Search for cosmic neutrinos at the South Pole with IceCube & ARA

Thomas Meures for the Belgian IceCube/ARA groups

What makes neutrinos an interesting messenger in the universe

Photons

Cosmic rays

Extremely small interaction cross-section
No magnetic structure

IAP meeting 2013 - UCI

What we expect

The Askaryan Radio Array Main purpose: Looking for GZK neutrinos

Cosmic Microwave Background radiation

discovered by Penzias & Wilson (1965)

A necessary consequence: The GZK mechanism A resonant interaction between ultra-high energy cosmic rays (UHECR) and the CMB: $p + \gamma \rightarrow \Delta^+ \rightarrow \pi^+ + n$

$$\pi^{+} \rightarrow \mu^{+} + \nu_{\mu}$$

$$\mu^{+} \rightarrow e^{+} + \overline{\nu}_{\mu} + \nu_{e}$$

$$n \rightarrow p + e^{-} + \overline{\nu}_{e}$$

Summary – GZK neutrinos

Detecting v_s via the Askaryan effect in ice

- Neutrinos produce particle cascades in the ice
- If the energy is high enough, a significant negative charge excess (~20%) is built up through:
 - Compton scattering
 - Delta-rays

• For most other techniques the attenuation length for the used signal is too short

The ARA setup

One station:

- Measurement system:
 - 4 holes, 20 m spacing
 - 16 antennas, 150 MHz 800 MHz
 (8 horizontally polarized., 8 vertically pol.)
- Calibration system:
 - 2 holes, ~40 m distant
 - 4 pulsing antennas (2 h-pol., 2 v-pol.)

Each station is an autonomous detector!

- 37 antenna stations planned
- 3 stations deployed at the current date (two currently operating)

- Stations spaced by 2 km
 → Maximizing effective volume by avoiding overlap
- Antennas deployed in a depth of 200 m → Minimizing the effect of "ray tracing" due to the changing index of refraction in the ice

The ARA data acquisition

Current results

From the testbed

ARA analysis strategy and sensitivity

Particle background:

 No other particles carry high enough energies, to produce dense enough particle showers in the ice

Radio background:

- Thermal noise of ice/antennas
- Continuous wave sources (mostly communication transmitters)

Other challenges:

• Detector calibration/understanding

Time line:2010/2011:ARA prototype: "testbed"2011/2012:deployment: ARA station 12012/2013:deployment: ARA station 2, 32013/2014:no deployment

Large funding from Taiwan, Japan U.S. funding uncertain due to budget cuts Continuous wave rejection + Thermal noise rejection + reconstruction quality determine the neutrino sensitivity

The ARA collaboration

Thomas Meures

Postdoc

Aongus O Murchadha

ARA Belgium

Professor

Kael Hanson

Engineer

Yifan Yang

Technician

Michael Korntheuer

ARA South Pole activities

2012 - 2013

Drilling

Deployment

Commissioning

2 new stations :12 holes drilled48 antennas deployed

The IceCube detector

A 1km³ neutrino detector (~1Gton)

- 5160 Photomultipliers inside Digital
 Optical Modules (DOMs) on 86 strings
- 162 IceTop tanks (equipped with two DOMs each): for air shower detection
- Infill array **Deepcore**: 8 denser strings: Optimized for lower energies

Event signatures in IceCube

From secondary particles

IceCube High-energy neutrino search

Extremely High Energy (EHE)-analysis

- Neutrino search with 662 days of data (2010 2012)
- Optimized for EeV (10¹⁸eV) neutrino energies
 → sensitive above 1PeV
- The result: two neutrinos found
- Could they be atmospheric neutrinos:
 - \rightarrow 2.8 σ exclusion

Bert: 1.04 ± 0.16 PeV

Ernie: 1.14 ± 0.17 PeV

Highest energetic neutrinos ever observed!

Start a different search on the same dataset, to be more sensitive to a bit lower energies

IceCube HESE analysis

High Energy Starting Event search:

- Main background is atmospheric muons: 3kHz
- Define outer regions of the detector as a veto
- Require:
 - Minimum 6000 photo-electrons seen in the **DOM**s
 - First photons are not in the veto region

HESE search details & results

Veto efficiency can be obtained purely from analysis of real data
 → Atmospheric muons are used to calibrate veto + cuts

Expectations:

- Passing atmospheric muons: 6 ± 3.4 events per 662 days
- Atmospheric neutrinos (including earlier IceCube results): $4.6_{-1.2}^{+3.7}$

Observed: 26 events with energies between 30 – 300TeV + 2 previous events

→ Inconsistency with Background: 4.1σ

Some more observations

Energy distribution:

Harder than atmospheric expectation Best fit (with spectral index as fit parameter): $E^2 \Phi = 1.2 \pm 0.4 \ 10^{-8} GeV \ cm^{-2} \ s^{-1} \ sr^{-1}$

Some more observations

Atmospheric neutrinos are accompanied by muons, if down-going

→ Very good rejection for Southern sky atmospherics from veto cuts

But:

Most observed events come from the southern sky

→ Even less compatible with atmospheric background

Deposited EM-equivalent energy in detector (TeV)

Signature	σ directional reco	σ energy reco
Shower	10 -15°	~15%
Track	1°	Lower limit

Can we start neutrino astronomy yet?

- No significant deviation from an isotropic source distribution found yet
- No significant **timing correlation** with catalogued GRBs found yet

Conclusion & Outlook

IceCube:

- Found evidence for high energy cosmic neutrinos, incompatible with atmospheric background by 4.1σ
- So far consistent with isotropic source distribution
- Detecting ~10 to 15 cosmic neutrinos/years with current analysis methods
 The beginning of neutrino astronomy?
- Didn't find GZK neutrinos

ARA:

- A future detector, still under construction
- Will exceed all current neutrino detectors by ten times in sensitivity for GZK neutrinos

Conclusion & Outlook

At least some parts of the GZK neutrino flux might be difficult to see for IceCube and ARA \rightarrow Looking for new detection methods

On the feasibility of RADAR detection of high-energy neutrino-induced showers in $$_{\rm ice}$$

Krijn D. de Vries^a, Kael Hanson^b, Thomas Meures^b

^a Vrije Universiteit Brussel, Dienst ELEM, B-1050 Brussels, Belgium ^b Université Libre de Bruxelles, Department of Physics, B-1050 Brussels, Belgium

proton plasma

BACKUP

Various energy loss mechanisms

Various energy loss mechanisms

EHE analysis

HESE charge distribution

Charge distribution:

Fits well the muon background at lower energies

Hatched area includes uncertainties for conventional + prompt atmospheric neutrinos

