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Motivation for MEM@NLO

• Certain observables change definition at NLO. 

• Greater theoretical confidence in result : Win-win since either 

• 1) Large differences when using NLO => You need to use NLO 

• 2) Small differences at NLO => Perturbative stability, its a good method (but 
you still need NLO to check) 

• As a phenomenologist the phrase “only available at LO” is unacceptable. 



Overview 

• In my view there are two halves to the MEM@NLO 

• 1) Defining the MEM : i.e. providing an algorithm to associate experimental    
events / MC input with LO matrix elements. 

• 2) Extending any given 1) to be higher order in perturbation theory : i.e. 
providing NLO weights for LO phase space points. 

• Of these halves 2) is much more rigorously defined and will be the focus of 
my talk. One can then apply NLO corrections to any algorithm of the form 1). 



In the beginning 

• Imagine a universe in which every event 
recorded at colliders is an exact Born phase 
space point.  

• In this universe it would be pretty 
straightforward to provide event by events 
weights for searches and measurements. 

• A final state phase space point (with no jets) is 
defined by the following quantities,

nice universe

1. Introduction

NLO plus shower.

2. Defining fully exclusive NLO predictions : Fixed order

In this section we present an derivation of the fully exclusive NLO event generator. We

begin by reviewing the formalism of ref. [? ], which was defined for final states which do

not contain any jets. Next we extend the formalism to include final states which include

jets in the LO topology.

2.1 Electroweak final states

We begin by considering the production of a final state which does not contain any final

state QCD partons. This approach was analyzed in regards to the Matrix Element Method

in ref. [? ]. In this reference the method required the momentum over all longitudinally

equivalent final states (i.e. one integrates over the parton fraction x1). Here we will extend

this method to be fully exclusive in a born phase space point, the method of ref. [? ] is

recovered by restoring the longitudinal integration.

The aim of this section is to define an event by event K-factor such that the NLO

calculation is rendered in the following format,

PNLO(ΦB) = K(ΦB)PLO(ΦB) (2.1)

Here P (ΦB) represents a weight defined at a given order for an input born phase space

point. We define a born phase space point as follows,

ΦB = (x1, x2, {Qn }). (2.2)

Here {Qn } is a set of four momenta which represent the n final state EW particles. The

two beams are defined in the lab frame by moving along the z-axis, and are fully specified

by xi the two fractions of the partonic momenta. Given this phase space point it is trivial

to define a weight defined by the LO matrix element.

PLO(ΦB) =
f(x1)f(x2)

2x1x2s
| M (0)(ΦB)|2 (2.3)

Upon integration over the full born phase space one reproduces the LO cross section, i.e.

σLO =

∫
dx1 dx2

n∏

i=1

d4pi δ(+)(p2
i − m2

i ) δ(4)(
∑

i

pi − p1 − p2) PLO(ΦB) (2.4)

We now wish to define the NLO corrections to this fully exclusive phase space point ΦB,

since they share a phase space, this is trivial to evaluate for the virtual corrections,

P̃V (ΦB) =
f(x1)f(x2)

2x1x2s

(
| M (0)(ΦB)|2 + 2Re

{
M (0) M (1)†(ΦB)

})
(2.5)
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• Given this phase space point one can define a weight in a straightforward 
fashion, 

• The total cross section is then obtained by integrating over all possible 
weights, (i.e. over all Born phase space points) 
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What about higher order 

corrections?



• Given this phase space point one can define a weight in a straightforward 
fashion, 

• The total cross section is then obtained by integrating over all possible 
weights, (i.e. over all Born phase space points) 

1. Introduction

NLO plus shower.

2. Defining fully exclusive NLO predictions : Fixed order

In this section we present an derivation of the fully exclusive NLO event generator. We

begin by reviewing the formalism of ref. [? ], which was defined for final states which do

not contain any jets. Next we extend the formalism to include final states which include

jets in the LO topology.

2.1 Electroweak final states

We begin by considering the production of a final state which does not contain any final

state QCD partons. This approach was analyzed in regards to the Matrix Element Method

in ref. [? ]. In this reference the method required the momentum over all longitudinally

equivalent final states (i.e. one integrates over the parton fraction x1). Here we will extend

this method to be fully exclusive in a born phase space point, the method of ref. [? ] is

recovered by restoring the longitudinal integration.

The aim of this section is to define an event by event K-factor such that the NLO

calculation is rendered in the following format,

PNLO(ΦB) = K(ΦB)PLO(ΦB) (2.1)

Here P(ΦB) represents a weight defined at a given order for an input born phase space

point. We define a born phase space point as follows,

ΦB = (x1, x2, {Qn}). (2.2)

Here {Qn} is a set of four momenta which represent the n final state EW particles. The

two beams are defined in the lab frame by moving along the z-axis, and are fully specified

by xi the two fractions of the partonic momenta. Given this phase space point it is trivial

to define a weight defined by the LO matrix element.

PLO(ΦB) =
f(x1)f(x2)

2x1x2s
|M(0)(ΦB)|2 (2.3)

Upon integration over the full born phase space one reproduces the LO cross section, i.e.

σLO =

∫
dx1 dx2

n∏

i=1

d4pi δ(+)(p2
i − m2

i ) δ(4)(
∑

i

pi − p1 − p2) PLO(ΦB) (2.4)

We now wish to define the NLO corrections to this fully exclusive phase space point ΦB,

since they share a phase space, this is trivial to evaluate for the virtual corrections,

P̃V (ΦB) =
f(x1)f(x2)

2x1x2s

(
|M(0)(ΦB)|2 + 2Re

{
M(0)M(1)†(ΦB)

})
(2.5)

– 1 –

1. Introduction

NLO plus shower.

2. Defining fully exclusive NLO predictions : Fixed order

In this section we present an derivation of the fully exclusive NLO event generator. We

begin by reviewing the formalism of ref. [? ], which was defined for final states which do

not contain any jets. Next we extend the formalism to include final states which include

jets in the LO topology.

2.1 Electroweak final states

We begin by considering the production of a final state which does not contain any final

state QCD partons. This approach was analyzed in regards to the Matrix Element Method

in ref. [? ]. In this reference the method required the momentum over all longitudinally

equivalent final states (i.e. one integrates over the parton fraction x1). Here we will extend

this method to be fully exclusive in a born phase space point, the method of ref. [? ] is

recovered by restoring the longitudinal integration.

The aim of this section is to define an event by event K-factor such that the NLO

calculation is rendered in the following format,

PNLO(ΦB) = K(ΦB)PLO(ΦB) (2.1)

Here P(ΦB) represents a weight defined at a given order for an input born phase space

point. We define a born phase space point as follows,

ΦB = (x1, x2, {Qn}). (2.2)

Here {Qn} is a set of four momenta which represent the n final state EW particles. The

two beams are defined in the lab frame by moving along the z-axis, and are fully specified

by xi the two fractions of the partonic momenta. Given this phase space point it is trivial

to define a weight defined by the LO matrix element.

PLO(ΦB) =
f(x1)f(x2)

2x1x2s
|M(0)(ΦB)|2 (2.3)

Upon integration over the full born phase space one reproduces the LO cross section, i.e.

σLO =

∫
dx1 dx2

n∏

i=1

d4pi δ(+)(p2
i − m2

i ) δ(4)(
∑

i

pi − p1 − p2) PLO(ΦB) (2.4)

We now wish to define the NLO corrections to this fully exclusive phase space point ΦB,

since they share a phase space, this is trivial to evaluate for the virtual corrections,

P̃V (ΦB) =
f(x1)f(x2)

2x1x2s

(
|M(0)(ΦB)|2 + 2Re

{
M(0)M(1)†(ΦB)

})
(2.5)

– 1 –

Your universe sucks! 
What about higher order 

corrections?
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Helping Max out, by including NLO. 

• Can split higher order corrections into two halves, defined by whether or not 
observed parton is above our jet definition or not. 

• Call two regions resolved and un-resolved 

• No problem for the MEM if we are in the resolved region, since its nothing other 
than a LO MEM with an additional jet. i.e. we can re-calculate the weights using 
a new phase space point

• What about the un-resolved region? Much more tricky....  Our aim is to set the 
calculation up in the following way,

here Jx represents the Jacobian from changing the initial state variables (x1, x2) to (xa, xb),

given our setup (integrating in x1) this is 1/(x1s). Note that, as written our weight is

divergent (hence the tilde notation).

2.1.1 Regulating the cross section.

Our weights P̃R and P̃V are currently divergent, and need to be regulated in order to define

our physical dynamical K factors. In order to do this our regulator must satisfy a rather

strict requirement, the map from our real phase space point to the virtual phase space

point must not induce new phase space configurations. This is rather different to the usual

implementation in MCFM, Catani-Seymour dipoles [? ]. These dipoles map an individual

ΦR to multiple {ΦB} points.

One potential, and simple, manner to regulate the singularities is to use phase space

slicing [? ? ]. This method introduces a small parameter smin, for sij above this threshold

one integrates the full real matrix element. Below this threshold one integrates simplified

functions which reproduce the soft and collinear singularities of the full matrix element.

This procedure is accurate to O(smin), so is a good approximation provided smin is small

enough. The simplified matrix elements are simple enough to integrate analytically, pro-

ducing counter terms which cancel the remaining poles in the virtual amplitude.

Using this regulating prescription we define the weight as follows,

PNLO =
f(x1)f(x2)

2x1x2s

(
(1 + Rv(smin))|M(0)(ΦB)|2 + 2Re

{
M(0)M(1)†(ΦB)

})

+

∫

smin

dΦIS
FBPS(ΦB)Jx

f(xa)f(xb)

2xaxbs
|M (0)

R (ΦR(ΦB))|2 + O(smin) (2.10)

Where we have introduced the function Rv corresponding to the integrated real phase

space, the lower limits of the real radiation now depend on smin. Note that the slicing

method works on ordered amplitudes, so that only pieces which have a singularity for an

colour-orderded pair have the cut sij > smin imposed upon them. We will discuss this in

some more detail, presenting explicit formulae for Rv in section ??.

2.2 Final states with jets

We now wish to extend the results of the previous section to include born final states which

contain jets. We define a jet using the following kinematic variables,

Ji = (pT,i, ηi,φi,mi) (2.11)

where pT represents the transverse momenta of the jet, η is the pseudo-rapidity, φ is the

azimuthal angle and mj represents the jet-mass. A born jet has a mass equal to that of

its partonic parent, which in this paper will be a massless parton. We can now define an

born phase space point as follows,

ΦB = (x1, x2, {Qi}, {Jj}) (2.12)

where the n particle final state is determined by i EW particles ({Qi}) and j jets ({Jj}).

In order to assign a fixed order weight to this phase space point we must define the
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Virtual corrections to phase space points

1. Introduction

NLO plus shower.

2. Defining fully exclusive NLO predictions : Fixed order

In this section we present an derivation of the fully exclusive NLO event generator. We

begin by reviewing the formalism of ref. [? ], which was defined for final states which do

not contain any jets. Next we extend the formalism to include final states which include

jets in the LO topology.

2.1 Electroweak final states

We begin by considering the production of a final state which does not contain any final

state QCD partons. This approach was analyzed in regards to the Matrix Element Method

in ref. [? ]. In this reference the method required the momentum over all longitudinally

equivalent final states (i.e. one integrates over the parton fraction x1). Here we will extend

this method to be fully exclusive in a born phase space point, the method of ref. [? ] is

recovered by restoring the longitudinal integration.

The aim of this section is to define an event by event K-factor such that the NLO

calculation is rendered in the following format,

PNLO(ΦB) = K(ΦB)PLO(ΦB) (2.1)

Here P(ΦB) represents a weight defined at a given order for an input born phase space

point. We define a born phase space point as follows,

ΦB = (x1, x2, {Qn}). (2.2)

Here {Qn} is a set of four momenta which represent the n final state EW particles. The

two beams are defined in the lab frame by moving along the z-axis, and are fully specified

by xi the two fractions of the partonic momenta. Given this phase space point it is trivial

to define a weight defined by the LO matrix element.

PLO(ΦB) =
f(x1)f(x2)

2x1x2s
|M(0)(ΦB)|2 (2.3)

Upon integration over the full born phase space one reproduces the LO cross section, i.e.

σLO =

∫
dx1 dx2

n∏

i=1

d4pi δ(+)(p2
i − m2

i ) δ(4)(
∑

i

pi − p1 − p2) PLO(ΦB) (2.4)

We now wish to define the NLO corrections to this fully exclusive phase space point ΦB,

since they share a phase space, this is trivial to evaluate for the virtual corrections,

P̃V (ΦB) =
f(x1)f(x2)

2x1x2s

(
|M(0)(ΦB)|2 + 2Re

{
M(0)M(1)†(ΦB)

})
(2.5)

– 1 –

The unresolved NLO calculation 
naturally contains two types of 
contributions. Virtual (loop) 
diagrams and real radiation. 

The virtual corrections can be 
readily incorporated into our 
weight since they share the same 
phase space as the Born (note 
the above formula is currently 
divergent).



Dealing with the real corrections: Phase space 

• A generic real phase space point has the following parameterization 

• We want to group all of the real phase space points which contain our born 
event together (neglecting those which dont contain our Born event) i.e. 

• Note that the x’s have changed, this can’t be avoided! But at least the final 
state EW particles (and hence all Lorentz invariant quantities associated with 
them) are kept invariant. 

Here we introduce the following notation, weights which are defined using a tilde P̃ are

divergent, whilst weights without a tilde have been rendered finite. We will define the

prescription for rendering the virtual weights finite shortly.

Having defined our weights for the virtual corrections our remaining task is to evaluate

the real corrections which occupy the larger phase space ΦR. The general format of a real

phase space point is as follows,

Φ̂R = (x̂1, x̂2, {Q̂n}, p̂r) (2.6)

here x̂ again define parton momenta fractions, Q̂ represents the EW final state particles,

and p̂r represents the radiated parton. This phase space point is constructed in the usual

manner, i.e. δ(4)(Q̂n+p̂r−p̂1−p̂2). In the traditional approach one would naturally integrate

over this phase space independently to the virtual contributions. The two disparate phase

spaces would then be combined to produce differential quantities for physical observables

the end of the calculation. Our aim is to define a map between the two phases such that

the two calculations can proceed together in a meaningful way. Our real phase space point

will thus be defined in the following way

ΦR(ΦB) = (xa, xb, {Qn}, pr). (2.7)

Here Qn is defined to be identical to that associated with the equivalent born phase space

quantity. In this formalism it is clear that all final state Lorentz invariant quantities are

preserved between the born and the real phase space points. It is clear that it is impossible

to maintain Qn and momentum conservation whilst maintaining collisions along the z axis.

Our setup requires the former, so it is necessary to move the initial state away from the

z-axis. The lab frame is restored by boosting the new phase space point back to the frame

in which the beams are longitudinal. For this reason, it is clear that Lorentz dependent

quantities change in the two phase spaces. Since Qn conserves transverse momentum it is

also clear that the transverse momentum of the beam is equivalent to that of the branched

parton pr. Fully inclusive NLO cross sections are those obtained by integrating over the

emissions over the full phase space. Exclusive NLO cross sections are defined by integrating

upto a pT scale in which the parton would be observed as a (lab frame) jet. We will discuss

this in some more detail in section ??.

Since our phase space takes a Born phase space point and branches the initial state to

produce the real radiation, it is natural to use a forward branching phase space generator [?

]. Such a generator takes a born phase space point and integrates according to the following

measure,

dΦIS
FBPS =

1

(2π)3
Q2

sab
d tard trbdφ (2.8)

where a and b represent the new initial state momenta, and pr is the branched momenta.

Using this phase space we can define the following real weight

P̃R(ΦB) =

∫
dΦIS

FBPS(ΦB)Jx
f(xa)f(xb)

2xaxbs
|M (0)

R (ΦR(ΦB))|2 (2.9)
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1. Introduction

NLO plus shower.

2. Defining fully exclusive NLO predictions : Fixed order

In this section we present an derivation of the fully exclusive NLO event generator. We

begin by reviewing the formalism of ref. [? ], which was defined for final states which do

not contain any jets. Next we extend the formalism to include final states which include

jets in the LO topology.

2.1 Electroweak final states

We begin by considering the production of a final state which does not contain any final

state QCD partons. This approach was analyzed in regards to the Matrix Element Method

in ref. [? ]. In this reference the method required the momentum over all longitudinally

equivalent final states (i.e. one integrates over the parton fraction x1). Here we will extend

this method to be fully exclusive in a born phase space point, the method of ref. [? ] is

recovered by restoring the longitudinal integration.

The aim of this section is to define an event by event K-factor such that the NLO

calculation is rendered in the following format,

PNLO(ΦB) = K(ΦB)PLO(ΦB) (2.1)

Here P (ΦB) represents a weight defined at a given order for an input born phase space

point. We define a born phase space point as follows,

ΦB = (x1, x2, {Qn }). (2.2)

Here {Qn } is a set of four momenta which represent the n final state EW particles. The

two beams are defined in the lab frame by moving along the z-axis, and are fully specified

by xi the two fractions of the partonic momenta. Given this phase space point it is trivial

to define a weight defined by the LO matrix element.

PLO(ΦB) =
f(x1)f(x2)

2x1x2s
| M (0)(ΦB)|2 (2.3)

Upon integration over the full born phase space one reproduces the LO cross section, i.e.

σLO =

∫
dx1 dx2

n∏

i=1

d4pi δ(+)(p2
i − m2

i ) δ(4)(
∑

i

pi − p1 − p2) PLO(ΦB) (2.4)

We now wish to define the NLO corrections to this fully exclusive phase space point ΦB,

since they share a phase space, this is trivial to evaluate for the virtual corrections,

P̃V (ΦB) =
f(x1)f(x2)

2x1x2s

(
| M (0)(ΦB)|2 + 2Re

{
M (0) M (1)†(ΦB)

})
(2.5)
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The Forward Branching phase space (Giele, Glover; 
Giele, Stavenga, Winter). 

• Mathematically we need to factorize the real phase space into the following, 

• Then Q is identified with the observed final state, from this we derive the form of the 
FBPS integration 

• We then explicitly integrate out these quantities for each event. 
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use a forward branching phase space generator (FBPS) [38] to construct the real phase

space. Starting from the Born phase space point, p̂a+ p̂b → Q the FBPS generates the real

radiation by branching one of the initial state momenta to produce the real phase space

point pa+ pb → Q+ pr. In the following we will use the hatted notation to indicate a Born

phase space point, whilst the un-hatted momenta represent the real phase space point.

The phase space generator needs to integrate out all initial state radiation within the

constraints of fixed momenta of the identified final state particles (and, if required, the jet

veto). We show in Appendix A that this can be achieved using a FBPS generator defined

by,

dΦ(pa + pb → Q+ pr) = dΦ(p̂a + p̂b → Q)× dΦFBPS(pa, pb, pr)× θveto , (3.4)

where θveto (optionally) vetoes events that generate an additional jet. At NLO the jet veto

cut is simply,

θveto(pr) = θ
[
plabT (pr) < pmin

T (jet)
]
, (3.5)

where plabT (pr) is the laboratory frame transverse momentum (calculated using Eq. (2.16)).

Note the initial state brancher is necessarily an antenna brancher since it ensures that the

initial state partons remain massless. The form of the FBPS generator, in terms of the

kinematic variables pa, pb and pr, is,

dΦFBPS(pa, pb, pr) =
1

(2π)3

(
ŝab
sab

)
d tard trbdφ , (3.6)

where txy = (px − py)2 and dφ is a rotational degree of freedom about the z-axis. The

explicit construction of the momenta pa, pb and pr in terms of the integration variables

is detailed in Appendix A. The phase space weight corrects the flux factor due to the

resulting emission of an extra parton.

Finally, we observe that the forward brancher must by necessity change the initial state

momenta. This means that for bremsstrahlung events the values of plabT will depend on the

branching momentum pr. Thus although the four momenta of the final state particles are

fixed in the MEM frame the value of the plabT observable changes dynamically. In other

words a single event with fixed MEM frame four momenta corresponds to a range of plabT

values. Using the FBPS we can now explicitly define RΩ(x) as,

RΩ(x) =

∫
dΦFBPS(pa, pb, pr)

(
Lij(sab, xl, xu)Rij

Ω(pa, pb,x, pr)

−
∑

m

Lij(sab, x
m
l , xmu )Dm(pa, pb, pr)Bij

Ω (p̂a, p̂b,x)

)
. (3.7)

In the above we note that the boost integral is defined for a given branching, since each

branching generates a new sab. The quantity Rij
Ω(pa, pb,x, pr) = |M (0)

Ω (pa, pb,x, pr)|2 is the

Born level matrix element with one additional parton. Finally, D(pa, pb, pr)Bij
Ω (p̂a, p̂b,x)

represents the subtraction terms that cancel the soft and collinear divergences which occur

when pr is unresolved. A couple of observations are in order in regards to the dipole

pieces. We note that, since the dipoles must provide a pointwise cancellation, the boost

function inherits the same sab as in the real boost function. However the underlying Born
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Putting it all together.  

We can now write down our real weight, defined for an 
input Born phase space point. 

Here we introduce the following notation, weights which are defined using a tilde P̃ are

divergent, whilst weights without a tilde have been rendered finite. We will define the

prescription for rendering the virtual weights finite shortly.

Having defined our weights for the virtual corrections our remaining task is to evaluate

the real corrections which occupy the larger phase space ΦR. The general format of a real

phase space point is as follows,

Φ̂R = (x̂1, x̂2, {Q̂n}, p̂r) (2.6)

here x̂ again define parton momenta fractions, Q̂ represents the EW final state particles,

and p̂r represents the radiated parton. This phase space point is constructed in the usual

manner, i.e. δ(4)(Q̂n+p̂r−p̂1−p̂2). In the traditional approach one would naturally integrate

over this phase space independently to the virtual contributions. The two disparate phase

spaces would then be combined to produce differential quantities for physical observables

the end of the calculation. Our aim is to define a map between the two phases such that

the two calculations can proceed together in a meaningful way. Our real phase space point

will thus be defined in the following way

ΦR(ΦB) = (xa, xb, {Qn}, pr). (2.7)

Here Qn is defined to be identical to that associated with the equivalent born phase space

quantity. In this formalism it is clear that all final state Lorentz invariant quantities are

preserved between the born and the real phase space points. It is clear that it is impossible

to maintain Qn and momentum conservation whilst maintaining collisions along the z axis.

Our setup requires the former, so it is necessary to move the initial state away from the

z-axis. The lab frame is restored by boosting the new phase space point back to the frame

in which the beams are longitudinal. For this reason, it is clear that Lorentz dependent

quantities change in the two phase spaces. Since Qn conserves transverse momentum it is

also clear that the transverse momentum of the beam is equivalent to that of the branched

parton pr. Fully inclusive NLO cross sections are those obtained by integrating over the

emissions over the full phase space. Exclusive NLO cross sections are defined by integrating

upto a pT scale in which the parton would be observed as a (lab frame) jet. We will discuss

this in some more detail in section ??.

Since our phase space takes a Born phase space point and branches the initial state to

produce the real radiation, it is natural to use a forward branching phase space generator [?

]. Such a generator takes a born phase space point and integrates according to the following

measure,

dΦIS
FBPS =

1

(2π)3
Q2

sab
d tard trbdφ (2.8)

where a and b represent the new initial state momenta, and pr is the branched momenta.

Using this phase space we can define the following real weight

P̃R(ΦB) =

∫
dΦIS

FBPS(ΦB)Jx
f(xa)f(xb)

2xaxbs
|M (0)

R (ΦR(ΦB))|2 (2.9)
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Note that we are still currently divergent! Not currently that 
useful for phenomenology! So we’d better regularize the 
weights! 

Jx represents the Jacobian factor which will take the 
integration in the Born x to the real x. 



Phase space slicing 

• The issue of regularization is a thorny 
one. 

• Need our regularzing functions to be 
exact functions of the Born phase 
space point (Not like Catani-Seymour 
dipoles) 

• Simplest possible scheme is to use 
phase space slicing (Giele, Glover, 
Kosower), which naturally maps all of 
the singularities to the identified Born 
phase space point. 



The full (finite) NLO weight

here Jx represents the Jacobian from changing the initial state variables (x1, x2) to (xa, xb),

given our setup (integrating in x1) this is 1/(x1s). Note that, as written our weight is

divergent (hence the tilde notation).

2.1.1 Regulating the cross section.

Our weights P̃R and P̃V are currently divergent, and need to be regulated in order to define

our physical dynamical K factors. In order to do this our regulator must satisfy a rather

strict requirement, the map from our real phase space point to the virtual phase space

point must not induce new phase space configurations. This is rather different to the usual

implementation in MCFM, Catani-Seymour dipoles [? ]. These dipoles map an individual

ΦR to multiple {ΦB} points.

One potential, and simple, manner to regulate the singularities is to use phase space

slicing [? ? ]. This method introduces a small parameter smin, for sij above this threshold

one integrates the full real matrix element. Below this threshold one integrates simplified

functions which reproduce the soft and collinear singularities of the full matrix element.

This procedure is accurate to O(smin), so is a good approximation provided smin is small

enough. The simplified matrix elements are simple enough to integrate analytically, pro-

ducing counter terms which cancel the remaining poles in the virtual amplitude.

Using this regulating prescription we define the weight as follows,

PNLO =
f(x1)f(x2)

2x1x2s

(
(1 + Rv(smin))|M(0)(ΦB)|2 + 2Re

{
M(0)M(1)†(ΦB)

})

+

∫

smin

dΦIS
FBPS(ΦB)Jx

f(xa)f(xb)

2xaxbs
|M (0)

R (ΦR(ΦB))|2 + O(smin) (2.10)

Where we have introduced the function Rv corresponding to the integrated real phase

space, the lower limits of the real radiation now depend on smin. Note that the slicing

method works on ordered amplitudes, so that only pieces which have a singularity for an

colour-orderded pair have the cut sij > smin imposed upon them. We will discuss this in

some more detail, presenting explicit formulae for Rv in section ??.

2.2 Final states with jets

We now wish to extend the results of the previous section to include born final states which

contain jets. We define a jet using the following kinematic variables,

Ji = (pT,i, ηi,φi,mi) (2.11)

where pT represents the transverse momenta of the jet, η is the pseudo-rapidity, φ is the

azimuthal angle and mj represents the jet-mass. A born jet has a mass equal to that of

its partonic parent, which in this paper will be a massless parton. We can now define an

born phase space point as follows,

ΦB = (x1, x2, {Qi}, {Jj}) (2.12)

where the n particle final state is determined by i EW particles ({Qi}) and j jets ({Jj}).

In order to assign a fixed order weight to this phase space point we must define the
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New addition here is the integrated approximate ME, Rv 
which renders the virtual pieces finite. 

Can define this to be either Exclusive (integrate FBPS upto a 
veto scale). Or inclusive, in which we integrate overall of 
phase space. 

What about jets?......



Dealing with Jets (minus transfer functions)

• We define our Born phase space in terms of jets (not partons) 

• Each jet is defined using the following variables

• A map to a fixed order result (in terms of partons) is thus defined by a jet-function. 

• The transfer functions describe the generation of the jet parameters (to be used in the 
Born phase space point) and model the shower and the detector response. These will 
change at NLO (subtly) and this is beyond the scope of this talk. (Probably would 
proceed best through direct experimentalist/theorist collaboration)  
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i ts par tonic parent , which in this pap er will b e a massless par ton. We can now define an
born phase space point as follows,

ΦB = (x1, x2, {Qi}, {Jj}) (2.12)

where the n par ticle final state is determined by i E W par ticles ({Qi}) and j jets ({Jj}).
In order to assign a fixed order weight to this phase space point we must define the
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The Jet function function which maps our m jet four vectors to n parton level objects. This jet-function

C({pm}, {Jn}) is crucial in order to define exclusive weights for events containing jets. At

LO the jet-function is particularly simple since each parton can be assigned to an individual

jet

CLO({pm}|{Jm}) =
m∑

i=1

δ(pT,i − JT,i)δ(φi − φJ
i )δ(ηi − ηJ

i ) (2.13)

Given this jet function we can define our LO weight in the presence of jets

PLO(ΦB) =
f(x1)f(x2)

2x1x2s
|M(0)(ΦB)|2CLO({pm}|{Jm}). (2.14)

As was the case in the previous section it is trivial to include the virtual corrections at

this phase space point, since they share both the phase space and jet-functions. We will

also proceed to regulate our virtual amplitudes using the integrated approximate matrix

element from the slicing setup. Our virtual weight is thus defined as

PV =
f(x1)f(x2)

2x1x2s

(
(1 + Rv(smin))|M(0)(ΦB)|2 + 2Re

{
M(0)M(1)†(ΦB)

})
CLO({pm}|{Jm})

(2.15)

the jet-function for the real radiation maps an m + 1 parton level event to m jets. This

can occur one of two ways, firstly the jets could be identified with individual partons, in

the same manner as at LO. A new topology for the real phase space is that two partons

are clustered together to form a jet. The real jet-function is thus defined as follows,

C({pm+1}|{Jm}) =
m+1∑

i=1

δ(pT,i − JT,i)δ(φi − φJ
i )δ(ηi − ηJ

i )

+
∑

i!=j,i>j

δ(pT,i+j − JT,i)δ(φi+j − φJ
i )δ(ηi+j − ηJ

i )

=
m+1∑

i=1

CIS(i) +
∑

i!=j,i>j

CFS(i, j) (2.16)

The sum over the m + 1 identifications in which sets of partons are identified as final state

jets is clearly very similar to the situation described in the previous section. We define

this region as CIS(i), where the i denotes the parton which is not associated with a jet. It

is most natural in this region to use the initial state forward brancher, with the branched

parton being identified as particle i. As described in the previous section, all final state

Lorentz invariant quantities are preserved when going from born to real. The second type

of contribution cannot be generated (efficiently) from the initial state forward branching

phase space generator. Before describing the properties of the phase space generator suited

to this task, we first discuss the task it must perform, we wish to map our clustered jet

to the same kinematics as the Born jet, i.e. given a born jet Ji our clustered jet Jij must

satisfy the following,

pT (Ji) = pT (Jij) η(Ji) = η(Jij) φ(Ji) = φ(Jij). (2.17)
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The LO jet function is simple to define, since “every parton 
becomes a jet”. 
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At NLO things become a tad more complicated, since I have 
more ways of making the jet. 



NLO event by event weights with jets. 

• The first type of configuration is exactly the same as a EW final state, all 
but one final state partons are identified with final state jets and the free 
one is integrated over. 

• The second configuration is new, and requires the integration over partons 
which cluster to form the observed jet. 

• This second region is called the Final State Forward Brancher (FSFBPS). 

• Note that in this region the jets acquire a mass (and this is integrated over). 



Event by event NLO 

The advantage of these jet variables (compared to say (px, py, pz, E)) is that one can define

a “NLO” jet which contains two partons, to have the same kinematic properties as a Born

jet. Since the clustered jet will naturally have a non-zero jet mass (whilst the born jet

always has zero mass) one cannot define a NLO jet to have the same (px, py, pz, E) as a

NLO jet. However by rescaling both the longitudinal components (pz, E) simultaneously

one can achieve a massive jet which possesses the same kinematic properties as a born jet,

whilst gaining a non-zero mass.

Using this setup it is straightforward to construct a final state forward branching phase

space generator, which we detail in appendix ??. This phase space generator branches a

born jet, producing two massless partons which, provided they pass the clustering al-

gorithm, cluster to re-produce the kinematic properties of the born jet, whilst having a

non-zero mass. In the event of failing the clustering algorithm the event is rejected. We

can combine the results of this section to define the following NLO weight, defined for an

exclusive final state including jets,

PNLO =
f(x1)f(x2)

2x1x2s

(
(1 + Rv(smin))|M(0)(ΦB)|2 + 2Re

{
M(0)M(1)†(ΦB)

})

+

njets+1∑

i=1

∫

smin

dΦIS
FBPS(ΦB)Jx

f(xa)f(xb)

2xaxbs
|M (0)

R (ΦR(ΦB))|2CIS(i)

+
∑

i!=j,i>j

∫

smin

dΦFS
FBPS(ΦB)Jx

f(xa)f(xb)

2xaxbs
|M (0)

R (ΦR(ΦB))|2CFS(i, j) + O(smin) (2.18)

One can then define a dynamical K-factor to re-weight a LO event to NLO in the same

fashion as for the EW final states. In the following section we will demonstrate applications

of this formula for fixed order calculations, and discuss its similarities and differences to a

traditional lab frame calculation.

In summary, our method takes an exclusive final state containing jets and EW particles

and calculates a NLO K-factor defined relative to the born phase space point associated

with the exclusive final state. All Lorentz invariant observables are, as is necessary, identical

to a traditional NLO calculation. Lorentz dependent quantities change in the real phase

space, but are invariant in the frame in which the born final state is pT balanced. In the

following section we demonstrate how traditional lab frame distributions can be restored.

3. Fixed Order Physics Examples.

This section provides some applications of the techniques described in the previous sections,

we focus on the following examples, Z + 0, 1 jets and Higgs plus and 0, 1 jets

3.1 Validation

We begin by discussing vector boson production in association with either 0 or 1-jets. The

virtual corrections to these processes have been known for some time [? ]. Real matrix ele-

ments for these processes are made from permutations of the amplitudes A(0)(1−q , 2+
q , 3g, 4

+
! , 5−! ),

A(0)(1−q , 2+
q , 3g, 4g, 5

+
! , 6−! ), and the four quark amplitudes A(0)(1−q , 2+

q , 3Q, 4+
Q

, 5−! , 6+
! ). The
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We are now in a position to define our NLO event by event 
weight. 

Which can be used to define an event by event K-factor. 

1. I nt ro d uct ion

NLO plus shower.

2. D efi ning full y exclusi ve N L O p redict ions : F i xed or der

In this section we present an derivation of the fully exclusive NLO event generator. We

begin by reviewing the formalism of ref. [? ], which was defined for final states which do

not contain any jets. Next we extend the formalism to include final states which include

jets in the LO topology.

2.1 Electroweak final states

We begin by considering the production of a final state which does not contain any final

state QCD partons. This approach was analyzed in regards to the Matrix Element Method

in ref. [? ]. In this reference the method required the momentum over all longitudinally

equivalent final states (i.e. one integrates over the parton fraction x1). Here we will extend

this method to be fully exclusive in a born phase space point, the method of ref. [? ] is

recovered by restoring the longitudinal integration.

The aim of this section is to define an event by event K-factor such that the NLO

calculation is rendered in the following format,

PNLO(ΦB) = K(ΦB)PLO(ΦB) (2.1)

Here P(ΦB) represents a weight defined at a given order for an input born phase space

point. We define a born phase space point as follows,

ΦB = (x1, x2, {Qn}). (2.2)

Here {Qn} is a set of four momenta which represent the n final state EW particles. The

two beams are defined in the lab frame by moving along the z-axis, and are fully specified

by xi the two fractions of the partonic momenta. Given this phase space point it is trivial

to define a weight defined by the LO matrix element.

PLO(ΦB) =
f(x1)f(x2)

2x1x2s
|M(0)(ΦB)|2 (2.3)

Upon integration over the full born phase space one reproduces the LO cross section, i.e.

σLO =

∫
dx1 dx2

n∏

i=1

d4pi δ(+)(p2
i − m2

i ) δ(4)(
∑

i

pi − p1 − p2) PLO(ΦB) (2.4)

We now wish to define the NLO corrections to this fully exclusive phase space point ΦB,

since they share a phase space, this is trivial to evaluate for the virtual corrections,

P̃V (ΦB) =
f(x1)f(x2)

2x1x2s

(
|M(0)(ΦB)|2 + 2Re

{
M(0)M(1)†(ΦB)

})
(2.5)

– 1 –



Event by event NLO 

The advantage of these jet variables (compared to say (px, py, pz, E)) is that one can define

a “NLO” jet which contains two partons, to have the same kinematic properties as a Born

jet. Since the clustered jet will naturally have a non-zero jet mass (whilst the born jet

always has zero mass) one cannot define a NLO jet to have the same (px, py, pz, E) as a

NLO jet. However by rescaling both the longitudinal components (pz, E) simultaneously

one can achieve a massive jet which possesses the same kinematic properties as a born jet,

whilst gaining a non-zero mass.

Using this setup it is straightforward to construct a final state forward branching phase

space generator, which we detail in appendix ??. This phase space generator branches a

born jet, producing two massless partons which, provided they pass the clustering al-

gorithm, cluster to re-produce the kinematic properties of the born jet, whilst having a

non-zero mass. In the event of failing the clustering algorithm the event is rejected. We

can combine the results of this section to define the following NLO weight, defined for an

exclusive final state including jets,

PNLO =
f(x1)f(x2)

2x1x2s

(
(1 + Rv(smin))|M(0)(ΦB)|2 + 2Re

{
M(0)M(1)†(ΦB)

})

+

njets+1∑

i=1

∫

smin

dΦIS
FBPS(ΦB)Jx

f(xa)f(xb)

2xaxbs
|M (0)

R (ΦR(ΦB))|2CIS(i)

+
∑

i!=j,i>j

∫

smin

dΦFS
FBPS(ΦB)Jx

f(xa)f(xb)

2xaxbs
|M (0)

R (ΦR(ΦB))|2CFS(i, j) + O(smin) (2.18)

One can then define a dynamical K-factor to re-weight a LO event to NLO in the same

fashion as for the EW final states. In the following section we will demonstrate applications

of this formula for fixed order calculations, and discuss its similarities and differences to a

traditional lab frame calculation.

In summary, our method takes an exclusive final state containing jets and EW particles

and calculates a NLO K-factor defined relative to the born phase space point associated

with the exclusive final state. All Lorentz invariant observables are, as is necessary, identical

to a traditional NLO calculation. Lorentz dependent quantities change in the real phase

space, but are invariant in the frame in which the born final state is pT balanced. In the

following section we demonstrate how traditional lab frame distributions can be restored.

3. Fixed Order Physics Examples.

This section provides some applications of the techniques described in the previous sections,

we focus on the following examples, Z + 0, 1 jets and Higgs plus and 0, 1 jets

3.1 Validation

We begin by discussing vector boson production in association with either 0 or 1-jets. The

virtual corrections to these processes have been known for some time [? ]. Real matrix ele-

ments for these processes are made from permutations of the amplitudes A(0)(1−q , 2+
q , 3g, 4

+
! , 5−! ),

A(0)(1−q , 2+
q , 3g, 4g, 5

+
! , 6−! ), and the four quark amplitudes A(0)(1−q , 2+

q , 3Q, 4+
Q

, 5−! , 6+
! ). The

– 5 –

We are now in a position to define our NLO event by event 
weight. 

Which can be used to define an event by event K-factor. 

1. I nt ro d uct ion

NLO plus shower.

2. D efi ning full y exclusi ve N L O p redict ions : F i xed or der

In this section we present an derivation of the fully exclusive NLO event generator. We

begin by reviewing the formalism of ref. [? ], which was defined for final states which do

not contain any jets. Next we extend the formalism to include final states which include

jets in the LO topology.

2.1 Electroweak final states

We begin by considering the production of a final state which does not contain any final

state QCD partons. This approach was analyzed in regards to the Matrix Element Method

in ref. [? ]. In this reference the method required the momentum over all longitudinally

equivalent final states (i.e. one integrates over the parton fraction x1). Here we will extend

this method to be fully exclusive in a born phase space point, the method of ref. [? ] is

recovered by restoring the longitudinal integration.

The aim of this section is to define an event by event K-factor such that the NLO

calculation is rendered in the following format,

PNLO(ΦB) = K(ΦB)PLO(ΦB) (2.1)

Here P(ΦB) represents a weight defined at a given order for an input born phase space

point. We define a born phase space point as follows,

ΦB = (x1, x2, {Qn}). (2.2)

Here {Qn} is a set of four momenta which represent the n final state EW particles. The

two beams are defined in the lab frame by moving along the z-axis, and are fully specified

by xi the two fractions of the partonic momenta. Given this phase space point it is trivial

to define a weight defined by the LO matrix element.

PLO(ΦB) =
f(x1)f(x2)

2x1x2s
|M(0)(ΦB)|2 (2.3)

Upon integration over the full born phase space one reproduces the LO cross section, i.e.

σLO =

∫
dx1 dx2

n∏

i=1

d4pi δ(+)(p2
i − m2

i ) δ(4)(
∑

i

pi − p1 − p2) PLO(ΦB) (2.4)

We now wish to define the NLO corrections to this fully exclusive phase space point ΦB,

since they share a phase space, this is trivial to evaluate for the virtual corrections,

P̃V (ΦB) =
f(x1)f(x2)

2x1x2s

(
|M(0)(ΦB)|2 + 2Re

{
M(0)M(1)†(ΦB)

})
(2.5)

– 1 –

MEM@NLO!!!



Examples : Z + 0,1 jets : event by event smin

Figure 1: The cancellation of the dependence on smin for a single born phase space point (defined
in the text). Renormalization and factorization scales are set to mZ .

singular regions of these amplitudes are controlled by the invariants associated with ad-

jacent coloured partons. Collinear singularities correspond o the case in which one such

invariant vanishes, whilst the soft region corresponds to two pairs of invariants simultane-

ously going to zero. We regulate the cross sections by requiring that if a pair of partons in

a given amplitude posses such a singularity then sij > smin.

For these processes Rv is determined from eq.(3.79) or ref. [? ]

Rv(q1; 1, . . . , n; q2) =
αsNc

2π

1

Γ(1 − ε)

[∑

ij

{
1

ε2

(
µ2

sij

)ε

− log2

(
sij

smin

)}

+
3

2ε

(
µ2

smin

)ε

+
63 + 67n − 10nNf

18
−

π2(n + 1)

3

]

+
αsnβ0

ε

1

Γ(1 − ε)

(
µ2

smin

)ε

(3.1)

where the sum over ij runs over the colour ordered pairs, i.e. (q11), (12), . . . (nq2).

We begin our validation by illustrating the cancellation on the dependence of smin

between the virtual and real corrections at a fixed Born phase space point. As an example

we choose the following born phase space points

Z : pµ+ = (28.7, 14.0,−748.8, 749.5) pµ− = (−28.7,−14.0,−127.9, 131.8) (3.2)
′Z + jet : pµ+ = (17.3, 25.7,−1247.8, 1248.1) pµ+ = (26.7, 62.6,−1224.01225.9)

pj = (−44.0,−36.9,−398.2, 402.3) (3.3)

Given these phase space points we calculate the LO weight, defined by eq ?? and ??. Then

we calculate the virtual plus Rv and real parts of the NLO weights (eqs. ?? and ??). The

differential K factor is then defined as the ratio of these terms. Our results for various
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Proof is in the pudding, and the dessert of choice is smin 
independence at fixed Born phase space point. 



Examples : Integration over the emissions. 

This is a typical event, (for DY), we plot the pt difference from 
LO for one of the leptons. 



Examples : Integration over the emissions. 



Examples : Integration over the emissions. 

Real corrections  
(note ~< 5 GeV)



Examples : Integration over the emissions. 

Virtual + Born 

Real corrections  
(note ~< 5 GeV)



Examples : Z+0,1 jets : differential K factors

The pattern of the differential K-factor for the two types of processes (Z
+0, or 1 jets) are markedly different. Both are defined exclusively, i.e. we 
veto radiation above > 20 GeV.

With a LO jet present the spread of K-factors is much larger (we also 
find some negative K-factors (fixed by changing scale). 



Applications to the MEM



Our preferred MEM@NLO algorithm 

• Take an input MC/data event, and generate parton level information through 
transfer functions (or lack thereof). 

• Boost event such that transverse momentum of the final state balances, thus 
defining a Born phase space point, calculate LO and NLO weights. 

•  The boost was not unique (many longitudinally equivalent boosts) so 
integrate over all allowed boosts (all allowed x).

boost

Figure 1: The generation of the Born (and virtual) phase space from a given experimental event.
The left hand side depicts a collision that results in the production of a colour neutral final state
(represented here by four leptons in red) that do not balance in the transverse plane. The resulting
imbalance (X , in blue) represents the remaining event which is not modelled in the Born matrix
element. We apply a Lorentz transformation such that X has no components in the transverse
plane, with the remaining longitudinal and energy components absorbed into the colliding partons.

to find the relations,

xa − xb =
2√
s

(
n∑

i=1

pzi

)

, xa + xb =
2√
s

(
n∑

i=1

Ei

)

. (2.7)

However, matching an experimental point p̃ to the LO kinematics (p) is a challenge. In

particular, any event will always contain additional radiation that is not modelled by the

leading order (Born level) matrix element. In order to proceed we shall define a four vector

X, that balances the momenta of the final state particles. This is illustrated schematically

in Fig. 1 and expressed through the equations,

X = −
n∑

i=1

p̃i. (2.8)

The Born matrix elements, with the beam directions consistently along the z-axis, are

only defined for Xx = Xy = 0, i.e. when there is no pT imbalance between the final

state particles1. Therefore, in order to ensure that the experimental event has a well-

defined interpretation as a Born level phase space point we need to remove the transverse

components of X. This can be achieved by applying a Lorentz transformation Λ(X) on

the momenta p̃ in the event to arrive at a frame in which the transverse components of X

are zero,

pµi = Λµ
ν(X) p̃νi with

n∑

i=1

pxi =
n∑

i=1

pyi = 0 . (2.9)

As desired, the phase space point p is now of the correct form to be used in a Born level

matrix element. For a given transformation, the momentum fractions xa and xb are then

related to the transformed momenta p through the relations in Eq. (2.7). However, we note

1Attempting to evaluate a LO matrix element with a phase space point that does not conserve momentum

is ill-defined. The exact weight obtained depends on which kinematic invariants one has chosen to use in

the expression for the matrix element.
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Boost integration 

• We define our weights as follows, 

• The integration limits are found by solving for the maximum rapidity 

• Here a and b are the beam particles. 
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1. Introduction

NLO plus shower.

PMEM
LO ({Qn}) =

1

σLO

∫ xmax

xmin

dx1PLO(ΦB)

PMEM
NLO ({Qn}) =

1

σNLO

∫ xmax

xmin

dx1PNLO(ΦB)

(1.1)

2. Defining fully exclusive NLO predictions : Fixed order

In this section we present an derivation of the fully exclusive NLO event generator. We

begin by reviewing the formalism of ref. [? ], which was defined for final states which do

not contain any jets. Next we extend the formalism to include final states which include

jets in the LO topology.

– 1 –

cuts in order to define fiducial regions of the detector. It is therefore useful to consider the

forms of the lab frame transverse momentum (plab
T ) and pseudo-rapidity (ηlab) under the

application of a given longitudinal boost parameterized by xa.

The four-momenta of all the particles depend on the boost parameter – the initial

state momenta pa(xa), pb(xa) and the momentum of particle i in the final state, pi(xa).

However we note that invariant masses, sij = 2pi(xa) · pj(xa) cannot depend on the boost

and may therefore be evaluated using any choice of boost parameter. The lab frame

transverse momentum and pseudo-rapidity are defined in terms of such invariants and the

boost parameter xa by,

plab,i
T =

√
saisib

sab
, ηlab,i =

1

2
log

(
x2

as

sab

sib

sai

)
. (2.16)

From these equations we see that plab,i
T does not depend on the boost parameter and

therefore cuts on this quantity can be performed outside the boost integration, i.e. in

Eq. (2.15). On the other hand, ηlab,i depends on xa, so that cuts on the lab frame pseudo-

rapidity should be included in Eq. (2.14). These cuts constrain the range of allowed boosts,

i.e. the integration limits xl and xu are fixed by |ηmax|.
In summary, by boosting an event to a frame in which the final state is pT -balanced

we have recovered Born kinematics and can assign a likelihood to the event uniquely.

Frequently in the next sections we will refer to these frames, in which the Born event is

well defined, as the “MEM frame”. As we have discussed, this definition is only unique in

the transverse plane and the “MEM frame” is actually a set of equivalent frames connected

by longitudinal boosts.

For the remainder of the paper we will make a simplification by assuming a “perfect”

detector, i.e. the transfer function is equal to W (x,y) = δ(x − y). This assumption is only

valid for well-measured final state particles such as leptons and therefore as examples we

only consider ZZ → 4# and Z → #+#−. One may worry that the additional integrations

imposed by the transfer functions spoil the method. In particular the transfer functions are

defined both in a specific frame and given detector setup. However the construction of the

MEM allows for a convenient factorisation of the problem. The role of the transfer functions

is to provide a model describing the range of possible particle level events which could be

generated given a specific detector event. Therefore even though the transfer functions

are non-Lorentz invariant (as indeed are the PDFs) they do not spoil the method. They

merely result in one event being replaced by an integral over many similar events, which

in turn each get boosted to the MEM frame and analysed individually. The total weight

for one experimental event is thus obtained by performing these additional integrations.

The only remaining caveat is to correctly normalise the sample by including the transfer

functions in the cross section definition.

σLO,trans
Ω =

∫
dy dxa dxb dx δ(xaxbs − Q2)

fi(xa)fj(xb)

xaxbs
Bij

Ω (pa, pb,x)W (x,y) . (2.17)

Taking this simplification and the integration over the longitudinal boost into account,
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Applications so far 

• Applications so far have been somewhat 
limited to theoretical study, and mostly 
focused on Higgs physics, 

• Used (as a backup analysis) in CMS H=>ZZ 

• Currently being implemented in CMS 
H=>Zγ analysis 

• Hope to release “MemCFM” in the latter 
half of this year, which will be a version of 
MCFM which can provide NLO weights 
event by event for every process in MCFM. 

Figure 7: Distribution of the log-likelihood difference, Λ = log(LB/LS+B) observed in 821 pseudo
experiments testing the hypothesis that there is a Higgs boson with mH = 300 GeV (left) and
mH = 550 GeV (right).

hypothesis P, the weights that enter the likelihood are defined as,

PLO(xi|S = mH) =
1

(σLO
S + σLO

B )

(
BS(xi) + BB(xi)

)
, (5.3)

PNLO(xi|S = mH) =
1(

σNLO
S + σNLO

B

)
(
VS(xi) + VB(xi) + RS(xi) + RB(xi)

)
. (5.4)

Note that we do not alter the expected number of events based upon the order in pertur-

bation theory, i.e. we expect a background only hypothesis to generate 200 events in both

our LO and NLO studies. As a result, the LO hypothesis is not penalized by its lower

prediction for the total rate relative to NLO. This procedure is thus akin to rescaling the

LO prediction for the rate to its NLO value.

We have performed 821 pseudo-experiments with the procedure outlined above, for

Higgs mass hypotheses of 300 and 550 GeV. The results of these analyses are presented in

Figure 7, in terms of the log-likelihood difference, Λ = log(LB/LS+B). Since the signal at

300 GeV is relatively strong, a typical pseudo-experiment – that contains only background

events – is able to exclude this hypothesis effectively, i.e. Λ > 0. We note that, as expected,

the NLO MEM typically sets a much stronger exclusion than at LO (the peak in the NLO

distribution is in the region Λ ∼ 12, whilst the LO peak is at Λ ∼ 8). From this ensemble

we can calculate the expected value of Λ for a typical pseudo-experiment, the mean of

the distributions in Figure 7. Similarly, the standard deviation of the distribution gives a

measure of the spread of the expected results within the sample.

Repeating this exercise across the range 300-550 GeV we obtain the results shown

in Figure 8, where we have indicated both the expected value of Λ and the standard

deviation of the distribution. Note that the standard deviation, represented by the shaded

band, should be treated only as a means of assessing the spread of results obtained by our

method. It should not be interpreted as a rigorous definition of a confidence contour, such as

one finds in an experimental analysis. We see that the pattern of results is repeated across

the range of Higgs masses considered, with a significant difference between the NLO and
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Searches for H=>Zγ

7

 (GeV)
T

Leading lepton P
0 20 40 60 80 100 120 140

A
.U

.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

 = 125 GeV)
H

 (m!Z"H

 + DYJets!SM Z

CMS Simulation

 (GeV)
T

Trailing lepton P
0 10 20 30 40 50 60 70 80 90 100

A
.U

.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

 = 125 GeV)
H

 (m!Z"H

 + DYJets!SM Z

CMS Simulation

 (GeV)
T

Photon P

0 10 20 30 40 50 60 70 80 90 100

A
.U

.

0

0.05

0.1

0.15

0.2

0.25

0.3

 = 125 GeV)
H

 (m!Z"H

 + DYJets!SM Z

CMS Simulation

Figure 2: Transverse momentum for the leading and trailing lepton, and the photon based on
simulated events for the total background (Zγ and Z+jets) and signal for mH = 125 GeV.

Very difficult Channel. 
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s ∼ m2
H = m2

Z + 2(pγ
T )2

pγ
T ! 40 (7.1)

8. Defining massless jets

To describe jets in the FBPS framework, we need to define the jets by massless 4-vectors.

This means the jet mass, which is an internal property of the jet, will be integrated out.

By using the fact that the longitudinal component of the collision is not observable, we

can easily define the jet final state in terms of the transverse momentum, the rapidity

and azimuthal angle of the jet. The remaining fourth component is the mass which will

be integrated out. If need be the full massless 4-vector can be reconstructed from the

transverse momentum, rapidity and azimuthal angle.

To be explicit, the above procedure is quantified in the following manner. After apply-

ing the jet algorithm we are left with jet momenta (E, px, py, pz) which can be re-expressed

as (!pt, η,m). We can integrate out the mass and replace the jet 4-vector by the massless

4-vector (!pt, η, 0). To see what happens, we make this procedure explicit in momentum

space. Given the massive jet J̃ = (E, px, py, pz) = pl + pt = (E, 0, 0, pz) + (0, px, py, 0) and

initial state momentum p̃ab = pa+pb, we add to both initial and final state the longitudinal

vector αpl. The parameter α is determined by the requirement that 0 = J2 = (J̃ +αpl)2 =

((1 + α)pl + pt)2, which gives 1 + α =

√
−p2

t

p2
l

= mt

ml
such that J =

(
mt

ml

)
pl + pt. This

transformation of the jet momentum from J̃ to J leaves the jet transverse momentum and

rapidity unchanged, while it zeroes the jet mass. The initial state momentum is changed

pa + pb = pab = p̃ab + αpl from which the new initial state momenta can be determined by

adding or subtracting the energy and longitudinal momentum components of pab.
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Phase space restrictions 
force the photon to be 
fairly soft. 
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CMS search 

6 7 Summary

Table 1: Luminosity and observed data yields used in the analysis. Expected signal yields for a
125 GeV SM Higgs boson.

Sample Luminosity num. of events num. of events
(fb−1) 115 < m!!γ <180 GeV predicted for

mH = 125 GeV
2011 ee 4.98 1748 1.2
2011 µµ 5.05 2087 1.4
2012 ee 5.20 2181 1.3
2012 µµ 5.21 2449 1.5
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Figure 1: Total m!!γ spectrum in the electron and the muons channels for the 7 and 8 TeV
data. Also shown are the simulated signal for mH = 125 GeV and the expected Drell-Yan
contamination to the Zγ spectrum. The magnitude of the signal is what would be expected if
its cross section is 100 times the SM expectation. The fits are exponentials and for visualization
purposes only.

CMS have recently 
released a first 
search in this 
channel. 

Using the same 
sort of techniques 
as 2 photons. 
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Figure 5: Exclusion limit on the cross section of a SM Higgs boson decaying into Z-boson and
a photon as a function of the Higgs boson mass based on 5.0 fb−1 of data taken at 7 TeV and 5.2
fb−1 at 8 TeV.

The CMS analysis was 
able to set limits at 
around 10-50 time the 
SM BR. 

Its interesting to see how 
the MEM does here, 
since its really really hard!



Some hope,

• Production mechanisms are different

• Photon prefers to be radiated collinear to quark line in background. 

• As a result rapidity/polar angle distributions different. 

• Can we utilize this?



The kinematic discriminant 

• There are numerous possibilities, we will choose the following, 

• When the event is more like a background event D is closer to 0.  Larger D 
correspond to events which look more Higgs like

5

decay are clean, bu t t he jet is mismeasured as a photon.
A s a crude model, we use SH E R PA to generate Z + jet
events and t hen smear t he pT and η of t he (leading) jet
by G aussian funct ions wi t h a wid t h of 10 G e V and 0.5
respect ively. O ur event sample is t hen genera ted by ap-
plying t he cu ts described above in t he previous sect ion to
t he smeared events, t rea t ing t he smeared jet as a photon.

B. The MEM@NLO as a kinematic discriminant

We first discuss our defini t ion of t he H iggs signal hy-
pot hesis, which is par t icularly impor t ant because of t he
very narrow SM wid t h. O ne approach is to define a
weight for each event by integrat ing over t ransfer func-
t ions t hat model t he detector resolu t ion, as in eq. (9).
T his approach allows one to test a single H iggs mass hy-
pot hesis for a given set of events, bu t requires addi t ional
integrat ions per event . A n al ternat ive approach is to
change t he H iggs mass hypot hesis on an event-by-event
basis by choosing mH = m!!γ . In t his scenario one ef-
fect ively changes t he propagator in t he mat rix element
to,

1
(s−mH )2 + iΓHmH

→ 1
iΓHm!!γ

. (17)

Since ΓH is very small t his approach makes each event
have a large PS and t he collect ion of events can no
longer define a probabili ty densi ty funct ion. In addi t ion
PS ∼> PB even for background event samples. However,
one st ill expects discrimina t ing power between signal and
background since PS arising from t he events which match
onto t he signal hypot hesis will be larger t han t hat for
PS from t he background. F inally we note t hat the (sig-
nal) normaliza t ion is defined uniquely for each event by
σ(mH = m!!γ ).

T his technique has been used ex tensively in st udies
involving kinema t ic discriminants in H → ZZ → 4#
[24, 25]. T he advant age of t his technique is t hat t here
are less integra t ions per event and t hus t he weights are
compu t a t ionally less expensive. O ne can t hen restore
t he invariant mass m!!γ as an addi t ional discriminant
since H iggs events will cluster in invariant mass whilst
t he background will be more diffuse. We will adopt t his
approach for t he remainder of t his paper.

W i t h t he event samples generated as described in t he
previous sect ions we can now int roduce our discriminant
D. T here is a range of possibili t ies bu t in t his paper we
will choose,

D = − log
(

PB

PS + PB

)
. (18)

E vents which arise from background should have larger
PB t han PS so t he rat io in t he logari t hm is near one.
A s a resul t , events wi t h D nearer zero should be more
background-like t han signal.

We present results for D for our t hree different event
sample classes in F ig. 1. T he resul ts are shown as two-
dimensional histograms, binned bot h by t he discriminant
D and t he invariant mass, m!!γ . In addi t ion, we also
show one-dimensional pro ject ions of t hese histograms, as
a funct ion of D only. A s expected t he signal events peak
at larger D t han t he corresponding background dist ribu-
t ion. T he background and fake samples have roughly
similar shapes (indica t ing some of t he similari t ies be-
tween Z + jet and Zγ). A l t hough t he signal shapes are
similar to t he background, t here are st ill significant re-
gions t hat are only populated by background events (bu t
which may st ill have an invariant mass in t he H iggs win-
dow). In par t icular, bot h t he background and fake sam-
ples have significant t ails in t he lower D region, whereas
t he signal sample does not . For example, t here are barely
any ( ∼ 0.5%) of signal events wi t h D < 6. O n t he ot her
hand around 10% of t he background events lie in t his
region. C u t t ing at D > 6 would t hus be an almost zero-
cost reduct ion in signal at t he expense of a non-t rivial
background number of events.

T he scales on t he two-dimensional histograms illus-
t rate t he st ark differences between t he signal and back-
ground events in t he (D,m!!γ ) plane. T he area of high-
est densi ty for t he signal events (around t he t ru t h value,
m!!γ = 125 G e V ) is around t hree t imes greater t han t he
corresponding highest densi ty region for t he background
(which is at much lower invariant mass). R et aining only
t he events t ha t sat isfy D > 7, one rejects 21% of t he irre-
ducible background events and keeps 93% of t he signal.
A higher cu t , D > 8 rejects 64% of t he background and
ret ains 55% of t he signal. In an experiment al analysis
one would t hus choose t he op t imal value of D a t which
to cu t in order to op t imize t he signal to background ra-
t io. Since our model of t he fakes is less developed t han
our signal and background models we op t imize our cu t
on t he discriminant on t he combina t ion of signal and ir-
reducible background samples. We find a value of t he
cu t at D > 7.5 corresponds to a signal efficiency of 81%,
wi t h an background reject ion of 37%. We note t hat here
we have chosen a fairly simple cu t on D t ha t op t imizes
S/

√
B . O ne could instead perform count ing experiments

using contours in t he (D,m!!γ ) plane al t hough such a
st udy is beyond t he scope of t his work .

We plot t he invariant mass m!!γ before and after our
cu t (D > 7.5) for our t hree samples in F ig. 2. E ach
sample is weighted to reflect t he number of events ex-
pected, given t he tot al number of irreducible background
Zγ events. We weight our signal sample by t he rat io of
cross sect ions (including a N L O to N N L O K-factor of
1.2 [39]). We normalise our fake sample to be compat i-
ble wi t h t hat repor ted by C MS [8], namely by fixing t he
number of fake events to be one t hird of t he irreducible
background. O ur cu ts have al tered t he shape of t he back-
ground and fake samples, whilst maint aining t he overall
shape of t he signal.

U l t ima tely we would like to invest igate t he efficiency of
t his met hod in t he vicini ty of t he H iggs signal at mH =
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Figure 1: Distribution of events in terms of the invariant mass of the final state, m!!γ and our discriminant D defined in
eq. (18). The two-dimensional histograms (left) present the density of events in the plane of D and m!!γ . The right hand
panels represent the distribution of D for our signal (top row), background (middle row) and fake (bottom row) samples. Each
sample is normalized to the total number of events in the sample.

Results 

We can make a 
two dimensional 
histogram in the 
invariant mass, D 
plane. 

Background 
events have a 
longer tail and are 
move evenly 
distributed in 
invariant mass.  



6

D
0 1 2 3 4 5 6 7 8 9 10

116

118

120

122

124

126

128

130

132

134

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

!
-
l

+
l

m  = 8 TeVs, ! Z" H "pp 

D
0 1 2 3 4 5 6 7 8 9 10
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
! Z" H "pp 

 = 8 TeVs

fraction

D
0 1 2 3 4 5 6 7 8 9 10

116

118

120

122

124

126

128

130

132

134

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.0045

!
-
l

+
l

m  = 8 TeVs, ! Z"pp 

D
0 1 2 3 4 5 6 7 8 9 10
0

0.01

0.02

0.03

0.04

0.05

0.06
! Z"pp 

 = 8 TeVs

fraction

D
0 1 2 3 4 5 6 7 8 9 10

116

118

120

122

124

126

128

130

132

134

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

!
-
l

+
l

m  = 8 TeVs, ! Z" Zj "pp 

D

0 1 2 3 4 5 6 7 8 9 10
0

0.01

0.02

0.03

0.04

0.05

! Z" Zj "pp 

 = 8 TeVs

fraction

Figure 1: Distribution of events in terms of the invariant mass of the final state, m!!γ and our discriminant D defined in
eq. (18). The two-dimensional histograms (left) present the density of events in the plane of D and m!!γ . The right hand
panels represent the distribution of D for our signal (top row), background (middle row) and fake (bottom row) samples. Each
sample is normalized to the total number of events in the sample.

6

D
0 1 2 3 4 5 6 7 8 9 10

116

118

120

122

124

126

128

130

132

134

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

!
-
l

+
l

m  = 8 TeVs, ! Z" H "pp 

D
0 1 2 3 4 5 6 7 8 9 10
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
! Z" H "pp 

 = 8 TeVs

fraction

D
0 1 2 3 4 5 6 7 8 9 10

116

118

120

122

124

126

128

130

132

134

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.0045

!
-
l

+
l

m  = 8 TeVs, ! Z"pp 

D
0 1 2 3 4 5 6 7 8 9 10
0

0.01

0.02

0.03

0.04

0.05

0.06
! Z"pp 

 = 8 TeVs

fraction

D
0 1 2 3 4 5 6 7 8 9 10

116

118

120

122

124

126

128

130

132

134

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

!
-
l

+
l

m  = 8 TeVs, ! Z" Zj "pp 

D

0 1 2 3 4 5 6 7 8 9 10
0

0.01

0.02

0.03

0.04

0.05

! Z" Zj "pp 

 = 8 TeVs

fraction

Figure 1: Distribution of events in terms of the invariant mass of the final state, m!!γ and our discriminant D defined in
eq. (18). The two-dimensional histograms (left) present the density of events in the plane of D and m!!γ . The right hand
panels represent the distribution of D for our signal (top row), background (middle row) and fake (bottom row) samples. Each
sample is normalized to the total number of events in the sample.

Results 
The fakes are 
similar to the 
irreducible 
background. 
The effects of the 
larger smearing is 
are also apparent. 

We will use these 
results to enhance 
the S/B by 
requiring the event 
to pass a 
minimum D 
requirement. 
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Figure 2: Invariant mass distributions (for m!!γ) before (left panels) and after (right panels) our analysis cut D > 7.5.
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Invariant 
Mass 

We make the 
invariant mass 
distribution 
before and 
after the cut, it 
is clear that S/
B has 
increased. 

With D > 7.5 we 
keep ~80% of 
the signal and 
lose ~40% of 
the background. 



7

!
-

l
+
l

m
116 118 120 122 124 126 128 130 132 134

0

5

10

15

20

25

30

35

40

45

! Z" H "pp 

 = 8 TeVs

D>0

events

!
-

l
+
l

m
116 118 120 122 124 126 128 130 132 134

0

5

10

15

20

25

30

35
! Z" H "pp 

 = 8 TeVs

D>7.5

events

!
-

l
+
l

m
116 118 120 122 124 126 128 130 132 134

6000

7000

8000

9000

10000

11000

! Z"pp 

 = 8 TeVs

D>0

events

!
-

l
+
l

m
116 118 120 122 124 126 128 130 132 134

3000

3500

4000

4500

5000

5500

6000

6500

7000

7500

! Z"pp 

 = 8 TeVs

D>7.5

events

!
-

l
+
l

m
116 118 120 122 124 126 128 130 132 134

2200

2300

2400

2500

2600

2700

2800

2900

3000

3100

3200

! Z" Zj "pp 

 = 8 TeVs

D>0

events

!
-

l
+
l

m
116 118 120 122 124 126 128 130 132 134

1200

1300

1400

1500

1600

1700

1800

1900

2000

! Z" Zj "pp 

 = 8 TeVs

D>7.5

events

Figure 2: Invariant mass distributions (for m!!γ) before (left panels) and after (right panels) our analysis cut D > 7.5.
Distributions are shown for the signal events (top row), the irreducible background (middle row) and fakes (final row). The
number of events in each distribution is normalized to the irreducible background sample without application of any cuts on
D, as described in the text. The red curve indicates a Gaussian (polynomial) fit to the signal (background) data.

7

!
-

l
+
l

m
116 118 120 122 124 126 128 130 132 134

0

5

10

15

20

25

30

35

40

45

! Z" H "pp 

 = 8 TeVs

D>0

events

!
-

l
+
l

m
116 118 120 122 124 126 128 130 132 134

0

5

10

15

20

25

30

35
! Z" H "pp 

 = 8 TeVs

D>7.5

events

!
-

l
+
l

m
116 118 120 122 124 126 128 130 132 134

6000

7000

8000

9000

10000

11000

! Z"pp 

 = 8 TeVs

D>0

events

!
-

l
+
l

m
116 118 120 122 124 126 128 130 132 134

3000

3500

4000

4500

5000

5500

6000

6500

7000

7500

! Z"pp 

 = 8 TeVs

D>7.5

events

!
-

l
+
l

m
116 118 120 122 124 126 128 130 132 134

2200

2300

2400

2500

2600

2700

2800

2900

3000

3100

3200

! Z" Zj "pp 

 = 8 TeVs

D>0

events

!
-

l
+
l

m
116 118 120 122 124 126 128 130 132 134

1200

1300

1400

1500

1600

1700

1800

1900

2000

! Z" Zj "pp 

 = 8 TeVs

D>7.5

events

Figure 2: Invariant mass distributions (for m!!γ) before (left panels) and after (right panels) our analysis cut D > 7.5.
Distributions are shown for the signal events (top row), the irreducible background (middle row) and fakes (final row). The
number of events in each distribution is normalized to the irreducible background sample without application of any cuts on
D, as described in the text. The red curve indicates a Gaussian (polynomial) fit to the signal (background) data.

Invariant 
Mass 

The fakes and 
background change 
shape after the cut, but 
the signal remains the 
same. 

Could imagine doing a 
cut on D then redoing 
the initial CMS analysis. 
What would be the 
improvement? 



S/⎷B scaling. 

• Define the following parameter 

• Where N is the number of events in the window of invariant mass, 

• We find 

8

125 GeV. We therefore define a window,

122 < m!!γ < 128 GeV , (19)

where the width has been optimized for the analysis be-
low. We attempt to quantify the improvement the cut on
D has made in the following way. We define the quantity,

α =

√
NZγ +Nfakes

NH
, (20)

where NX represents the expected number of events for
processX. Our measure includes no treatment of system-
atic errors and instead only assumes the S/

√
B scaling

of the statistical uncertainty. In spite of its shortcomings
compared to the full experimental analysis, α can pro-
vide us with an estimate of the improvement one might
envisage after applying our cut. We find,

αD>0

αD>7.5
= 1.52. (21)

Since α scales as L−1/2, using a cut of D > 7.5 is (sta-
tistically) equivalent to taking 2.31 times more data.

Before concluding, we will briefly consider the impact
of using the leading order method, MEM@LO rather
than the NLO one. We find that the fraction of events
which fail the fiducial cuts at LO is larger for the Higgs
signal than for the irreducible background. As a re-
sult the MEM@NLO produces slightly better signal over
background ratios than the MEM@LO. For example we
find,

αLO
D>0

αLO
D>7.5

= 1.41, (22)

which is 7% smaller than the corresponding NLO value.
This small difference, between the LO and NLO anal-
yses, indicates that the method is perturbatively stable
and the theoretical systematic uncertainty is under good
control.

V. CONCLUSIONS

In this paper we have presented an application of the
MEM@NLO to searches for the Higgs boson in the decay
channel Zγ. This channel is extremely challenging ex-
perimentally as can be seen from the preliminary results
from CMS [8]. The reasons for these difficulties are two-
fold. Firstly the H → Zγ branching ratio is already very
small, even before the requirement that the Z-boson de-
cays to muons and electrons only. Since the background
production of Z in association with a photon is large, one
naturally has low signal to background ratios. Secondly
the kinematics of the decay for a Higgs boson with mass
mH ∼ 125 GeV force the final state photon to have a
relatively soft pT . The matrix element has a soft singu-
larity as pγT → 0 and therefore the background is very

large in the region in which the Higgs signal peaks. Once
detector effects are included there is very little difference
between the signal and background events in the trans-
verse variables.

Given these difficulties, it is essential to utilize all the
remaining differences between the signal and background
processes. One approach, the matrix element method,
uses a theoretically defined matrix element to assign a
weight to each experimental event. When there is a good
match between the theoretical hypothesis and the input
events the weights become larger. Therefore one can use
the MEM to produce samples of events which increase
the signal to background ratio for a certain theoreti-
cal hypothesis. Recently the MEM has been extended
to NLO for electroweak final states [26]. We used this
MEM@NLO to calculate signal and background discrim-
inants for a sample of events generated using SHERPA.
Our event sample included showered and hadronized
Higgs signal and SM background events as well as a crude
model of Z+jet fake events. Higgs decays to Zγ were gen-
erated using the MCFM implementation. Our estimates
of resolution effects and fake rates were guided by the
recent results from CMS presented in Ref. [8].

We used the MEM@NLO to construct a discriminant
(D) from the event-by-event weights PS (using the sig-
nal matrix element) and PB (the background matrix el-
ement). In defining these weights we removed the in-
variant mass as a discriminating variable. As a result
we were subsequently able to create a two-dimensional
discriminant in D and m!!γ . In this plane the signal
events cluster around mH and at higher D compared to
those arising from the background and fakes. Therefore,
by cutting on D and m!!γ , we were able to improve our
measure of the signal significance, S/

√
B. We found that

S/
√
B increased by around a factor of 1.5 compared to

the value obtained without any cut on D, suggesting that
roughly half as much data would be needed to obtain the
same limit on H → Zγ. We found that the MEM@LO
algorithm is also able to provide S/

√
B improvements by

a factor of around 1.4, approximately 10% less efficient
than the MEM@NLO.

This search has provided an example of the power of
the matrix element method in a worst case scenario for
a traditional analysis. We hope that the ideas presented
in this paper are useful to our experimental colleagues
in the hunt for the Higgs boson in this difficult channel.
Code which calculates the weights described in this paper
is available upon request.
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Luminosity Improvement

• Since alpha scales as root Luminosity this increase is (statistically) 
equivalent to taking 2.3 times more data. 
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Difference between 
LO and NLO is 
around 10 % (not 
shown here). 



Conclusions

• I have shown how one can reweight LO events to NLO accuracy, on an event 
by event basis. Allowing one to define NLO corrections for the MEM.

• The method is general, and should work with any MEM algorithm which uses 
a LO Matrix Element. 

• Transfer functions will (in principle) change at NLO although I had no time to 
discuss this. But these corrections should be relatively small. This probably 
needs good interplay between theorists and experimentalists to produce 
useful functions. 

• Distributions of event by event K-factors seem to vary significantly process to 
process and are far from being a delta function (ongoing study). 


