Multilepton and multiphoton signatures of GMSB at the LHC

Christoffer Petersson

Université Libre de Bruxelles International Solvay Institutes

Multileptons based on: J. D'Hondt, K. De Causmaecker, B. Fuks, A. Mariotti, K. Mawatari, C.P., D. Redigolo arXiv:1310.0018 [hep-ph] Multiphotons based on: G. Ferretti, A. Mariotti, K. Mawatari, C.P. arXiv:1312.1698 [hep-ph]

Motivations

- So far the LHC has not seen any clear signal of BSM physics
- However, so far the LHC has mainly probed colored production
- Also, so far it has mainly probed minimal BSM scenarios

Motivations

- So far the LHC has not seen any clear signal of BSM physics
- However, so far the LHC has mainly probed colored production
- Also, so far it has mainly probed minimal BSM scenarios

- This motivates: Non-minimal models
 - Non-standard signatures at the LHC
 - New LHC searches and strategies

Plan of the talk and results

Plan of the talk and results Part I

Exercise: Explain a small excess in multi-lepton events observed recently by CMS with BSM physics (without being excluded by other data).

Result: It is possible with a simple GMSB model, which, in addition, gives rise to non-standard signatures that could be searched for at the LHC.

Plan of the talk and results Part I

Exercise: Explain a small excess in multi-lepton events observed recently by CMS with BSM physics (without being excluded by other data).

Result: It is possible with a simple GMSB model, which, in addition, gives rise to non-standard signatures that could be searched for at the LHC.

Part II

Exercise: Study how the standard phenomenology of GMSB is modified by the non-minimal assumption that SUSY is broken in more than one hidden sector.

Result: Also these models give rise to non-standard signatures, with softer final state spectrum, but with additional photons. Existing LHC searches are poorly sensitive. However, these models can be probed with new, dedicated, searches.

Part I

CMS SUS-13-002

$$\begin{vmatrix} 19.5 \, \text{fb}^{-1} & \text{at} \\ \sqrt{s} = 8 \, \text{TeV} \end{vmatrix}$$

Search for events with three or more leptons

ĺ	Selection		$E_{\rm T}^{\rm miss}$	$N(\tau_h)$	=0, N _{b-jets} =0	$N(\tau_h)$	=1, N _{b-jets} =0	$N(\tau_h)$	$=0, N_{b-jets} \ge 1$	$N(\tau_h)$	=1, $N_{b-jets} \ge 1$
	4 Lepton Results			obs	exp	obs	exp	obs	exp	obs	exp
	OSSF0 $H_T < 200$	NA	(100,∞)	0	0.11 ± 0.08	0	0.17 ± 0.1	0	0.03 ± 0.04	0	0.04 ± 0.04
	OSSF0 $H_T < 200$	NA	(50, 100)	0	0.01 ± 0.03	2	0.7 ± 0.33	0	0 ± 0.02	0	0.28 ± 0.16
	OSSF0 $H_T < 200$	NA	(0,50)	0	0.01 ± 0.02	1	0.7 ± 0.3	0	0.001 ± 0.02	0	0.13 ± 0.08
\rightarrow	$OSSF1 H_T < 200$	off-Z	(100,∞)	0	0.06 ± 0.04	3	0.6 ± 0.24	0	0.02 ± 0.04	0	0.32 ± 0.2
	OSSF1 $H_T < 200$	on-Z	(100,∞)	1	0.5 ± 0.18	2	2.5 ± 0.5	1	0.38 ± 0.2	0	0.21 ± 0.1
\rightarrow	$OSSF1 H_T < 200$	off-Z	(50,100)	0	0.18 ± 0.06	4	2.1 ± 0.5	0	0.16 ± 0.08	1	0.45 ± 0.24
	$OSSF1 H_T < 200$	on-Z	(50,100)	2	1.2 ± 0.34	9	9.6 ± 1.6	2	0.42 ± 0.23	0	0.5 ± 0.16
\rightarrow	$OSSF1 H_T < 200$	off-Z	(0,50)	2	0.46 ± 0.18	15	7.5 ± 2	0	0.09 ± 0.06	0	0.7 ± 0.31
	$OSSF1 H_T < 200$	on-Z	(0,50)	4	3 ± 0.8	41	40 ± 10	1	0.31 ± 0.15	2	1.5 ± 0.47
	OSSF2 $H_T < 200$	off-Z	(100,∞)	0	0.04 ± 0.03	-	-	0	0.05 ± 0.04	-	-
	$OSSF2 H_T < 200$	on-Z	(100,∞)	0	0.34 ± 0.15	-	-	0	0.46 ± 0.25	-	-
	$OSSF2 H_T < 200$	off-Z	(50, 100)	2	0.18 ± 0.13	-	-	0	0.02 ± 0.03	-	-
	$OSSF2 H_T < 200$	on-Z	(50, 100)	4	3.9 ± 2.5	-	-	0	0.5 ± 0.21	-	-
	$OSSF2 H_T < 200$	off-Z	(0,50)	7	8.9 ± 2.4	-	-	1	0.23 ± 0.09	-	-
	$OSSF2 H_T < 200$	on-Z	(0,50)	*156	159 ± 34	-	-	4	2.9 ± 0.8	-	-

In the category: - 4 leptons with one hadronic tau

- One OSSF lepton pair, off-Z
- Low hadronic activity, H_T < 200 GeV, no b-jets

Observed: 22 Expected: 10.2 ± 2.4

Slide from presentation by Andrea Gozzelino (CMS) at the conference "SUSY 2013", August 26

[CMS SUS-13-002]

- Fix $m_{3/2} = 1 \,\mathrm{eV}, m_{\tilde{B}} = 500 \,\mathrm{GeV}$
- Consider slepton/stau masses in the range 50-300 GeV
- Simulate the following two processes at LHC-8TeV

Simulations/analysis done with:FeynRules[Christensen,Duhr,Fuks]MadGraph 5[Alwall,Herquet,Maltoni,Mattelaer,Stelzer]Pythia[Sjöstrand,Mrenna,Skands]Delphes[Ovyn,Rouby,Lemaitre]MadAnalysis 5[Conte,Fuks,Serret]

NLSP pair production sets bounds on these models

NLSP pair production sets bounds on these models M.II: $pp \rightarrow \tilde{\ell}_R \tilde{\ell}_R$, $\tilde{\ell}_R \rightarrow \ell \tilde{G} \rightarrow \ell^+ \ell^- + MET$ $\rightarrow m_{\tilde{\ell}_R} > 230 \text{ GeV}$ [ATLAS-CONF-2013-049,CMS-PAS-SUS-13-006]

NLSP pair production sets bounds on these models

M.I: $pp \to \tilde{\tau}_R \tilde{\tau}_R \ , \ \tilde{\tau}_R \to \tau \tilde{G} \to \tau \tau + MET$

 $\rightarrow m_{\tilde{\tau}_R} > 87 \,\mathrm{GeV}$ [LEP]

Same category, but on-Z

4 leptons, no hadronic tau

4 leptons, no hadronic tau

Note that in all the 3 lepton categories, the backgrounds are so large, that the signal yield is always in agreement with the expectations.

Comparison with other searches

- CMS multi-lepton search CMS SUS-13-010 (requires 4 electrons or muons)
- ATLAS multi-lepton search (requires MET>100 GeV)
- ATLAS di-tau+MET search (lepton veto)

Prospects

$$m_{\tilde{\ell}_R} = 145 \,\mathrm{GeV}$$

 $m_{\tilde{\tau}_R} = 90 \,\mathrm{GeV}$

		$19.5{\rm fb}^{-1}$	$100\mathrm{fb}^{-1}$
$N(\ell)$	$N(au_h)$	$N_{ m events}(8~{ m TeV})$	$N_{ m events}(13~{ m TeV})$
4	2	22.5	223
5	0	0.074	0.79
5	1	1.7	14.7
5	2	7.4	76.1
6	0	0	0
6	1	0.075	0.66
6	2	1.0	7.89
> 6	0	0.038	13.9

Prospects

Proposed LHC search: $2\tau_h + (2/3)\ell + MET$

$$m_{\tilde{\ell}_R} = 145 \,\mathrm{GeV}$$

 $m_{\tilde{\tau}_R} = 90 \,\mathrm{GeV}$

		$19.5{\rm fb}^{-1}$	$100 {\rm fb}^{-1}$
$N(\ell)$	$N(au_h)$	$N_{ m events}(8~{ m TeV})$	$N_{ m events}(13~{ m TeV})$
4	2	22.5	223
5	0	0.074	0.79
5	1	1.7	14.7
5	2	7.4	76.1
6	0	0	0
6	1	0.075	0.66
6	2	1.0	7.89
> 6	0	0.038	13.9

Part II

What happens if SUSY is broken in more than one hidden sector?

Previous studies of multiple hidden sector models in the context of gravity mediation:

[Benakli,Moura] [Cheung,Nomura,Thaler] [Craig,March-Russell,McCullough] [Izawa,Nakai,Shimomura] [Thaler,Thomas] [Cheung,D'Eramo,Thaler] [Cheng,Huang,Low,Menon][Bertolini,Rehermann,Thaler]

Multiple hidden sector models in the context of gauge mediation:

[Argurio,Komargodski,Mariotti] [Argurio,De Causmaecker,Ferretti,Mariotti,Mawatari,Takaesu] [Liu,Wang,Yang]

GMSB with multiple hidden sectors

- The n additional neutral fermions extend the 4 by 4 MSSM neutralino mass matrix to an (4+n) by (4+n) matrix
- The true goldstino is given by the linear combination $\tilde{G} = \frac{1}{f}(f_1\tilde{\eta}_1 + \dots + f_n\tilde{\eta}_n)$
- All the other n-I linear combination are pseudo-goldstini $\tilde{G}', \tilde{G}'', \dots$ and they acquire masses at the tree and radiative level
- If the Lightest Ordinary SUSY Particle (LOSP) is a Bino-like neutralino, it dominantly decays to a photon and the heaviest pseudo-goldstini
 - → Softer final state spectrum
- If there are more than 2 hidden sectors, the pseudo-goldstino can decay to a photon and a lighter pseudo-goldstino
 - \rightarrow Additional (soft) photons in the final state

Simplified models of GMSB with goldstini

Simplified models of GMSB with goldstini

 $\ell^+\ell^- + 2\gamma$ -ET

 $\ell^+\ell^- + 4\gamma +$ ET

Comparing with existing LHC searches

- CMS diphoton+MET search [CMS-PAS-SUS-12-018] (jet requirement)
- ATLAS lepton+photon+MET search [ATLAS-CONF-2012-144] (tight cuts)
- Dileptons+MET searches have too large backgrounds
- The most relevant search is the inclusive ATLAS diphoton+MET search [arXiv:1209.0753 [hep-ex]]

• The most relevant search is the inclusive ATLAS diphoton+MET search [arXiv:1209.0753 [hep-ex]]

 $p_T^{\gamma_{1,2}} > 50 \,\text{GeV}$, MET > 125 GeV

• The most relevant search is the inclusive ATLAS diphoton+MET search [arXiv:1209.0753 [hep-ex]] $4.8 \, {\rm fb}^{-1}$ at $\sqrt{s} = 7 \, {\rm TeV}$

 $p_T^{\gamma_{1,2}} > 50 \,\text{GeV}$, MET > 125 GeV

 e, μ, τ

 \tilde{G}'

• The most relevant search is the inclusive ATLAS diphoton+MET search [arXiv:1209.0753 [hep-ex]] $4.8 \, {\rm fb}^{-1}$ at $\sqrt{s} = 7 \, {\rm TeV}$

 $p_T^{\gamma_{1,2}} > 50 \,\text{GeV}$, MET > 125 GeV

• The most relevant search is the inclusive ATLAS diphoton+MET search [arXiv:1209.0753 [hep-ex]] $4.8 \, {\rm fb}^{-1}$ at $\sqrt{s} = 7 \, {\rm TeV}$

		$p_T^{\gamma_1,}$	$^{2} > 50 \mathrm{GeV}$, MET	$> 125 \mathrm{GeV}$	Τ
		Ι	$M_{\ell_R} = 200 { m GeV}$	$2\gamma + E_T$	$2\ell+2\gamma+E_T$	
			$(K_{G'},x,M_{G'})$			$p_T^\ell > 20 \text{ GeV}$
	$\equiv \tilde{e}_R, \tilde{\mu}_R, \tilde{\tau}_R$		(100, 0.1, 0)	7	20	$p_T' > 20 \text{ GeV}$
e, μ, τ	$\tilde{\mathbf{v}}$	A'	(100, 0.1, 75)	1	8	ME1 > 50 GeV
γ	$-\chi$ $-\tilde{G}'$		(100, 0.1, 150)	2	2	
	$\equiv \tilde{e}_R, \tilde{\mu}_R, \tilde{\tau}_R$		(100, 0.5, 0)	10	27	
$\frac{1}{2}e, \mu, \tau$	$- ilde{\chi}$	В'	(100, 0.5, 75)	5	20	
γ	$-\tilde{G}'$		(100, 0.5, 150)	0	2	
$\downarrow e, \mu, \tau$	${f \in} { ilde e}_R, { ilde \mu}_R, { ilde au}_R$ - ${ ilde \chi}$		(100, 0.9, 0)	29	8	
γ	~~	C'	(100, 0.9, 75)	19	3	
Ļ	$-\tilde{G}'$		(100, 0.9, 150)	1	0	$\Big _{M_{\gamma}} = x M_{\ell_B} + (1-x) M_G$

Number of expected events with 20 fb⁻¹ of data at LHC-8TeV

• The most relevant search is the inclusive ATLAS diphoton+MET search [arXiv:1209.0753 [hep-ex]] $4.8 \, \text{fb}^{-1}$ at $\sqrt{s} = 7 \, \text{TeV}$

• The most relevant search is the inclusive ATLAS diphoton+MET search [arXiv:1209.0753 [hep-ex]] $4.8 \, {\rm fb}^{-1}$ at $\sqrt{s} = 7 \, {\rm TeV}$ $p_T^{\gamma_{1,2}} > 50 \, {\rm GeV}$, MET > $125 \, {\rm GeV}$

Number of expected events with 20 fb⁻¹ of data at LHC-8TeV

final state	MET	150-100-50	150-100-0	150-50-0	100-50-0
3γ	3γ (0-50)		25	39	43
	(50-100)	34	37	32	27
	$(100-\infty)$	11	19	14	9
final state	MET	150-100-50	150-100-0	150-50-0	100-50-0
final state 4γ	MET (0-50)	150-100-50 16	150-100-0 13	150-50-0 19	100-50-0 18
final state 4γ	MET (0-50) (50-100)	150-100-50 16 15	150-100-0 13 19	150-50-0 19 13	100-50-0 18 9

Number of expected events with 20 fb⁻¹ of data at LHC-8TeV

	final state	MET	150-100-50	150-100-0	150-50-0	100-50-0				
	3γ	(0-50)	32	25	39	43				
		(50-100)	34	37	32	27				
		$(100-\infty)$	11	19	14	9				
	final state	MET	150-100-50	150-100-0	150-50-0	100-50-0				
	4γ	(0-50)	16	13	19	18				
		(50-100)	15	19	13	9				
		$(100-\infty)$	3.4	8.3	5.6	3.0				
$\tilde{\ell}_{R}^{+}$ $\tilde{\ell}$										
h for $(>3)\gamma + ME 1$ count with the existing 0 100 00										
A search 101 (constraints) and 7 200 150 50 0										
$(or very 50.00)_{\ell^-}$ 200 100 50 0										

Conclusions

Part I

The simplified GMSB model can both explain the small CMS excess and explain why no sign of new physics has been seen in any other LHC searches.

The best fit to the data was obtained for $m_{\tilde{\ell}_R} = 145 \,\mathrm{GeV}$, $m_{\tilde{\tau}_R} = 90 \,\mathrm{GeV}$ Would be excluded with a stronger bound on the stau mass.

Proposed search: $2\tau_h + (2/3)\ell + MET$

Conclusions

Part II

In GMSB models with multiple hidden sectors, the presence of pseudo-goldstini implies final state spectra which are soft but involve additional photons.

Focused on slepton pair production, one could consider other production modes

Thank you!