

Update on the multiparticles cyclotron C70 ARRONAX

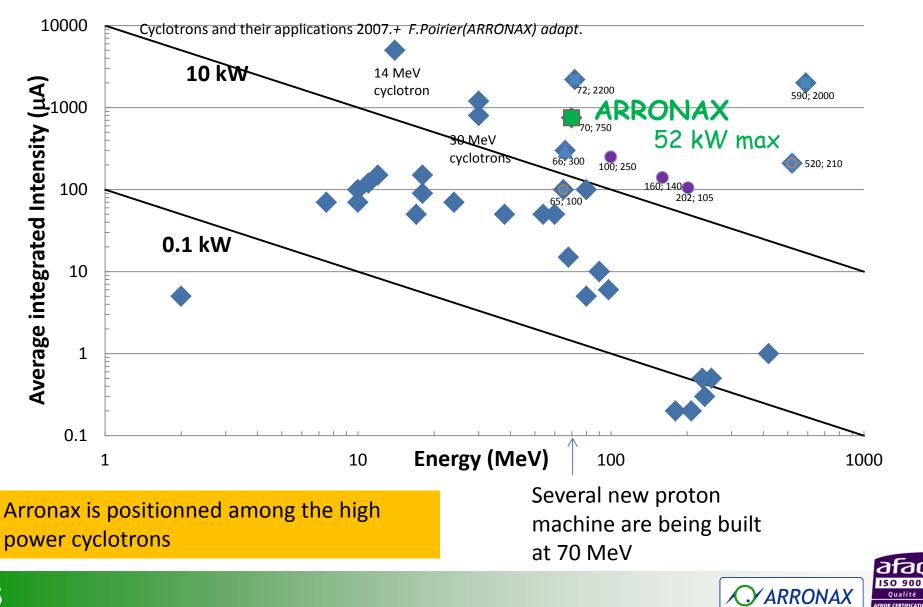
Freddy Poirier (Arronax/CNRS)

On behalf of the accelerator group

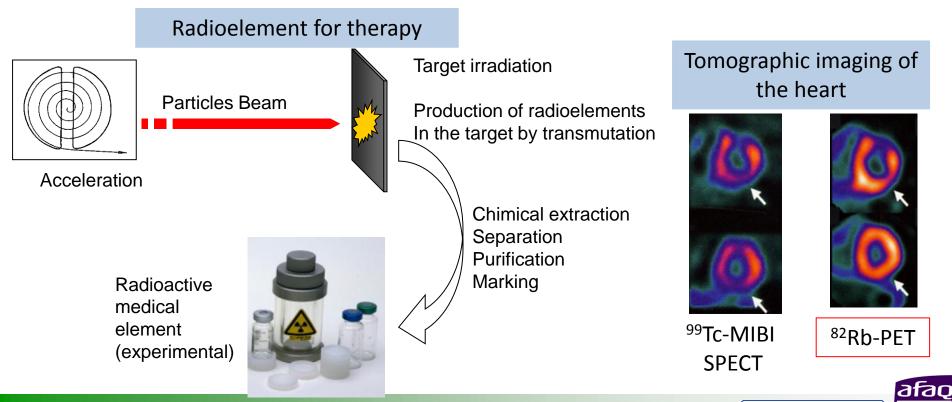
CYCL13: "On-Going operations with the cyclotron C70", MOPPT010

• ARRONAX

ARRONAX: Accelerator for Research in Radiochemistry and Oncology at Nantes Atlantique.

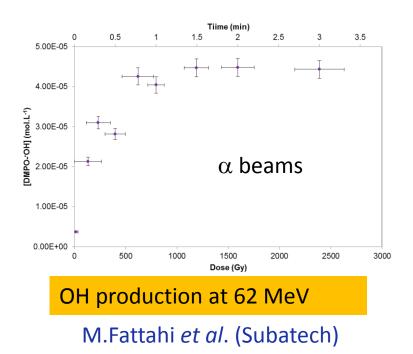

ECPM Sept. 2015

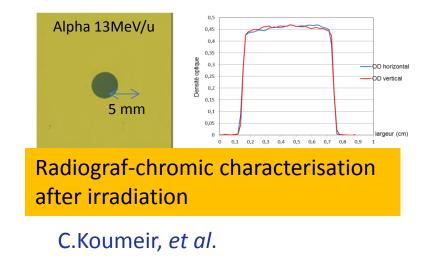
- My students asked for comparison between accelerators.
 - And here is a tentative map that I show
 - similar to the HEP european strategy map of 2013 for accelerators
 - Rather incomplete


Proton cyclotrons and linacs for radio-isotopes

ARRONAX Activities

- A tool to produce <u>radionucleides</u> for research in <u>nuclear medecine</u>
 - Imaging: β + radioelements for PET (ex: ⁸²Sr/⁸²Rb, ^{44m/44}Sc, ⁵²Fe, ⁶⁴Cu ...)
 - Therapy: α immunotherapy (²¹¹At \rightarrow preclinic phase), β -radioelements : ⁶⁴Cu (preclinic phase), ⁴⁷Sc



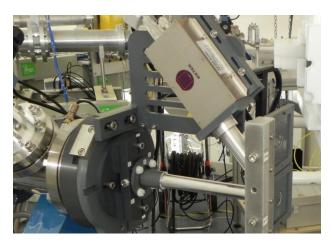

YARRONAX

ARRONAX Activities

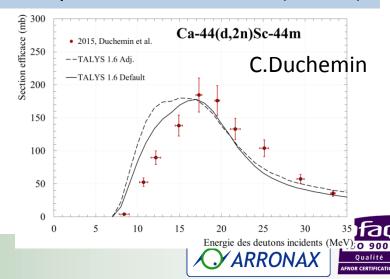
- A tool to produce radionucleides for research in nuclear medecine
 - Imaging: β+ radioelements for PET (ex: ⁸²Sr/⁸²Rb, ^{44m/44}Sc, ⁵²Fe, ⁶⁴Cu ...)
 - Therapy: α immunotherapy (²¹¹At), β -radioelements : ⁶⁷Cu, ⁴⁷Sc
- A tool for radiochimistry & radiobiology research
 - specifically alpha radiolyse of water (eg nuclear waste storage).
 - Radiobiology with characterisation of dosimetry tools and living cells (with GANIL, ICO, INFN)

∕ ∕ ARRONAX

ARRONAX Activities


- A tool to produce <u>radionucleides</u> for research in <u>nuclear medecine</u>
 - Imaging: β+ radioelements for PET (ex: ⁸²Sr/⁸²Rb, ^{44m/44}Sc, ⁵²Fe, ⁶⁴Cu ...)
 - Therapy: α immunotherapy (²¹¹At), β -radioelements : ⁶⁷Cu, ⁴⁷Sc
- A tool for radiochimistry/radiobiology research
 - specifically alpha radiolyse of water (eg nuclear waste storage)
 - radiobiology
- A tool for physics reasearch
 - Particularly studies of material under irradiation
 - Development of detection system
 - Measurements of nuclear data

PIXE/PIGE - Particle Induced X-ray Emission


- Non destructive Caracterisation Method of multielements material, quantitative
- Dvt of mesuring benches
- (~nA)

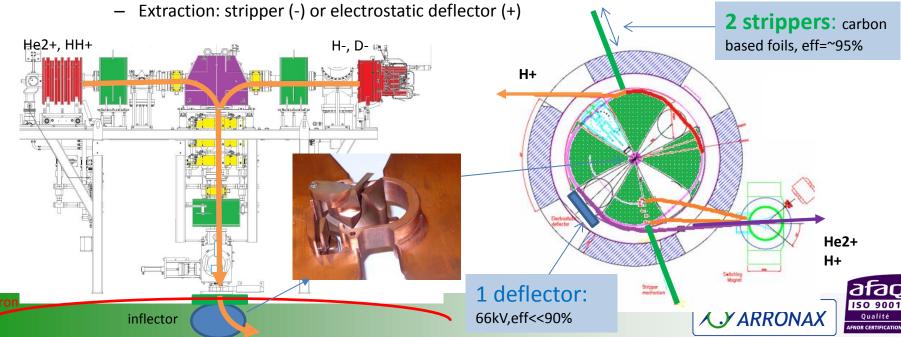
h

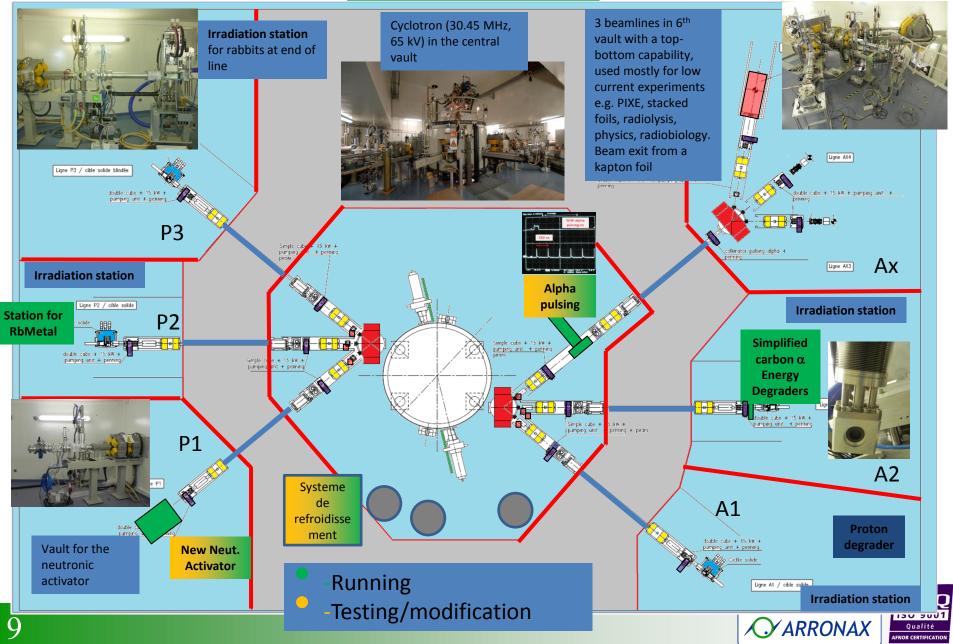
Experience « Stacked Foils » - Sc44 Cross section measurements: exemple from 9 to 35 MeV- (100 nA)

- A tool to produce radionucleides for research in nuclear medecine
 - Imaging: β+ radioelements for PET (ex: ⁸²Sr/⁸²Rb, ^{44m/44}Sc, ⁵²Fe, ⁶⁴Cu ...)
 - Therapy: α immunotherapy (²¹¹At), β -radioelements : ⁶⁷Cu, ⁴⁷Sc
- A tool for radiochimistry/radiobiology research
 - specifically alpha radiolyse of water (eg nuclear waste storage)
 - radiobiology

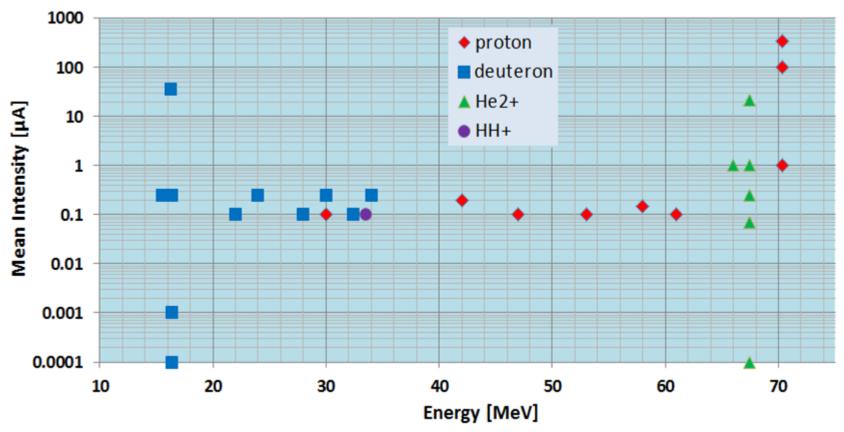
ARRONAX

- A tool for physics reasearch
 - Particularly studies of material under irradiation
 - Development of detection system
 - Measurements of nuclear data
- A tool for training and education
 - University of Nantes
 - École des mines of Nantes
 - CHU (accademic hospital) of Nantes
 - Permanent and dedicated trainings
- An industrial production site for medical needs




Characteristics

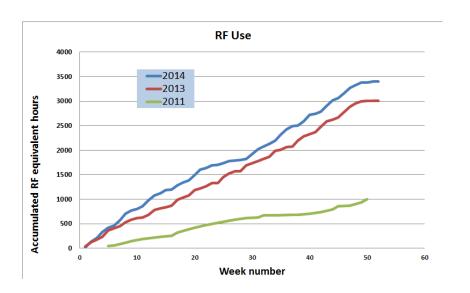
- C70 Cyclotron build by IBA:
 - Isochron cyclotron with 4 sectors
 - RF: 30.45 MHz
 - Acceleration Voltage: 65 kV
 - Max magn. field : 1.6T
 - Max kinetic energy/n: 30-70 MeV
 - Normalised emittance before extraction: $\gamma \epsilon_x = 4\pi$ mm mrad (simulation)
- Main additional elements:
 - 2 Multiparticle sources.
 - Multicusp (H-,D-) with multiple magnets, 5mA max.
 - Supernanogan ECR ion source (He2+,HH+)
 - Injection: Series of magnetic elements (glaser, steerer, quad.) on the top of the cyclotron to adapt the beam to the entrance of the cyclotron, and finally the spiral inflector

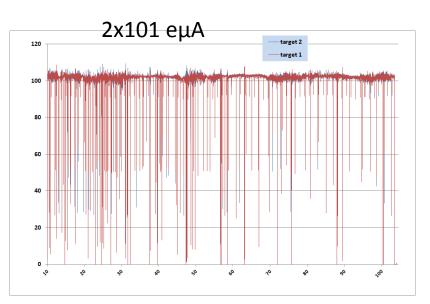


Beamlines

Operationnal use

• Large range of intensity and energy:


- 7 orders of magnitude of intensity
 - Runs for Radio-isotopes at high intensity and high integrated intensity
 - R&D runs \rightarrow Precisions in operation
- Several beamlines in use and bunches frequencies variation not included here


afaq

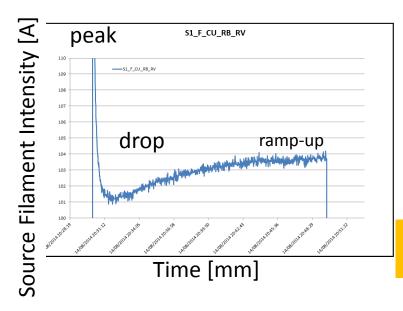
OR CERTIFICATIO

Operations

- RF use:
 - 2014: 3400 hours
 - 2015 (projected): Slightly more

Dual mode operation:

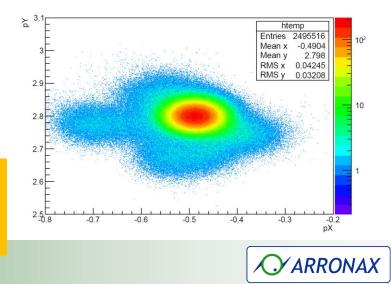
- ✓ Here stable run over 98 hours
- ✓ <I>=101.5 eµA, σ_{<i>}=5.4 eµA
- Breakdowns = 1.8% of the overall time
- ✓ Vacuum in the center of the machine =4x10⁷ mbar
- ✓ Neutral current (H^0) = 9eµA in 2014 (18µA in 2012)


IOR CERTIFICATI

Machine studies

- Mostly driven by users needs:
 - Beginning of 2015 at high current,
 - started to have major beamline gaskets and target dammages
 - Exact reasons unknown (→ beam dynamics related studies see later slide)
 - Users wants to have lower intensity/more precise beam in a short time
- The studies spans over:
 - Source studies
 - End-of-line beam characteristics
 - Mapping of the magnets
 - Beamlines beam dynamics studies including quad-scan

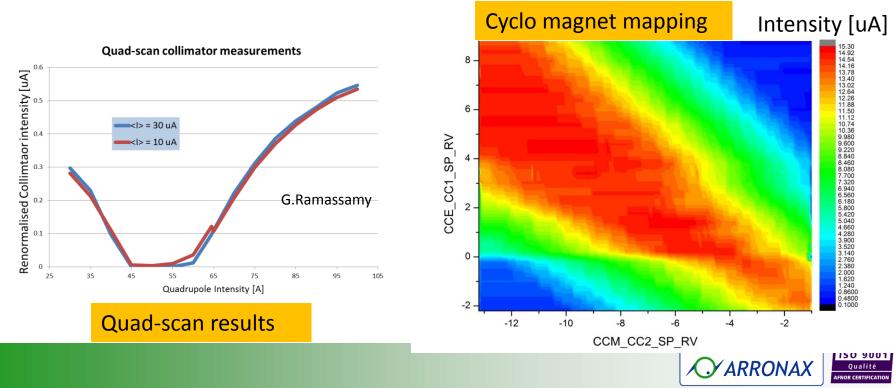
Studies at low intensity (<1uA)


Intensity from the source follows a specific pattern (peak, drop and ramp-up) before stabilisation which occurs after several tens of minutes:

- Impact on how early we can do a stable beam
- Impact on how soon we can perform maintenance (exponential decrease kicks-in)

→Adaptation of source filament use (confirmed also with end-of-line users measurements)

Beam stability at low current 20 pA (Dosion – LPC Caen/Arronax team): Intensity Geometry


 \rightarrow 40 µm beam geometric instability: recipe in use validated for this specific use (with strategy of beam blow-up in injection)

Studies at higher intensity

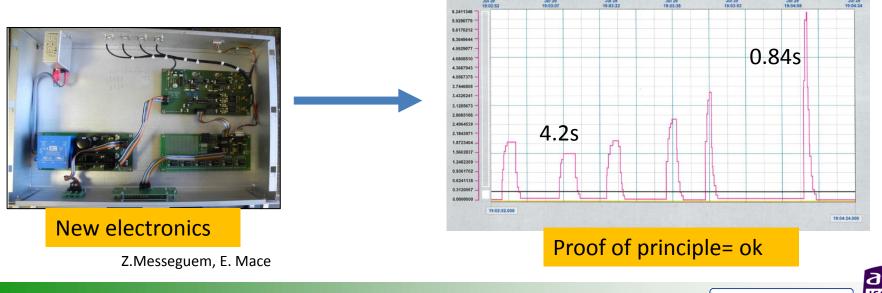
Are the settings in the machine and beamlines adequate?

- Mapping of the extracted intensity from the machine has shown several region to use/avoid, for the accelerator magnets setting:
 - Included check of isochronicity
 - On-going work for all magnets, history and pilots technics
 - On operation, setting modification accordingly
- Quad-scan to check the beam dimension and setting of the quads and losses along the beamlines

On-going Developments

- Water Tank sealing \rightarrow done
- New upgrade on the control server \rightarrow done
- Collaboration with IBA for new collimators
- Beam loss monitors (BLM)
 - 1 running prototype
 - On-going extension for several BLM

• Alpha pulsing: on-going work (next slide)


- For the future:
 - Parallel data acquisition system for cyclotron and several diagnostics follow-up in the future
 - Beamline modification

Alpha pulsing

- Goal: modify the inter-bunch space from 32.8 ns to ~5sec
- Initial system built by IBA.
 - Based on a 3kV chopper in the injection and a 50kV deflector in one beamline
- System adapted to new users specification: \rightarrow bunch train
 - Drive the chopper to allow start/stop modes
 - Modify the electronics/software

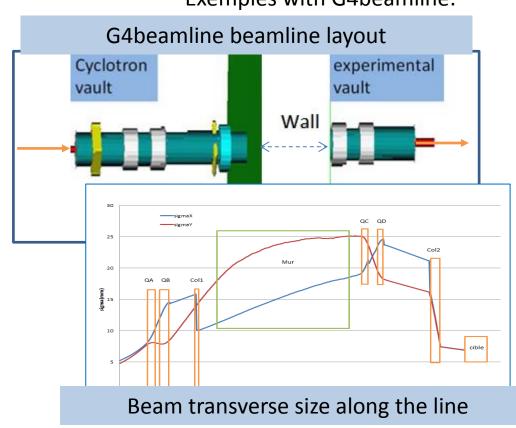
ARRONAX

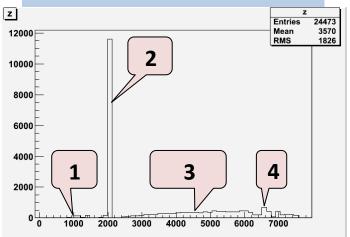
Conclusion

- Arronax C70 is up and running:
 - ~5 years of experience
 - Machine is used for very various and wide range of runs/parameters
 - Success in responding to the users needs (happy?)
- Maintenance and interventions are high:
 - New CMMS (maint. Management software) used → better tracking
 - 150 interventions/year
 - Specific applied maintenance technics due to activation in place
- Several developments are necessary and being done:
 - Tools for maintenance have to be developped
 - Beam diagnostics are highly needed
 - Looking for specialist and collaboration

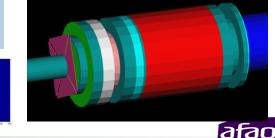
. Thank You!

Several of these projects are supported in part by the "Agence National de la Recherche", called "Investissements d'Avenir", Equipex ArronaxPlus n°ANR-11-EQPX-0004




Simulation

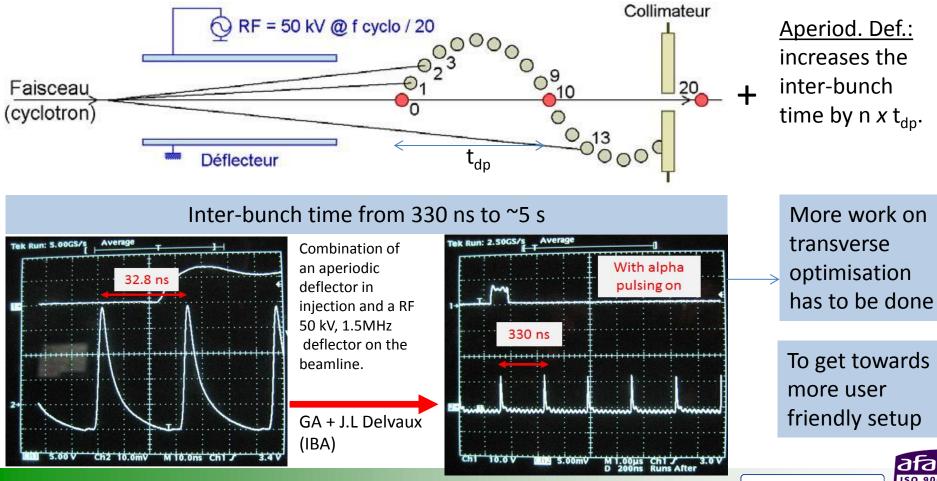
- Development of simulation with G4beamline, Astra & Transport: ٠
 - General simulation studies
 - Support and confirm Beam transport strategies
 - Benchmark/Confirmation of beam characteristics (beam size, particles losses, emittance,...) + users are in demand of this
 - Extrapolation to high current technique?



Exemples with G4beamline:

particles losses along the beamline

Details close to beamline end


Works from students, Vidangoon D.G. Frad R. R. O. COAX

Qualité FNOR CERTIFICATION

Cyclotron Adaptations

- <u>Alpha pulsing</u>: Deflectors for inter-bunch time modification (He2+/2011-12):
 - Periodic Deflector on the beamline 50 kV @ $f_{cyclo}/20$
 - Aperiodic Deflector in the injection timed to the period. def.

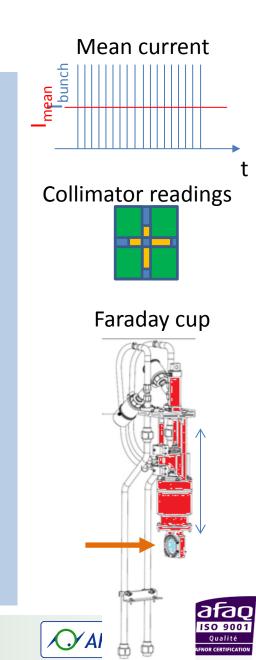
ARRONAX

Diagnostics I

The main diagnostics are:

ARRONAX

- Current measurements (Imean):

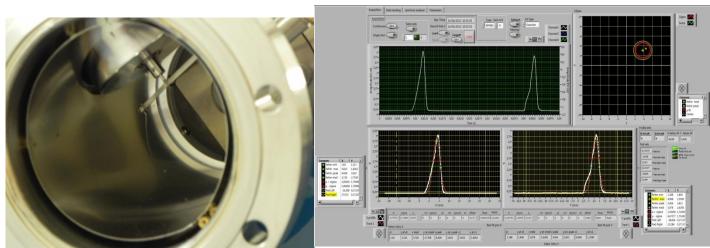

- On the 4 individual fingers of the <u>collimators</u>
 → aperture from 10 to 30 mm limiting the transverse size right at exit of collimators,
- <u>Faraday cups</u>:

Water cooled layers of titanium /aluminium

- 15kW max (i.e ~210µA at 70MeV)
- <u>Beam dumps</u> combined or not with a current integrator (at very low current)

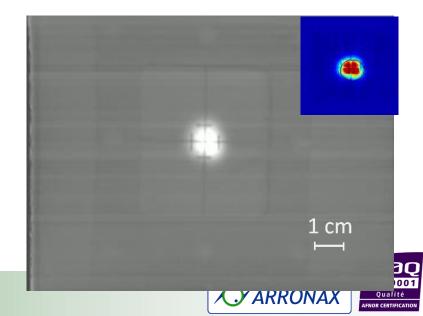
- Profilers: measures the beam density

- <u>Alumina foils</u>: or thin film foils for location and size measurements at end of line



Diagnostics II

On-line analysis of beam x-y density



- Installed downstream a collimator
- A single wire, frequency 18 Hz (19Hz)
- Helicoidal Radius =
 2.7 cm (5.31)
- Limit (theo.)=150 μA for a 10 mm beam

Alumina foil (AlO3) - thickness 1 mm:

- Installed outside the line, downstream the exit thin kapton (75 $\mu m)$ window
- Check of the center and beam size
- ~1nA <I_{mov}<~150 nA for protons and alpha
- Vidikon Camera (radiation hard)
- → Off-line analysis code is developed in GMO, based a Matlab tool from LAL.

