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‣ Strongly coupled plasma described by almost ideal hydrodynamics

‣ Rapid thermalization:                         tth = 0.5− 1 fm/c (tth)pQCD � 2.5 fm/c(cf.                                      )
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‣ Locally equilibrated phase: effective description in terms of 
almost ideal hydrodynamics
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‣ Apply holographic methods to real-time dynamics
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Holography & QGP

Plasma at finite             Black hole in AdS with                                  T TH = T

‣ Learn about the far-from-equilibrium dynamics of strongly coupled field theories.

‣ Find results that are robust enough to make contact with experimental QGP.
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‣ Model the thermalization process of the plasma through an infalling shell in AdS 
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‣ For operators     of large conformal 
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O ∆
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4d FT

‣ Model the thermalization process of the plasma through an infalling shell in AdS 
that leads to black hole formation (homogeneous injection of energy)

‣ Top-down thermalization, short distance correlators thermalize first 
(cf standard view: bottom-up)

‣ Homogeneous setups: fast thermalization, fast applicability of viscous hydrodynamics
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‣ The analytic computations we perform are reliable only for very short times and 
long wavelength fluctuations compared to the local inverse temperature.
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Pressure anisotropies
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‣ After the energy injection, the inhomogeneities in energy density and pressures 
start to smooth out, although pressure anisotropies still grow.  
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‣ After the energy injection, the inhomogeneities in energy density and pressures 
start to smooth out, although pressure anisotropies still grow.  

‣Qualitative and quantitative agreement with free streaming.

Results :

‣ Near the end of the early time interval we explore, the stress tensor agrees with 
that of 2nd order viscous hydrodynamics.

‣ Does this agreement persist to later times? If so, it would provide a justification for 
the standard approach used in simulations (free streaming + viscous hydro).
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Summary 

‣ Holographic methods are a powerful tool to obtain insight in the far-from-
equilibrium dynamics of strongly coupled field theories. 

‣ Homogeneous models: top-down thermalization, fast isotropization of the energy-
momentum tensor and thermalization. 

‣ Early-time evolution with inhomogeneities: free streaming          second order 
viscous hydrodynamics.  

‣ Recent experimental results reveal the importance of event-by-event fluctuations. 

‣ Does the agreement with hydrodynamics extend to later times?

‣ Explore the robustness of these results in more realistic models of heavy-ion 
collisions.


