CMS Experiment at LHC, CERN Data recorded: Sun Nov 25 00:15:46 2012 CEST Run/Event: 207898 / 97057018

#### UNIVERSITÉ LIBRE DE BRUXELLES

# LHC results on the 125 GeV boson decaying to fermions

### Abdollah Mohammadi

IIHE-ULB, Université Libre de Bruxelles

IAP Belgian Meeting, Dec. 2013



### Enough indications for a new particle (scalar boson) @ ~125 GeV

Prelimina

0-iet eu

300

m<sub>u</sub> [GeV/c<sup>2</sup>]



#### Standard Model Higgs Production @LHC

#### gluon-gluon fusion dominant production

**Branching Ratio** 



### Content

Most recent LHC Higgs fermionic searches

- will be presented in this talk:
  - ≻ CMS VH(→bb)
  - ➤ ATLAS VH(→bb)
  - $\succ$  CMS (H $\rightarrow \tau \tau$ )
  - > ATLAS ( $H \rightarrow \tau \tau$ )
  - > CMS combined VH( $\rightarrow$ bb) + (H $\rightarrow$  $\tau\tau$ )
- > will <u>NOT</u> be presented in this talk (see backup):
  - $\rightarrow$  H $\rightarrow$ µµ & H $\rightarrow$ ee
  - $\succ$  ttH( $\rightarrow$ gg, bb, tt, multi-leptons)

### H→bb associated production

## H→bb associated production

Largest Branching Ratio at low mass Challenges:

- Control of large SM background
- ➢ B-tagging

Improve sensitivity:

- b-jet energy regression
- $\blacktriangleright$  boosted analysis: different regions of  $p_t(V)$
- BDT shape analysis for signal extraction

#### 6 topologies considered: Z(II)H(bb), $Z(\nu\nu)H(bb)$ , $W(I\nu)H(bb)$

 $W(\tau v)$  included





6



Main backgrounds: V+jets and ttbar

### b-tagging & b-jet energy calibration

7



Combined Secondary Vertex discriminator (track impact parameters and secondary vertices within jets information used)

Tagging efficiency working points used

- b-tag: 50-75 %
- c-quark: 5-25%
- Light quark & gluons: 0.15-3%



BDT regression trained on VH signal using jet and soft-lepton variables
 Improves mass resolution by 15% and sensitivity by 10-20%
 Validated in data control regions (bbZ—II, ttbar, single top, ...)

### Di-jet mass cross check analysis



Fit to the dijet invariant mass  $M_{ij}$  gives: small excess consistent with the production of SM Higgs at 125 GeV

### H→bb associated production

#### A fit to the BDT shape gives 20% improvement over cut-and-count

- Inputs include kinematics, b-tag information, angles
- Categorize in different  $p_T(V)$  and b-tag categories
- BDT is studied in background control regions



# Validation of BDT using VZ(bb)

As Validation of MVA, BDT is trained using di-boson as signal and other processes (including VH) as BG.

|          | BDT VZ(bb)                         |  |  |
|----------|------------------------------------|--|--|
| Exp. Sig | 6.3 σ                              |  |  |
| Obs. Sig | 7.5 σ                              |  |  |
| μ        | <b>1.19</b> <sup>+0.27</sup> -0.23 |  |  |





### CMS H→bb Final results



#### All channels combined

Events sorted in bins of similar S/B as given by the output of the BDT

### 2.1s observed excess! 2.1s expected

Signal strength of excess: µ=1.0±0.5

### ATLAS $VH \rightarrow bb$

|                           |           | 2 jets<br>1 b-tag | 3 jets<br>1 b-tag | 2 jets<br>2 b-tags | 3 jets<br>2 b-tags | Top CR<br>eµ events |
|---------------------------|-----------|-------------------|-------------------|--------------------|--------------------|---------------------|
| 3 p <sub>T</sub> (V) bins | 0-leptons | CR                | CR                | SR                 | SR                 |                     |
| 5 p <sub>T</sub> (V) bins | 1-lepton  | CR                | CR                | SR                 | SR                 |                     |
| 5 p <sub>T</sub> (V) bins | 2-leptons | CR                | CR                | SR                 | SR                 | CR                  |

- Simultaneous fit in 26 2b---tag signal regions, 26 1b---tag control regions and 5 top control regions
  - CR=control region; normalization of backgrounds (1---bin only)
  - SR=signal region; shape and normalization to m<sub>bb</sub> distribution
  - Common nuisance parameters (NP) across SR's and CR's and channels



## ATLAS VH $\rightarrow$ bb



| ATLAS Prelim.                                               | + σ<br>σ                   | (stat)<br>(sys) | Tota                | l unc | ertair | nty                                   |
|-------------------------------------------------------------|----------------------------|-----------------|---------------------|-------|--------|---------------------------------------|
| <b>VH(bb</b> ), 7 TeV<br>$\mu = -2.1^{+1}_{-1}$             | ±1.1<br>.4 ±0.9<br>.4 ±0.2 | (theo)          |                     |       |        | · · ·                                 |
| VH, 0 lepton $\mu = -2.7^{+2}_{-1}$                         | .2<br>.9 ±1.8              |                 |                     | •     |        |                                       |
| VH, 1 lepton $\mu = -2.5^{+2}_{-1}$                         | .0<br>.9 ±1.6              | -               |                     |       |        |                                       |
| VH, 2 leptons $\mu = 0.6^{+4}_{-3}$                         | .0<br>.6 ±3.1              |                 |                     |       |        |                                       |
| <b>VH(bb), 8 TeV</b><br>μ = 0.6 <sup>+0</sup> <sub>-0</sub> | ±0.5<br>±0.4<br>7 <0.1     |                 |                     |       |        | · · · · · · · · · · · · · · · · · · · |
| VH, 0 lepton $\mu = 0.9^{+1}_{-0}$                          | .0<br>.9 ±0.8              |                 |                     |       |        |                                       |
| VH, 1 lepton $\mu = 0.7^{+1}_{-1}$                          | .1<br>.1 ±0.8              |                 |                     | -f    |        |                                       |
| VH, 2 leptons $\mu = -0.3^{+1}_{-1}$                        | .5<br>.3 ±1.2              |                 | ; ;                 |       |        |                                       |
| Comb. VH(bb)<br>$\mu = 0.2^{+0}_{-0}$                       | ±0.5<br>±0.4<br>6 <0.1     |                 |                     |       | :      | · · ·                                 |
| VH, 0 lepton $\mu = 0.5^{+0}_{-0}$                          | .9<br>.9 ±0.8              |                 |                     | ╺╼┨╼╸ | •      |                                       |
| VH, 1 lepton $\mu = 0.1^{+1}_{-1}$                          | .0<br>.0 ±0.8              |                 |                     |       |        |                                       |
| VH, 2 leptons $\mu = -0.4^{+1}_{-1}$                        | .5<br>.4 ±1.2              |                 | · · · ·             |       | 1      | :                                     |
| √s = 7 TeV ∫Ldt = 4.7 fb <sup>-1</sup>                      |                            | -4              | -2                  | 0     | 2      | 4                                     |
| √s = 8 TeV ∫Ldt = 20.3 fb <sup>-1</sup>                     |                            |                 | Signal strength [µ] |       |        |                                       |

@ 125 GeV

- Expected: 1.3×SM
- Observed: 1.4×SM

Results consistent with SM H→bb and background-only hypotheses

Fitted signal strength 7+8 TeV:  $\mu$ =0.2<sup>+0.7</sup>-0.6 95% CLs @125 GeV



### $H \rightarrow \tau \tau$

Significant Branching Ratio (~ 6%) at low mass Challenges:

- > Reconstruction of different tau decay modes: Hadronic tau ( $\tau_h$ ) reconstruction
- > Reconstruction of di-t mass (presence of  $\nu$ 's)

Improve sensitivity:

- > Different categories based on jet multiplicity and  $\tau p_t$
- > Optimized  $\tau_{had}$ -isolation and e,  $\mu \rightarrow \tau_{had}$  fake rejection



o-jet category: allows to control systematics uncertainties (nuisances in fit) <u>Fit for Higgs signal is performed in all categories</u>

### **Hadronic τ Reconstruction**



| Decay mode                                      | Resonance  | Mass (MeV/c <sup>2</sup> ) | Branching fraction (%) |
|-------------------------------------------------|------------|----------------------------|------------------------|
| $\tau^- \rightarrow h^- \nu_{\tau}$             |            |                            | 11.6%                  |
| $	au^-  ightarrow h^- \pi^0  u_	au$             | $\rho^{-}$ | 770                        | 26.0%                  |
| $\tau^- \rightarrow h^- \pi^0 \pi^0 \nu_{\tau}$ | a_         | 1200                       | 9.5%                   |
| $\tau^- \rightarrow h^- h^+ h^- v_{	au}$        | a_1        | 1200                       | 9.8%                   |
| $	au^-  ightarrow h^- h^+ h^- \pi^0  u_	au$     | 1          |                            | 4.8%                   |

Tau reconstruction: hadron+strip Particle-flow based algorithm to reconstruct different hadronic tau decay modes

τ<sub>h</sub> identification:
➢ efficiency ~ 60%
➢ fake rate ~ 1%

### di-t Mass Reconstruction

Determine invariant mass of di- $\tau$  system with

maximum likelihood method.

marginalize the unobserved neutrinos d.o.f.

Inputs: four-vector information of visible leptons,

x- and y- component of MET and MET resolution





### $H \rightarrow \tau \tau$ categories

|                               | an a  | 0-jet                                 | 1-je                                                   | t                                              | 2-je                                                                                            | et                                                                                              |
|-------------------------------|-------------------------------------------|---------------------------------------|--------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
|                               |                                           |                                       |                                                        | p <sub>T</sub> <sup>™</sup> > 100<br>GeV       | m <sub>jj</sub> > 500 GeV<br> Δη <sub>jj</sub>   > 3.5                                          | p <sub>T</sub> <sup>™</sup> > 100 GeV<br>m <sub>jj</sub> > 700 GeV<br> Δη <sub>jj</sub>   > 4.0 |
| ut.                           | p <sub>т</sub> (т <sub>ь</sub> ) > 45 GeV | high p <sub>τ</sub> (τ <sub>h</sub> ) | high p <sub>τ</sub> (τ <sub>h</sub> )                  | high p <sub>т</sub> (т <sub>h</sub> )<br>boost | 10050                                                                                           | tight<br>VBE tag                                                                                |
| n                             | baseline                                  | low p <sub>τ</sub> (τ <sub>h</sub> )  | low p <sub>T</sub> (τ <sub>h</sub> )                   | _                                              | VBF tag                                                                                         | (2012 only)                                                                                     |
|                               |                                           |                                       |                                                        | 1.24                                           |                                                                                                 |                                                                                                 |
| AT                            | p <sub>τ</sub> (τ <sub>h</sub> ) > 45 GeV | high p <sub>T</sub> (τ <sub>h</sub> ) | h <del>igh p<sub>т</sub>(т<sub>n</sub>)</del>          | high p <sub>T</sub> (τ <sub>h</sub> )<br>boost | loose                                                                                           | tight<br>VBE tag                                                                                |
| baseline                      | baseline                                  | low p <sub>τ</sub> (τ <sub>h</sub> )  | low p <sub>τ</sub> (τ <sub>h</sub> )                   |                                                | VBF tag                                                                                         | (2012 only)                                                                                     |
|                               |                                           |                                       | $E_{\mathrm{T}}^{\mathrm{miss}}$ 30 (                  | GeV                                            |                                                                                                 |                                                                                                 |
| еµ                            | (μ) > 35 GeV                              | high p <sub>τ</sub> (μ)               | high p <sub>T</sub> (µ)                                |                                                | loose                                                                                           | tight<br>VBE tag                                                                                |
|                               | baseline                                  | low p <sub>τ</sub> (μ)                | low p <sub>τ</sub> (μ)                                 |                                                | VBF tag                                                                                         | (2012 only)                                                                                     |
|                               |                                           |                                       | 83.22                                                  |                                                | No. 200                                                                                         |                                                                                                 |
| ee, µµ                        | p <sub>⊤</sub> (I) > 35 GeV               | high p <sub>T</sub> (l)               | (I) high p <sub>T</sub> (I)                            |                                                |                                                                                                 |                                                                                                 |
|                               | baseline                                  | low p <sub>T</sub> (l)                | low p <sub>T</sub> (l)                                 | / p <sub>T</sub> (l)                           |                                                                                                 |                                                                                                 |
| τ <sub>h</sub> τ <sub>h</sub> | baseline                                  |                                       | boost                                                  | large<br>boost                                 | VBF tag                                                                                         |                                                                                                 |
|                               |                                           |                                       | p <sub>T</sub> <sup>π</sup> > 100<br>GeV <sup>18</sup> | p <sub>T</sub> <sup>™</sup> > 170<br>GeV       | p <sub>T</sub> <sup>TT</sup> > 100 GeV<br>m <sub>jj</sub> > 500 GeV<br> Δn <sub>2</sub>   > 3.5 |                                                                                                 |

### $H \rightarrow \tau \tau$ : background estimation

All normalizations are data-driven

 $Z \rightarrow \tau \tau$ : embedded samples <u>No MET/JES scale</u> <u>uncertainties</u> Shape estimation and correction for selection efficiencies



W+jets:

- Normalization from high m<sub>T</sub> control region
- Shape from MC

#### ttbar:

- Normalization from em b-tag control region
- Shape from MC

- Z→ee/µµ
- Normalization scale factor from tag-and-probe in data
- Shape from MC

#### QCD:

 Normalization from ratio of same-sign(SS) to opposite-sign (OS)

data events

Shape from SS data events

### $H \rightarrow \tau \tau \rightarrow \mu \tau_h$

#### $\mu \tau_{\rm h}$ : most sensitive channel



 $p_t(\tau_h) > 45 \text{ GeV}$  $p_t^{\tau\tau} > 100 \text{ GeV}$   $M_{jj} > 500 \text{ GeV } |\Delta \eta_{jj}| > 3.5$ 

 $M_{jj}$  > 700 GeV,  $|Dh_{jj}| > 4$  $p_t^{\tau\tau} > 100 \text{ GeV}$   $H \rightarrow \tau \tau$ : VBF tag

eμ

CMS Preliminary, 19.7 fb<sup>-1</sup> at 8 TeV



dN/dm<sub>tr</sub> [1/GeV]

1.0

0.8

0.6

0.4

0.2

0.0

0.25

0.20

0.15

0.10

0.05

0.00

n

100

dN/dm<sub>tt</sub> [1/GeV]

0















100 200 300 m<sub>ττ</sub> [GeV]



200





eμ:  $H \rightarrow WW$  contribution!

 $H \rightarrow WW$  is treated as background to probe fermionic decay contribution



300

0.0

Ω



21

100

**Tight VBF tag** 

200

300

m<sub>ττ</sub> [GeV]

### $H \rightarrow \tau \tau$ : Combined Mass



Weighted by S/(S+B) using 68% region around the  $m_{\tau\tau}$  peak

Calculate S/(S+B) in every bin of the mass distributions of every event category and channel

### $H \rightarrow \tau \tau$ : 95% CL Upper Limits



 $H \rightarrow WW@125$  is treated as background, motivated by the bosonic discovery

Compatible with a Standard Model Higgs boson signal @ 125 GeV

# Evidence for a $H \rightarrow \tau \tau$ signal!



 $H \rightarrow \tau \tau$ 



 $\mu$  = 0.87 ± 0.29

 $M_{\tau\tau}$  used for statistical interpretation

Mass scale systematic: Lepton energy scale & MET: < 1% Tau energy scale < 2%

 $m_{\rm best-fit} = 115 + 8 - 2 {\rm GeV}$ 

### ATLAS $H \rightarrow \tau \tau$

Design and perform multivariate analysis (based on BDT technique)

Two main categories:VBF & Boosted

>

Resonance and event topology as well as event activities as BDT input

Fit BDT shape with signal+background templates

Simultaneous fit in 6 SR and 5 CR with common systematics NP's



### BDT



log(S / B)

#### ATLAS observes significant excess of data events in high S/B region

- Excess is observed in all three channels
- Expected significance at M<sub>H</sub>=125 GeV corresponds to 3.2 sigma
- Observed significance at M<sub>H</sub>=125 GeV corresponds to 4.1 sigma

### ATLAS $H \rightarrow \tau \tau$ results



| <b>ATLAS</b> Prelim.<br>m <sub>H</sub> = 125 GeV                                       | - o(statistical)<br>- o(syst. incl. th<br>- o(theory)                           | Total uncertainty<br>eory)<br>± 1σ on μ |  |  |  |
|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------|--|--|--|
| $\mathbf{H} \rightarrow \tau \tau \qquad \mu = 1.4^{+0.5}_{-0.4}$                      | + 0.3<br>- 0.3<br>+ 0.4<br>- 0.3<br>+ 0.3<br>+ 0.3<br>- 0.2                     |                                         |  |  |  |
| Boosted $\mu = 1.2^{+0.8}_{-0.6}$                                                      | + 0.5<br>- 0.4                                                                  |                                         |  |  |  |
| VBF $\mu = 1.6^{+0.6}_{-0.5}$                                                          | + 0.4<br>- 0.4                                                                  |                                         |  |  |  |
| $\textbf{H} \rightarrow \tau_{\text{lep}} \tau_{\text{lep}} \ \mu = 2.0^{+1.0}_{-0.9}$ | +0.8<br>-0.7<br>+0.7<br>-0.5<br>+0.4<br>-0.2                                    |                                         |  |  |  |
| Boosted $\mu = 2.0^{+1.8}_{-1.5}$                                                      | + 1.3                                                                           |                                         |  |  |  |
| VBF $\mu = 2.2^{+1.2}_{-1.1}$                                                          | + 1.0<br>- 0.9                                                                  |                                         |  |  |  |
| $\textbf{H} \rightarrow \tau_{\text{lep}} \tau_{\text{had}} \ \mu = 1.4^{+0.6}_{-0.5}$ | +0.4<br>-0.4<br>+0.5<br>-0.3<br>+0.3<br>-0.1                                    |                                         |  |  |  |
| Boosted $\mu = 1.2^{+1.1}_{-0.8}$                                                      | + 0.6                                                                           |                                         |  |  |  |
| VBF $\mu = 1.6^{+0.8}_{-0.6}$                                                          | + 0.6<br>- 0.5                                                                  |                                         |  |  |  |
| $\mathbf{H} \rightarrow \tau_{had} \tau_{had} \ \mu = 1.0^{+0.8}_{-0.6}$               | +0.5<br>-0.5<br>+0.6<br>-0.4<br>+0.2<br>-0.1                                    |                                         |  |  |  |
| Boosted $\mu = 0.8^{+1.2}_{-1.0}$                                                      | + 0.8                                                                           |                                         |  |  |  |
| VBF $\mu = 1.0^{+0.9}_{-0.7}$                                                          | + 0.7                                                                           |                                         |  |  |  |
|                                                                                        | 0                                                                               | 1 2 3 4                                 |  |  |  |
| √s = 8 TeV ∫Ldt =                                                                      | $\sqrt{s}$ = 8 TeV $\int$ Ldt = 20.3 fb <sup>-1</sup> Signal strength ( $\mu$ ) |                                         |  |  |  |

Each event is weighted by ln(1+S/B) for corresponding bin in BDT-score Excess of data events is consistent with presence of Higgs at 125 GeV

Signals at MH=110, 125 and 150 GeV are shown at best fit µ; post--- fit background normalizations

# Combination of SM H $\rightarrow \tau \tau$ and H $\rightarrow bb$ in CMS

# $H \rightarrow \tau \tau \& H \rightarrow bb:$ Combination @ 125 GeV



#### 4 σ: strong evidence of fermionic Higgs decays!

### Summary

Latest LHC (CMS & ATLAS) results on fermionic Higgs properties have been presented

Direct evidence for Higgs couplings to the third-generation bottomtype fermions established

> ATLAS:

 $\rightarrow$  H $\rightarrow$ bb: No sensitive yet

 $\rightarrow$  H $\rightarrow$  $\tau\tau$ : 4.1s (observed), 3.2s (expected)

> CMS:

 $\rightarrow$  H $\rightarrow$  $\tau\tau$ : 3.4s (observed), 3.6s (expected)

 $\rightarrow$  H $\rightarrow$ bb: 2.1s (observed), 2.2s (expected)

 $\rightarrow$  H $\rightarrow$  $\tau\tau$  + H $\rightarrow$ bb combination: 4.0s (observed) 4.2s (expected)

BACKUP

# $H \rightarrow \mu \mu \& H \rightarrow ee search$ (test flavour non-universality)

### H→mm search

Very small branching fraction: BR(H  $\rightarrow \mu\mu$ ) = 2.2 x 10<sup>-4</sup> at m<sub>H</sub> = 125 GeV, but expected narrow peak on top of steep falling background from Z/g<sup>\*</sup> $\rightarrow$ mm Improve sensitivity: Different categories based on h<sup>m</sup>, p<sub>t</sub>(mm), jet multiplicity



### H→ee search

#### Very rare process: BR(H $\rightarrow$ ee) ~ 2x10<sup>-5</sup> \*BR(H $\rightarrow$ µµ)

Improve sensitivity: Different categories based on he and di-jet tag



BR(H→ee) <0.0017

#### Evidence for flavour non-universality

# H $\rightarrow$ µµ search: projections @14 TeV

Looking ahead ... 5 s discovery with ~ 1200 fb<sup>-1</sup> @ 14 TeV Measure muon coupling with 8% precision with ~3 ab<sup>-1</sup> @14 TeV



### ttH search

### (search for direct evidence to top quark coupling)

ttH, H-HIG-13-015 Select events with two photons, large number of jets and at least one b-tag Search for mass peak in di-photon spectrum as standard H→gg analysis 00000000000000000 Two channels: fully hadronic and leptonic CMS Preliminary √s=8 TeV L=19.6 fb<sup>-1</sup> **CMS Preliminary** √s=8 TeV 30



min

hun

g

g

L=19.6fb<sup>-1</sup>

# ttH, H→bb and H→tt,

#### Semileptonic and dilepton tt decays with $\mathrm{H}{\rightarrow}\mathrm{bb}$

- ttH $\rightarrow$ lvjjbb and ttH $\rightarrow$ lvlvbb
- $H \rightarrow \tau \tau$

Shape analysis using MVA with simultaneous fit of different jet and b-tag multiplicities



## ttH: multi-lepton search

Target ttH production in leptonic (e, m) final states from  $H \rightarrow tt$ ,  $22^*$ ,  $WW^*$ 



4 leptons + b-jets (other than H→ZZ→4l, no resonant Z→ll) 3 leptons + b-jets (no resonant Z→ll)

2 same-sign leptons (ee, em, mm) + b-jets

Excess mainly comes from SS di-muon channel



### ttH search: combination

#### gg, bb, tt, multi-lepton channels combined

#### ttHCombinationTWiki



**Direct hint of the Higgs coupling to top quarks** 

41

### H→tt: systematic uncertainties

|              | the second of the second s |                           |                      |
|--------------|----------------------------------------------------------------------------------------------------------------|---------------------------|----------------------|
|              | Uncertainty                                                                                                    | Affected samples          | Change in acceptance |
|              | Tau energy scale                                                                                               | signal & sim. backgrounds | shape                |
|              | Tau ID & trigger                                                                                               | signal & sim. backgrounds | 8-19%                |
| xperimental  | e misidentified as $\tau_h$                                                                                    | $Z \rightarrow ee$        | 20–74%               |
| ncertainties | $\mu$ misidentified as $\tau_h$                                                                                | $Z  ightarrow \mu \mu$    | 30%                  |
|              | Jet misidentified as $\tau_h$                                                                                  | Z boson plus jets         | 20-80%               |
|              | Electron ID & trigger                                                                                          | signal & sim. backgrounds | 2–6%                 |
|              | Muon ID & trigger                                                                                              | signal & sim. backgrounds | 2–4%                 |
|              | Electron energy scale                                                                                          | signal & sim. backgrounds | shape                |
|              | Jet energy scale                                                                                               | signal & sim. backgrounds | 0–20%                |
|              | $E_{\rm T}^{\rm miss}$ scale                                                                                   | signal & sim. backgrounds | 1–12%                |
|              | $\varepsilon_{b-tag}$ b jets                                                                                   | signal & sim. backgrounds | 0–8%                 |
|              | $\varepsilon_{b-tag}$ light-flavoured jets                                                                     | signal & sim. backgrounds | 1–3%                 |
|              | Norm. Z production                                                                                             | Z                         | 3%                   |
| Background   | $Z \rightarrow \tau \tau$ category                                                                             | Z  ightarrow 	au 	au      | 2–14%                |
| estimation   | Norm. W+jets                                                                                                   | W+jets                    | 10–100%              |
|              | Norm. t <del>ī</del>                                                                                           | tī                        | 8–35%                |
|              | Norm. diboson                                                                                                  | diboson                   | 15-45%               |
|              | Norm. QCD multijet                                                                                             | QCD multijet              | 6–70%                |
|              | Shape QCD multijet                                                                                             | QCD multijet              | shape                |
|              | Luminosity 7 TeV (8 TeV)                                                                                       | signal & sim. backgrounds | 2.2% (2.6%)          |

E

 t energy scale uncertainty: changes expected m value by less than 4% Ignoring t energy scale uncertainty has an effect of ~ 40% in the m uncertaint

• 0-jet category allows to constrain backgrounds (eg. peaking  $Z \rightarrow ee$ ,  $Z \rightarrow mm$ )

### H→tt: control of W+jet background

#### Multivariate E<sub>T</sub><sup>miss</sup> regression



 $E_T^{\text{miss}}$ : significant improvement in resolution and dependence on pileup Crucial for H $\rightarrow \tau \tau$  analysis:  $m_{\tau \tau}$  reconstruction and separation of signal from W+jets background using  $m_T(m, \mathcal{E}_T^{min})$  selections

### Miscellanea

### H→tt: Moriond 2013

Analysis of 5 channels: mt<sub>h</sub>, et<sub>h</sub>, t<sub>h</sub>t<sub>h</sub>, em, mm

Maximum excess  $2.93\sigma$  at m<sub>H</sub> = 120 GeV

• 2.85 $\sigma$  at m<sub>H</sub> = 125 GeV (expected 2.63 $\sigma$ )

Signal strength:  $\mu = s/s_{SM} = 1.1 \pm 0.4$ 



# H→tt VBF tag: ee, mm

Final discriminant D used for statistical analysis derived from two BDTs

- BDT1 trained to separate di-tau events from dominant Z→ee/µµ decays
- BDT2 trained to separate H→TT from Z→TT
  - Two separate training for 0/1-jet and VBF categories
  - Trained with all Higgs signals at different masses assuming SM cross sections



# H→tt: Theoretical uncertainties

| Uncertainty                      | Affected samples          | Change in acceptance |
|----------------------------------|---------------------------|----------------------|
| PDF (qq)                         | signal & sim. backgrounds | 4%                   |
| PDF (gg)                         | signal & sim. backgrounds | 10%                  |
| Scale variation                  | signal                    | 3–41%                |
| Underlying event & parton shower | signal                    | 2-10%                |
| Limited number of events         | all                       | bin-by-bin           |

Uncertainty on signal acceptance in each category due to:

- PDF: take envelope of variation from CT10, MSTW and NNPDF sets
- Scale  $\mu_F$  and  $\mu_R$ : applied on total cross section and as a modified  $p_t$  spectrum
- Parton shower modeling: difference in acceptance between CMS (Z2\*) and ATLAS (AUET2) tunes
- p<sub>T</sub> Matching: vary Powheg threshold for the additional NLO jet
- ggH MC Comparison: compare default Powheg NLO to Madgraph, Powheg+MINLO and aMC@NLO

Re-weight Higgs  $p_T$  to NNLO Hres distribution in gluon-fusion samples  $\rightarrow$  Uncertainty covered by shape systematic on signal templates

### H→bb associated production: signal strength



48

Signal strength and couplings consistent with SM expectations

Signal strength of excess: m=1.0±0.5







- Reducible BG: QCD,W/Z+jets, ttbar, ... : Estimated from data using fake rate method
- Irreducible BG: WZ for WH and ZZ for ZH: Estimated from MC
- Further topological cuts to suppress large backgrounds

