacitance: redesign the input impedance circuit and related board;
- The tube needs a completely new socket which ends up in a completely new design for the driver stage. The outline of the present module will be kept so that no major mechanical work is necessary;
- New filament power supply;
- Slight modification of control grid power supply (no need for screen grid);
- Insertion of new crowbar circuit in the anode power supply plus retuning of anode matching circuit



Cost of the operation, to modify 3 amplifiers (including a single new tube), about 250 k€



### **Risks of the operation**

- The tetrode manufacturer can notify the end of the production of this new tetrode in any moment. With a very short margin in terms of time, according to our experience;
- It is not possible to store a lot of spare parts, economic and vacuum tube technology;
- The new solid state technology is going to cover the slice of market under a power of 100 kW and up to few hundred MHz of bandwidth (most important);

### **Positive points**

- 4CX3500 cost relatively low, high efficiency, high reliability, robustness;
- Apparently no end of production in the near future, according to the manufacture;
- Econco (CPI group), ensured us about the total assistance to rebuild the tube in case of failure (not necessary to buy a bright new tube all the time).

The total operation can be divided into two phases:

- 1. Design and manufacture the hardware during the cyclotron operation;
- 2. Installation of the new parts during a cyclotron long maintenance period .

Also the distribution of the total cost, after an agreement with the constructor,

should be divided into two, or better for us, more phases...

But the whole operation was stopped due to a big failure in our cryogenic plant. So the already scheduled funding for the 1<sup>st</sup> stage RF refurbishment was forwarded to the cryogenic plant...





ENOUGH SPARE PARTS



40.3

make a virtue out of necessity

### SOME IN-HOUSE SOLID STATE AMPLIFIERS

# Frequency & Power range of tetrodes

In the meanwhile further news coming from the market ....



### **Tetrodes & Diacrodes available from industry**

# RULES OF THUMB OF THE SOLID STATE OPERATION

CHANGE THE TUBE 1<sup>ST</sup> STAGE WITH A SOLID STATE:

- MINIMIZE THE HARDWARE MODIFICATIONS, MAINLY IN THE SECOND STAGE OF THE AMPLIFIER;
- NEVER FORGET THE POSSIBILITY TO RE-INSTALL AGAIN THE OLD TUBE, IN CASE OF PROBLEMS IN A REASONABLY SHORT TIME;
- CONTAIN THE COST.

## High power water cooled tetrode EIMAC 4CW100000 (final stage)

study the technical characteristics, mainly about the input circuit

4CW100,000E without SK-2100 Water Jacket

### **GENERAL CHARACTERISTICS<sup>1</sup>**

### ELECTRICAL

| Filament: Thoriated Tungsten                          |               |
|-------------------------------------------------------|---------------|
| Voltage                                               | V             |
| Current @ 15.5 V 215                                  | А             |
| Direct Interelectrode Capacitances (grounded cathode) |               |
| Cin                                                   | pF            |
| Cout                                                  | $\mathbf{pF}$ |
| Cgp 1.0                                               | pF            |
| Direct Interelectrode Capacitances (grounded grid)    |               |
| Cin                                                   | pF            |
| Cout                                                  | pF            |
| Cpk 0.35                                              | pF            |
| Frequency of Maximum Rating, CW 108                   | MHz           |

# High power water cooled tetrode EIMAC 4CW100000,

## maximum and minimum rated values

### **RANGE VALUES FOR EQUIPMENT DESIGN**

|                                                                                            | Min. | Max. |         |
|--------------------------------------------------------------------------------------------|------|------|---------|
| Filament: Current @ 15.5 volts                                                             | 200  | 230  | Α       |
| Cutoff Bias, at Eb = $25 \text{ kVdc}$ , Ec2 = $1500 \text{ Vdc}$ , Ib = $10 \text{ mAdc}$ |      | -625 | Vdc     |
| Interelectrode Capacitances (grounded cathode)                                             |      |      |         |
| Cin                                                                                        | 350  | 390  | pF      |
|                                                                                            | 55   | 65   | pF      |
| Cgp                                                                                        |      | 1.2  | τ<br>Tα |
| Interelectrode Capacitances (grounded grid)                                                |      |      | -       |
| Cin                                                                                        | 160  | 190  | pF      |
|                                                                                            | 55   | 65   | pF      |
| Cpk                                                                                        |      | 0.5  | pF      |

## Matching the new solid state driver with the 2<sup>nd</sup> stage



We need a matching network as impedance transformer from Z<sub>0</sub> to cathode impedance Z<sub>c</sub>



### Impedance transformer from $Z_0$ to cathode impedance $Z_c$















The matching box already installed instead of the 1<sup>st</sup> stage RS1054LSC in one of the 3 amplifiers



# Matching measurements





## Beams delivered with SSA as permanent driver of Cavity 3





## Beams delivered with SSA as permanent driver of Cavity 3



## SSA as driver amplifier (preliminary test on Cavity 2)





## Test bench driver dB-Science





# DRIVER BASED ON NEW LDMOS FREESCALE



# **Test bench LDMOS TEST**



32

FSL SPECTRUM ANALYZE

ROHDE&SCHWARZ

OG ME

# COMPONENTS

#### Freescale Semiconductor Technical Data

#### **RF Power LDMOS Transistors**

High Ruggedness N-Channel Enhancement-Mode Lateral MOSFETs

These high ruggedness devices are designed for use in high VSWR industrial (including laser and plasma exciters), broadcast (analog and digital), aerospace and radio/land mobile applications. They are unmatched input and output designs allowing wide frequency range utilization, between 1.8 and 600 MHz.

Typical Performance: V<sub>DD</sub> = 50 Volts, I<sub>DO</sub> = 100 mA

| Signal Type                         | P <sub>out</sub><br>(W) | f<br>(MHz) | G <sub>pe</sub><br>(dB) | <b>ካ</b> D<br>(%) |
|-------------------------------------|-------------------------|------------|-------------------------|-------------------|
| Pulse<br>(100 µsec, 20% Duty Cycle) | 1250 Peak               | 230        | 24.0                    | 74.0              |
| CW                                  | 1250 CW                 | 230        | 22.9                    | 74.6              |

#### Application Circuits (1) - Typical Performance

| Frequency<br>(MHz) | Signal Type                            | P <sub>out</sub><br>(W) | G <sub>pe</sub><br>(dB) | ηD<br>(%) |
|--------------------|----------------------------------------|-------------------------|-------------------------|-----------|
| 27                 | CW                                     | 1300                    | 27                      | 81        |
| 40                 | CW                                     | 1300                    | 26                      | 85        |
| 81.36              | CW                                     | 1250                    | 27                      | 84        |
| 87.5-108           | CW                                     | 1100                    | 24                      | 80        |
| 144-148            | CW                                     | 1250                    | 26                      | 78        |
| 170-230            | DVB-T                                  | 225                     | 25                      | 30        |
| 352                | Pulse<br>(200 μsec,<br>20% Duty Cycle) | 1250                    | 21.5                    | 66        |
| 352                | CW                                     | 1150                    | 20.5                    | 68        |
| 500                | CW                                     | 1000                    | 18                      | 58        |

1. Contact your local Freescale sales office for additional information on specific circuit designs.

#### Load Mismatch/Ruggedness

| Frequency<br>(MHz) | Signal Type                            | VSWR                          | P <sub>out</sub><br>(W)          | Test<br>Voltage | Result                   |
|--------------------|----------------------------------------|-------------------------------|----------------------------------|-----------------|--------------------------|
| 230                | Pulse<br>(100 μsec, 20%<br>Duty Cycle) | > 65:1 at all<br>Phase Angles | 1500 Peak<br>(3 dB<br>Overdrive) | 50              | No Device<br>Degradation |

#### Features

- · Unmatched Input and Output Allowing Wide Frequency Range Utilization
- · Device can be used Single-Ended or in a Push-Pull Configuration
- Qualified Up to a Maximum of 50 V<sub>DD</sub> Operation
- Characterized from 30 V to 50 V for Extended Power Range
- · Suitable for Linear Application with Appropriate Biasing
- Integrated ESD Protection with Greater Negative Gate-Source Voltage Range for Improved Class C Operation
- · Characterized with Series Equivalent Large-Signal Impedance Parameters
- · In Tape and Reel. R6 Suffix = 150 Units, 56 mm Tape Width, 13-inch Reel. R5 Suffix = 50 Units, 56 mm Tape Width, 13-inch Reel.

Document Number: MRFE6VP61K25H Rev. 4.1, 3/2014 **VRoHS** 

#### MRFE6VP61K25HR6 MRFE6VP61K25HR5 MRFE6VP61K25HSR5 MRFE6VP61K25GSR5







#### Figure 1. Pin Connections



### BLF188XR; BLF188XRS

**Power LDMOS transistor** Rev. 5 — 12 November 2013

Product data sheet

#### 1. Product profile

#### 1.1 General description

A 1400 W extremely rugged LDMOS power transistor for broadcast and industrial applications in the HF to 600 MHz band.

#### Table 1. Application information

| Test signal | f          | V <sub>DS</sub> | PL   | Gp   | $\eta_D$ |  |
|-------------|------------|-----------------|------|------|----------|--|
|             | (MHz)      | (V)             | (W)  | (dB) | (%)      |  |
| CW          | 2 to 30    | 50              | 1270 | 29.0 | 75       |  |
|             | 27         | 50              | 1400 | 23.7 | 73       |  |
|             | 41         | 50              | 1200 | 22.0 | 82       |  |
|             | 60         | 48              | 1240 | 22.0 | 77       |  |
|             | 72.5       | 50              | 1350 | 23.1 | 83       |  |
|             | 81.4       | 50              | 1200 | 27.1 | 77.8     |  |
|             | 88 to 108  | 50              | 1320 | 22.5 | 85       |  |
|             | 108        | 50              | 1200 | 26.5 | 83       |  |
|             | 200        | 50              | 1288 | 19.3 | 68.3     |  |
| pulsed RF   | 81.4       | 50              | 1200 | 25.8 | 85       |  |
|             | 81.4       | 50              | 1400 | 25.4 | 81       |  |
|             | 108        | 50              | 1400 | 24.0 | 73       |  |
| DVB-T       | 174 to 230 | 50              | 225  | 23.8 | 29       |  |

#### 1.2 Features and benefits

- Easy power control
- Integrated ESD protection
- Excellent ruggedness
- High efficiency
- Excellent thermal stability
- Designed for broadband operation (HF to 600 MHz)
- Compliant to Directive 2002/95/EC, regarding Restriction of Hazardous Substances (RoHS)

#### 1.3 Applications

- Industrial, scientific and medical applications
- Broadcast transmitter applications







# Conclusions

- The whole frequency range is achieved (15 50 MHz);
- Mismatch up to 2.0:1 was tested too (30%);
- The matching network works very well with lot of final 1<sup>st</sup> stage configuration (tetrode, mosfet, bjt, etc) of the SSA drivers;
- Enough power, 20-30 kW, at the output of the final tetrode, was achieved;
- Automatic tuning of the matching network, in the near future;
- Better integration of the 1<sup>st</sup> stage with the amplifier;
- Gained lot of know how, useful in the next phase, to prepare the line guide for a proper 1<sup>st</sup> stage (custom and/or commercial).

# Thank you for your kind attention

### Working Group

- A. Caruso<sup>1</sup>, J. Sura<sup>2</sup>, A. Longhitano<sup>1</sup>,
- A. Spartà<sup>1</sup>, R. Barresi<sup>1</sup>, G. F. Caruso<sup>1</sup>
- 1.INFN-LNS Catania, Italy
- 2. Warsaw University, Warsaw, Poland

References:

- THALES RS1054LSC, data sheet;
- THALES TH298, data sheet;
- EIMAC 4CX3500, data sheet;
- MRFE6VP61K25HR6 (FREESCALE), data sheet;
- BLF188XR (NXP), data sheet;
- http://www.w6pql.com/ (James Klitzing Custom Radio Equipment CA-USA)
- Integrated Electronic: analog and digital circuits and system, Millman-Halkias; Mc Graw-Hill (New York)
- Electronic and Radio Engineering, Terman, Mc Graw-Hill (New York);
- Manuale di elettronica e telecomunicazioni, Biondo Sacchi, Hoepli.