

MadWeight 5

MEM with ISR correction

Olivier Mattelaer University of Illinois at Urbana Champaign

P.Artoisenet, V. Lemaitre, F. Maltoni, OM: JHEP1012:068 P.Artoisent, OM: In preparation J.Alwall, A. Freytas, OM: PRD83:074010

Matrix Element Workshop

Outline

- MadWeight5
 - Basic idea of the phase space integration
 - Improvement/ new features of MadWeight5
- MEM with ISR correction
 - Motivation
 - Method
 - Higgs mass measurement

O. Mattelaer

MEM mini workshop, May 27-28 2013

Text

Wednesday, May 29, 13

3

How to evaluate those weights?

 $\mathcal{P}(\boldsymbol{p}^{vis}|\alpha) = \frac{1}{\sigma_{\alpha}} \int d\Phi dx_1 dx_2 |M_{\alpha}(\boldsymbol{p})|^2 W(\boldsymbol{p}, \boldsymbol{p}^{vis})$

- $\mathcal{P}(\boldsymbol{p}^{vis}|\alpha) = \frac{1}{\sigma_{\alpha}} \int d\Phi dx_1 dx_2 |M_{\alpha}(\boldsymbol{p})|^2 \left(W(\boldsymbol{p}, \boldsymbol{p}^{vis}) \right)$
- Fit from MC tuned to the detector resolution *

$$\mathcal{P}(\boldsymbol{p}^{vis}|\alpha) = \frac{1}{\sigma_{\alpha}} \int d\Phi dx_1 dx_2 (M_{\alpha}(\boldsymbol{p})|^2 W(\boldsymbol{p}, \boldsymbol{p}^{vis}))$$

- Fit from MC tuned to the detector resolution *
- Use of matrix-element generator: MadGraph

$$\mathcal{P}(\boldsymbol{p}^{vis}|\alpha) = \frac{1}{\sigma_{\alpha}} \left(\int d\Phi dx_1 dx_2 M_{\alpha}(\boldsymbol{p}) |^2 W(\boldsymbol{p}, \boldsymbol{p}^{vis}) \right)$$

- Fit from MC tuned to the detector resolution *
- Use of matrix-element generator: MadGraph
- Need a specific integrator: MadWeight

$$\mathcal{P}(\boldsymbol{p}^{vis}|\alpha) = \frac{1}{\sigma_{\alpha}} \left(\int d\Phi dx_1 dx_2 M_{\alpha}(\boldsymbol{p}) |^2 W(\boldsymbol{p}, \boldsymbol{p}^{vis}) \right)$$

- Fit from MC tuned to the detector resolution *
- Use of matrix-element generator: MadGraph 5
- Need a specific integrator: MadWeight 5

□ First Example: di-leptonic top quark pair

degrees of freedom 16

- ➡ 3 x 6: final states
- -4: energy-momentum conservation
- peaks 16
 - 4: Breit-Wigner
 - ➡ 3 x 4: visible particles

O. Mattelaer

Second Example: semi-leptonic top quark pair

degrees of freedom 16

D peaks 9

Second Example: semi-leptonic top quark pair

degrees of freedom 16

D peaks 19

MEM mini workshop, May 27-28 2013


```
##
                          TF JET
<block name='jet'> #name can be anything
<info> doubel gaussian with parameter depending of the energy </info>
<particles> u,d,s,c,b,g </particles>
# this defined when this tf will be used.the letter correspond to the label in
#
        particles.dat
<width_type> large </width_type>
# width_type should be thin or large (thin is for energy acuurate up to 5-10%)
<variable name='E'>
<tf>
       prov1=(#1+#2*dsqrt(pexp(0))+#3*pexp(0))
       prov2=(#4+#5*dsqrt(pexp(0))+#6*pexp(0))
       prov3 = (#7 + #8 * dsqrt(pexp(0)) + #9 * pexp(0))
       prov4=(#10+#11*dsqrt(pexp(0))+#12*pexp(0))
       prov5=(#13+#14*dsqrt(pexp(0))+#15*pexp(0))
       tf=(exp(-(p(0)-pexp(0)-prov1)**2/2d0/prov2**2))
                                                                !first gaussian
       tf=tf+prov3*exp(-(p(0)-pexp(0)-prov4)**2/2d0/prov5**2)
                                                            !second gaussian
       tf=tf*((1d0/dsqrt(2d0*pi))/(prov2+prov3*prov5))
                                                            !normalisation
</tf>
<width>
       prov2=(#4+#5*dsqrt(pexp(0))+#6*pexp(0))
       prov5 = (#13 + #14 + dsgrt(pexp(0)) + #15 + pexp(0))
       width=max(prov2,prov5)
</width>
</variable>
# in this case THETA/PHI are not defined because they are considered
# in delta (=default)
# The same syntax apply
</block>
```



```
##
                          TF JET
<block name='jet'> #name can be anything
<info> doubel gaussian with parameter depending of the energy </info>
<particles> u,d,s,c,b,g </particles>
# this defined when this tf will be used.the letter correspond to the label in
#
        particles.dat
<width_type> large </width_type>
# width_type should be thin or large (thin is for energy acuurate up to 5-10%)
<variable name='E'>
<tf>
       prov1 = (#1 + #2 + dsqrt(pexp(0)) + #3 + pexp(0))
       prov2=(#4+#5*dsqrt(pexp(0))+#6*pexp(0))
       prov3 = (#7 + #8 * dsqrt(pexp(0)) + #9 * pexp(0))
       prov4=(#10+#11*dsqrt(pexp(0))+#12*pexp(0))
       prov5=(#13+#14*dsqrt(pexp(0))+#15*pexp(0))
       tf=(exp(-(p(0)-pexp(0)-prov1)**2/2d0/prov2**2))
                                                                 !first gaussian
       tf=tf+prov3*exp(-(p(0)-pexp(0)-prov4)**2/2d0/prov5**2)
                                                             !second gaussian
       tf=tf*((1d0/dsqrt(2d0*pi))/(prov2+prov3*prov5))
                                                             !normalisation
</tf>
<width>
       prov2=(#4+#5*dsqrt(pexp(0))+#6*pexp(0))
       prov5 = (#13 + #14 + dsgrt(pexp(0)) + #15 + pexp(0))
       width=max(prov2,prov5)
</width>
</variable>
# in this case THETA/PHI are not defined because they are considered
# in delta (=default)
# The same syntax apply
</block>
```



```
##
                          TF JET
<block name='jet'> #name can be anything
<info> doubel gaussian with parameter depending of the energy </info>
<particles> u,d,s,c,b,g </particles>
# this defined when this tf will be used.the letter correspond to the label in
#
        particles.dat
<width_type> large </width_type>
# width_type should be thin or large (thin is for energy acuurate up to 5-10%)
<variable name='E'>
<tf>
       prov1 = (#1 + #2 + dsqrt(pexp(0)) + #3 + pexp(0))
       prov2=(#4+#5*dsqrt(pexp(0))+#6*pexp(0))
       prov3 = (#7 + #8 * dsqrt(pexp(0)) + #9 * pexp(0))
       prov4=(#10+#11*dsqrt(pexp(0))+#12*pexp(0))
       prov5=(#13+#14*dsqrt(pexp(0))+#15*pexp(0))
       tf=(exp(-(p(0)-pexp(0)-prov1)**2/2d0/prov2**2))
                                                                 !first gaussian
       tf=tf+prov3*exp(-(p(0)-pexp(0)-prov4)**2/2d0/prov5**2)
                                                             !second gaussian
       tf=tf*((1d0/dsqrt(2d0*pi))/(prov2+prov3*prov5))
                                                             !normalisation
</tf>
<width>
       prov2=(#4+#5*dsqrt(pexp(0))+#6*pexp(0))
       prov5 = (#13 + #14 + dsgrt(pexp(0)) + #15 + pexp(0))
       width=max(prov2,prov5)
</width>
</variable>
# in this case THETA/PHI are not defined because they are considered
# in delta (=default)
# The same syntax apply
</block>
```



```
##
                          TF JET
<block name='jet'> #name can be anything
<info> doubel gaussian with parameter depending of the energy </info>
<particles> u,d,s,c,b,g </particles>
# this defined when this tf will be used.the letter correspond to the label in
#
        particles.dat
<width_type> large </width_type>
# width_type should be thin or large (thin is for energy acuurate up to 5-10%)
<variable name='E'>
<tf>
       prov1=(#1+#2*dsqrt(pexp(0))+#3*pexp(0))
       prov2=(#4+#5*dsqrt(pexp(0))+#6*pexp(0))
       prov3=(#7+#8*dsqrt(pexp(0))+#9*pexp(0))
       prov4=(#10+#11*dsqrt(pexp(0))+#12*pexp(0))
       prov5=(#13+#14*dsqrt(pexp(0))+#15*pexp(0))
       tf=(exp(-(p(0)-pexp(0)-prov1)**2/2d0/prov2**2))
                                                                !first gaussian
       tf=tf+prov3*exp(-(p(0)-pexp(0)-prov4)**2/2d0/prov5**2)
                                                            !second gaussian
       tf=tf*((1d0/dsqrt(2d0*pi))/(prov2+prov3*prov5))
                                                            !normalisation
</tf>
<width>
       prov2=(#4+#5*dsqrt(pexp(0))+#6*pexp(0))
       prov5 = (#13 + #14 + dsgrt(pexp(0)) + #15 + pexp(0))
       width=max(prov2,prov5)
</width>
</variable>
# in this case THETA/PHI are not defined because they are considered
# in delta (=default)
# The same syntax apply
</block>
```


• Use MG5 idea of Subprocess merging

MW4 SubProcesses
g g > t t~
u u~ > t t~
u~ u > t t~
d d~ > t t~
d~ d > t t~

5 Integrals to perform ¹ 1 Integral to perform

O. Mattelaer

- Narrow width approximation
 - Reduce the dimension of the Phase-Space
 - ➡ Be careful:
 - The matrix-element AND the transfer function should be flat enough.
 - This reduces the discrimination power.
 - In MW5, all particles with a width lower than a given value will be integrated in this approximation.
 - default value: 0.1
 - So by default only for the Higgs

• Treatment of permutations

0		12	3381							
1	1	0.935	5.230	83.80	0.00	1.0	0.0	0.00	0.0	0.0
2	4	-0.161	1.878	85.60	9.66	7.0	0.0	1.10	0.0	0.0
3	4	-0.223	5.295	45.64	5.43	3.0	0.0	0.30	0.0	0.0
4	4	0.695	2.208	37.99	7.68	8.0	0.0	3.63	0.0	0.0
5	4	1.164	3.357	49.01	6.95	13.0	0.0	2.66	0.0	0.0
6	6	0.000	6.035	39.48	0.00	0.0	0.0	0.00	0.0	0.0

MW4: one integral per permutation MW5: Monte-Carlo over the permutation

process	tf	permutation	Sum/MonteCarlo
tt semi leptonic	delta	24	7.5
tt semi leptonic	gauss	24	2
tt di leptonic	gauss	2	0.6
w+jj	delta	2	I.5
^{19 novembre} tth (semi lept)	gauss	Tex 720	20

- Better choices of PS parameterization
- Pre-defined grid for the transfer functions
- Smarter refine function between channel of integration
- New interface (scriptable edition of the cards)
- New cluster support
 - Creation of the directory on the flight
 - Submission by packet / support of multicore
- New output format (xml)
- Full support of BSM physics (via UFO/ALOHA)
- ISR support

Speed Benchmark Comparison

process	perm	MW4	MVV5
tt semi lept	24	IhI6	71s
tt fully lept	2	46s	I4s
tth semi lept	720	> 2 days	43min
tth semi lept	48	> 3h	llmin
tth fully lept	24	>lh	Imin
h> w+ w- > llept	2	59s	<5s
h> w+ w- > 2lept	I	8 s	<5s
zbb	24	39 m	18s
zh	24	43m	<5s

running on I core of a Intel core i7 2.3Ghz

MEM with radiation

MEM mini workshop, May 27-28 2013

Text

Wednesday, May 29, 13

16

MEM with radiation

- Those radiations are important
 - ➡ ttj is 50% at LHC
 - The topics pop outs in talks a couple of times
- 3 Main idea (both were mention yesterday)
 - Transfer boost
 - ⇒ MLM
 - ➡ NLO

Wednesday, May 29, 13

17

My point of view

• MLM

- Having one more jets at the matrix element level is roughly 10 times slower.
 - number of permutations (assignment jet-parton)
 - complexity of the integrand
 - dimension of the phase-space
- The radiation problem still occurs (at least for the inclusive sample)
- NLO
 - Speed of the virtual
 - Only valid for one additional jet

Radiations

• ISR

- Main Effect is to induce a transverse boost.
- Different PDF

• FSR

- Need to be parameterize in the TF
- Having a one parton evolving in two jets TF
- Reasonable with MC over permutation

Radiations

• ISR

- Main Effect is to induce a transverse boost.
- Different PDF

• FSR

- Need to be parameterize in the TF
- Having a one parton evolving in two jets TF
- Reasonable with MC over permutation

Here I will focus on ISR

Choices of variables

Higgs production

top pair production

- Higgs Mass
 - s-channel
- No FSR

- top Mass
- presence of FSR

 Study the ISR on Higgs production at LHC (14 TeV) at parton level (no hadronization)

• Parton Level for top pair production

Less sensitivity

O. Mattelaer

 Study the ISR on Higgs production at LHC (14 TeV) at detector level (simulation includes pile-up)

BAEF

34ef

• Reconstructed Level for top pair production

$L/L_{\rm max}$

Conclusion

- MadWeight5 will be released soon
 - with nicer interface / cluster support
 - with huge speed improvement
 - with ISR support
- Radiation problem
 - MLM/NLO slower method
 - Transverse boost is working
 - Need transfer function on the boost