Searches for Supersymmetry and Dark Matter with CMS

Steven Lowette Vrije Universiteit Brussel - IIHE

19 December 2013 IAP meeting Fundamental Interactions – UCL, Louvain-la-Neuve

Vrije Universiteit Brussel

Back in 2006...

- CMS Physics TDR
 - grand 600-page overview of the CMS physics programme
- what concerns supersymmetry, only mSUGRA/CMSSM considered
 - reduction of MSSM to 5 parameters
- no mention of dedicated searches for dark matter...

J. Phys. G: Nucl. Part. Phys. 34 995-1579

Finally, 2010 brought collisions...

- at 7TeV c.o.m. energy
- after 900 and 2360GeV collisions in 2009
- 8TeV in 2012

CMS Experiment at LHC, CERN Data recorded: Tue Mar 30 12:58:48 2010 CEST Run/Event: 132440 / 2737921 Lumi section: 124 Orbit/Crossing: 32323764 / 1

High - Energy Collisions at 7 TeV LHC @ CERN 30.03.2010

...and impressive results!

CMS Integrated Luminosity, pp

CMS Integrated Luminosity, pp

adapted from G. Dissertori

CMS Integrated Luminosity, pp

adapted from G. Dissertori

CMS Integrated Luminosity, pp

adapted from G. Dissertori

CMS Integrated Luminosity, pp

adapted from G. Dissertori

CMS Integrated Luminosity, pp

adapted from G. Dissertori

CMS Integrated Luminosity, pp

adapted from G. Dissertori

CMS Integrated Luminosity, pp

adapted from G. Dissertori

CMS Integrated Luminosity, pp

adapted from G. Dissertori

CMS Integrated Luminosity, pp

adapted from G. Dissertori

CMS Integrated Luminosity, pp

adapted from G. Dissertori

CMS Integrated Luminosity, pp

adapted from G. Dissertori

CMS Integrated Luminosity, pp

adapted from G. Dissertori

CMS Integrated Luminosity, pp

adapted from G. Dissertori

CMS Integrated Luminosity, pp

adapted from G. Dissertori

Inclusive searches

- quickly analyse the unknown territory with signature-based inclusive searches
- commonality missing energy (MET)
 - from LSP as DM candidate (R-parity conservation)
- emphasis on strong squark and gluino pair production
 - other production modes too low in cross section at first
 - coloured production, so jets expected

0-leptons	1-lepton	OSDL	SSDL	≥3 leptons	2-photons	γ+lepton
Jets + MET	Single lepton + Jets + MET	Opposite- sign di- lepton + jets + MET	Same-sign di-lepton + jets + MET	Multi-lepton	Di-photon + jet + MET	Photon + lepton + MET

Limits beyond expectations

Limits beyond expectations

The most powerful SUSY search on the market...

The most powerful SUSY search on the market...

Phys. Lett. B 716 (2012) 30

The constrained CMSSM

The constrained CMSSM

SUSY under pressure

Phys.Lett. B708 (2012) 162-169

Also other models have a hard time

- in MSSM at tree level: $m_h \le m_Z |\cos(2\beta)|$
- a higher Higgs mass can arise from higher-order corrections
 - in particular from high stop mass
 - but still 130 GeV is about the maximum you can reach

99% probed models have m_h below the lines...

SUSY in SMSs

One way forward: ignore Higgs mass constraint

SUSY in SMSs

Simplified Model Spectra

- aim to capture typical signatures of what can be expected in full models
- consider a few sparticles only in the spectrum
- allow a few decays only
- this is actually expanding the phase space, rather than limiting it
 - example: in CMSSM/mSUGRA, the ratio of the gluino and LSP mass is approximately fixed (~7 to 1)
 - so CMSSM only explores a line on the gluino-LSP-mass plane!

SUSY in SMSs

SMS Search strategy

- build analysis around a chosen signature
 - eg. jets+MET, SS dileptons, etc
- optimize for different SMS assumptions
 - avoid using assumptions, like σ x BR, only channel, etc
- interpret possibly in other SMS's
- publish maps of acceptance and cross-section upper limits
 - or even better, efficiency parametrizations

95% exclusion limits for T1: $\widetilde{g} \rightarrow q \overline{q} \, \widetilde{\chi}^0$

SUSY further under pressure

Limits, and more limits

- 2011 was a very rich year for limits on SUSY
- most limits from inclusive search program
 - adding b's, t's,...

Hadronic / inclusive CMS	$\sqrt{s} = 7 \text{ TeV}, \ L \le 4.98 \text{ fb}^{-1}$ Leptonic					
$m_{\text{LSP}} = 0 \text{ GeV}$ $x = 0.25 \atop x = 0.5 \atop m_{\text{mother}} - m_{\text{LSP}} = 200 \text{ GeV}$	$m_{\text{mother}} - m_{\text{LSP}} = 200 \text{ GeV}$ $\begin{array}{c} x = 0.25 \\ x = 0.5 \\ x = 0.75 \\ x = 0.75 \\ \end{array}$ $m_{\text{LSP}} = 0 \text{ GeV}$					
T1: $ ilde{g} ightarrow q ar{q} ilde{\chi}^0$, $lpha_T$	T3lh: $ ilde{g} ightarrow q ar{q} (ilde{\chi}_2^0 ightarrow l^+ l^- ilde{\chi}^0)$, OS e/μ edge					
T1: $\bar{g} \rightarrow q \bar{q} \bar{\chi}^0$, $\not\!\!\!/ T_T$ + jets	T3lh: $\bar{g} \rightarrow q\bar{q}(\bar{\chi}_2^0 \rightarrow l^+ l^- \bar{\chi}^0)$, OS $e/\mu + E_T$					
T1: $ ilde{g} ightarrow q ar{q} ilde{\chi}^0$, razor	T3lh: $\tilde{g} ightarrow q ar{q} (ilde{\chi}^0_2 ightarrow l^+ l^- ilde{\chi}^0)$, OS e/μ ANN					
T1: $ ilde{g} ightarrow q ilde{q} ilde{\chi}^0$, M_{T2}	TSInu: $ ilde{g} ightarrow q ar{q} (ilde{\chi}^{\pm} ightarrow l^{\pm} u ilde{\chi}^{0})$, SS e/μ					
T1tttt: $ar{g} ightarrow tar{t} ar{\chi}^0$, $lpha_T$	T1tttt: $\tilde{g} \rightarrow t \bar{t} \tilde{\chi}^0$, SS e/μ + b					
Tltttt: $\bar{g} \rightarrow t \bar{t} \bar{\chi}^0$, $\not\!$	Tltttt: $\widetilde{g} ightarrow t \widetilde{t} \widetilde{\chi}^0$, $e/\mu \geq 2b + E_T$					
T1tttt: $\tilde{g} \rightarrow t \bar{t} \tilde{\chi}^0$, M_{T2} b	T1tttt: $ ilde{g} ightarrow t ilde{t} ilde{\chi}^0$, $e/\mu \geq \! 3b, Y_{MET}$					
T1tttt: $\bar{g} \rightarrow t \bar{t} \bar{\chi}^0$, razor						
T1tttt: $\tilde{g} \rightarrow t \tilde{t} \tilde{\chi}^0$, razor+b						
T1bbbb: $\tilde{g} ightarrow b ar{b} \tilde{\chi}^0$, $lpha_T$	T3w: $\tilde{g} \rightarrow q\bar{q}(\tilde{\chi}^{\pm} \rightarrow W \tilde{\chi}^{0} \tilde{\chi}^{0}), e/\mu \text{ LS}$					
T1bbbb: $\bar{g} \rightarrow b \bar{b} \bar{\chi}^0$, $\not\!$	T3w: $\hat{g} ightarrow q ar{q} (ilde{\chi}^{\pm} ightarrow W ilde{\chi}^0 ilde{\chi}^0), \ e/\mu$ LPL					
T1bbbb: $ ilde{g} o b ar{b} ilde{\chi}^0$, M_{T2} b	T3w: $\tilde{g} \rightarrow q \bar{q} (\tilde{\chi}^{\pm} \rightarrow W \tilde{\chi}^0 \tilde{\chi}^0), e/\mu$ ANN					
T1bbbb: $\bar{g} \rightarrow b \bar{b} \bar{\chi}^0$, razor+b						
T5zz: $\tilde{g} \rightarrow q\bar{q}(\tilde{\chi}_2^0 \rightarrow Z\tilde{\chi}^0), \not\!$	T5zz: $\tilde{g} \rightarrow q \bar{q} (\tilde{\chi}_2^0 \rightarrow Z \tilde{\chi}^0)$, Z + E_T					
T5zz: $\tilde{g} \rightarrow q\bar{q}(\tilde{\chi}^0_2 \rightarrow Z \tilde{\chi}^0)$, M_{T2}	T5zz: $\tilde{g} \rightarrow q \bar{q} (\tilde{\chi}^0_2 \rightarrow Z \tilde{\chi}^0)$, JZB					
T5zz: $\bar{g} \rightarrow q\bar{q}(\bar{\chi}^0_2 \rightarrow Z \bar{\chi}^0)$, M_{T2} b	T5zz: $\bar{g} \rightarrow q\bar{q}(\bar{\chi}_2^0 \rightarrow Z \bar{\chi}^0)$, multilepton (≥ 3)					
T2: $ar{q} ightarrow q ar{\chi}^0$, $lpha_T$	TChiSlepSlep: $ar{\chi}^0_2 ar{\chi}^\pm ightarrow {\mathcal U} u ar{\chi}^0 ar{\chi}^0$, multilepton (\geq 3)					
T2: $ ilde{q} ightarrow q ilde{\chi}^0$, $ extsf{H}_T$ + jets	TChiSlepSlep: $ ilde{\chi}_2^0 ilde{\chi}_{\pm}^+ o tll u ilde{\chi}^0 ilde{\chi}^0$,comb. leptons					
T2: $ ilde{q} ightarrow q ilde{\chi}^0$, razor						
T2bb : $\bar{b} \rightarrow b \bar{\chi}^0$, α_T	TChiwz: $ ilde{\chi}^\pm ilde{\chi}^0_2 woheadrightarrow WZ ilde{\chi}^0 ilde{\chi}^0$, comb. leptons					
T2bb: $ ilde{b} o b ilde{\chi}^0$, razor+b	T6ttww: $ar{b} ightarrow t W ilde{\chi}^0$, SS e/μ + b					
T2tt: $\tilde{t} \rightarrow t \tilde{\chi}^0$, α_T	T5wg : $\tilde{g} \rightarrow q\bar{q}(\tilde{\chi}_2^0 \rightarrow \gamma \tilde{\chi}^0 \tilde{\chi}^{\pm} \rightarrow W \tilde{\chi}^0), \gamma j j + \not\!$					
T2tt: $\tilde{t} \rightarrow t \tilde{\chi}^0$, razor	T5gg: $\tilde{g} \rightarrow q\bar{q}(\tilde{\chi}_2^0 \rightarrow \gamma \tilde{\chi}^0), \ \gamma \gamma j + E_T$					
T2tt: $\overline{t} \rightarrow t \overline{\chi}^0$, razor+b	T5gg: $\tilde{g} \rightarrow q\bar{q}(\tilde{\chi}_2^0 \rightarrow \gamma \tilde{\chi}^0), \gamma j j + \mathbf{E}_{r}$					
1000 800 600 400 200 0 200 400 600 800 1000 Mass scales [GeV]						

Exclusive SUSY searches

Onwards to exclusive searches

- with large luminosity, rarer SUSY production modes come available
- need new, dedicated, exclusive strategies

Natural SUSY

Why the interest in stop (and sbottom) squarks?

- since a good year, we have a hierarchy problem to solve
- need fine-tuning over 30 orders of magnitude to stabilize the Higgs mass
 - problem of naturalness

$$= \mathbf{X}^{\text{Classical}} + \begin{pmatrix} 5M \\ f_{L} \\ \lambda \\ f_{L} \end{pmatrix} \mathbf{M}_{h}^{2} = (\mathbf{M}_{h}^{2})_{0} - \begin{pmatrix} \frac{1}{16\pi^{2}}\lambda^{2}\Lambda^{2} + \dots \end{pmatrix}$$

- supersymmetry solves this in a natural way
 - superpartners cancel terms proportional to Λ^2 , leaving terms in log(Λ)

Natural SUSY

- well... natural... supersymmetry is broken
 - if SUSY scale large enough, then terms in log(Λ) will create new fine tuning

- to keep the theory natural
 - need light Higgsinos
 - need m(gluino) < ~ 1500 GeV
 - need m(stop [sbottom]) < ~ 500 GeV

- a new dedicated search program was developed at the LHC around naturalness
 - search for direct stop and sbottom pair production
 - gluino searches, decaying through stop/sbottom

Natural SUSY searches

After 2 years of dedicated efforts...

- stringent limits on naturalness
 - with some caveats

Natural SUSY under pressure

- Oct 2011: "Natural SUSY endures" (arXiv:1110.6926 [hep-ph])
- Oct 2013: "Toward Full LHC Coverage of Natural Supersymmetry" (arXiv:1310.5758 [hep-ph])

naturalness probability

JHEP 1104 (2011) 073

Constraining EWK SUSY

Searches for electroweak SUSY production

- without naturalness, all coloured sparticles could be out of reach
- other sparticles have low production cross sections (EWK production)
 - neutralinos, charginos, sleptons
- decay to leptons, from sleptons or from W/Z decays
 - no or little jet production
 - searches with 2 leptons (same charge or opposite charge), 3 and 4 leptons
 - example diagrams:

caveat: assumptions on BR's

Steven Lowette – Vrije Universiteit Brussel IAP meeting Fundamental Interactions – 19 December 2013

CMS-PAS-SUS-12-022

Welcome back, H(125)

Finally, we stopped ignoring our scalar boson

- it is possible to have scalar bosons produced in neutralino decays
- we know the mass now, and also couplings
- and we start to have enough data to be sensitive to these rare processes
- search performed in all H \rightarrow bb, TT, WW, and ZZ decay modes
 - most sensitive in the single-lepton search where H → bb

CMS-PAS-SUS-13-017

Welcome back, H(126)

Other examples with H in cascades

• stop search in GMSB scenario

• stop2 \rightarrow stop1 search

CMS-PAS-SUS-13-021

SUSY: nothing but limits

No evidence?

EPJ Plus, 127 12 (2012) 157

Evidence for

...

in LHC SUSY Searches

EPJ Plus, 127 12 (2012) 157

Evidence for conservatism in LHC SUSY Searches

- conservative uncertainties translate in too few observed excesses
- better uncertainties could still reveal something

SUSY under pressure?

"You can never exclude SUSY, you can only find it"

- however, the appeal is weakening
- it looks like we have to give in on one of the following
 - naturalness: with a higher SUSY scale, everything is possible again
 - RPC: don't try to solve dark matter, but make sure to keep proton stable
 - lack of fine-tuning: SUSY at low scale, but with compressed spectrum
 - minimal SUSY
 - • • •
- or maybe we need revolutionary (crazy?) ideas?
 - eg. H(126) is the superpartner of the neutrino (arXiv:1211.4526 [hep-ph])

First years LHC Run II will be crucial

• last energy increase for a while...

Dark Matter Searches

SUSY as a DM model

- many RPC SUSY searches at the LHC are searches for dark matter produced in decays of higher-mass particles
 - dark matter has more experimental backing than SUSY...
- eg. jets + MET is a very generic signature of a strongly produced particle decaying to a DM candidate

• if we're not seeing the higher-mass state, then maybe we can search for directly-produced dark matter?

DM searches in CMS

"Traditional" DM collider searches

- use initial-state gluon or photon radiation as a probe recoiling against a pair of DM particles
 - production vertex approached assuming couplings in an effective theory

Steven Lowette - Vrije Universiteit Brussel IAP meeting Fundamental Interactions – 19 December 2013

DM searches in CMS

Mono-something

- other particles can be considered initial-state radiation, or produced in the DM interaction vertex
 - mono-W, mono-Z, monotop, monohiggs
- recent new result: mono-W with leptonic decay \rightarrow monolepton

DM interpretations

DM search interpretation can be tricky

- effective field-theory approach comes with caveats
 - mediator mass should be "sufficiently heavy" in order to treat the DM production as a contact interaction
- using EFT beyond its applicability can lead to overly optimistic limits

- also here, a simplified model approach starts to be considered to scan the parameter space more systematically
- very active research area!

Searches for SUSY and DM with CMS

Quite a story for SUSY in LHC Run I

- from CMSSM to SMS descriptions
- the naturalness saga
- rare processes with electroweak production and H(126) in cascades
- run II will be crucial!

Dark Matter as a new motivator

- mono-something searches setting strong limits already
 - in particular on low-mass DM particles
- need to be careful with EFT approach