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Motivation for MEM@NLO

e Certain observables change definition at NLO.

e Greater theoretical confidence in result : Win-win since either

e 1) Large differences when using NLO => You need to use NLO

e 2) Small differences at NLO => Perturbative stability, its a good method (but
you still need NLO to check)

e As a phenomenologist the phrase “only available at LO” is unacceptable.



Overview

* [n my view there are two halves to the MEM@NLO

e 1) Defining the MEM : i.e. providing an algorithm to associate experimental
events / MC input with LO matrix elements.

e 2) Extending any given 1) to be higher order in perturbation theory : i.e.
providing NLO weights for LO phase space points.

e Of these halves 2) is much more rigorously defined and will be the focus of
my talk. One can then apply NLO corrections to any algorithm of the form 1).



In the beginning

* [magine a universe in which every event
recorded at colliders is an exact Born phase
space point.

* |In this universe it would be pretty
straightforward to provide event by events
weights for searches and measurements.

e A final state phase space point (with no jets) is
defined by the following quantities,

(I)B — ($1,£E27 {Qn})



e Given this phase space point one can define a weight in a straightforward

fashion,
f(z1) f(z2)

201298

Pro(®p) = MO (@)

e The total cross section is then obtained by integrating over all possible
weights, (i.e. over all Born phase space points)

OLO = /dim d: Hd4p¢ 5 (p; —m7) 5(4)(21% —p1 —p2) Pro(®B)

1=1
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Your universe sucks!
What about higher order
corrections”?




e Given this phase space point one can define a weight in a straightforward

fashion,
f(z1) f (o
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¢ The total cross section is then obtained by integrating over all possible
weights, (i.e. over all Born phase space points)
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Your universe sucks!
What about higher order
corrections?




Helping Max out, by including NLO.

e Can split higher order corrections into two halves, defined by whether or not
observed parton is above our jet definition or not.

e Call two regions resolved and un-resolved

* No problem for the MEM if we are in the resolved region, since its nothing other
than a LO MEM with an additional jet. i.e. we can re-calculate the weights using
a new phase space point

Op = (21,22,1Qi }, 15 })

e \What about the un-resolved region? Much more tricky.... Our aim is to set the
calculation up in the following way,

Pnro(®) = K(®B)Pro(®B)



Virtual corrections to phase space points

The unresolved NLO calculation
naturally contains two types of
contributions. Virtual (loop)
diagrams and real radiation.

75‘/((1)3) _ f(CCl)f(CUQ) (‘M(O) ((I)B)‘Q 4 QRG{
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The virtual corrections can be
readily incorporated into our
weight since they share the same 0000000000000

phase space as the Born (note wvww»<
the above formula is currently \

divergent).




Dealing with the real corrections:

Phase space

e A generic real phase space point has the following parameterization

(i)R — (jlv 5327 {Qn}vﬁr)

¢ \We want to group all of the real phase space points which contain our born
event together (neglecting those which dont contain our Born event) i.e.

(I)R((I)B) = (Clia, Ly {Qn}apr)°

e Note that the x’s have changed, this can’t be avoided! But at least the final
state EW particles (and hence all Lorentz invariant quantities associated with

them) are kept invariant.

cf o= (331,3327 {Qn})



The Forward Branching phase space (Giele, Glover;
Giele, Stavenga, Winter).

e Mathematically we need to factorize the real phase space into the following,
d®(po +pp = Q@ +pr) = dP(Da + o = Q) X d Prsps(Pas Pbs Pr) X Ouero

e Then Q is identified with the observed final state, from this we derive the form of the
FBPS integration

Sab

1 Sq
d Prgps(Pas Pos Pr) = PE (—b> digrdtpd @ ,

e \We then explicitly integrate out these quantities for each event.
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Putting it all together.

We can now write down our real weight, defined for an
input Born phase space point.

Pu@s) = [ 4085, (0) 2,250 0 )

22,TpS

JX represents the Jacobian factor which will take the
integration in the Born x to the real x.

Note that we are still currently divergent! Not currently that

useful for phenomenology! So we’d better regularize the
weights!



Phase space slicing

® The issue of regularization is a thorny

one. S OQ@‘W'O lﬁ/f”ox .

e Need our regularzing functions to be :
exact functions of the Born phase ~—
space point (Not like Catani-Seymour = —_
dipoles) < T 2.
e Simplest possible scheme is to use ’:“ &
phase space slicing (Giele, Glover, | J= M
Kosower), which naturally maps all of s -{/—/////////\\%{2
the singularities to the identified Born <
| )
C"onme,w—

hase space point.
PHERE SRR R SoPF-



The full (finite) NLO weight

PNLO _ f($1)f(372) ((1 4 Rv(smzn))‘M(O)(q)B)F 4 QRG{M(O)M(l)T ((I)B)}>
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+ / | 4015, (05) 7, 2L 1310 0 (@) 4 O (s,

2L,TpS

New addition here is the integrated approximate ME, Rv
which renders the virtual pieces finite.

Can define this to be either Exclusive (integrate FBPS upto a
veto scale). Or inclusive, in which we integrate overall of

phase space.

What about jets?......



Dealing with Jets (minus transfer functions)

¢ \We define our Born phase space in terms of jets (not partons)

Op = (r1,22,{Qi},{J;})

e Each jet is defined using the following variables

Ji = (p124s Wi, Giy M)

e A map to a fixed order result (in terms of partons) is thus defined by a jet-function.

¢ The transfer functions describe the generation of the jet parameters (to be used in the
Born phase space point) and model the shower and the detector response. These will
change at NLO (subtly) and this is beyond the scope of this talk. (Probably would
proceed best through direct experimentalist/theorist collaboration)



The Jet function

The LO jet function is simple to define, since “every parton
becomes a jet”.

CEO{pm}{JIm}) = Z S(pri — Jr.4)8(9i — )5 (i — )

At NLO things become a_tad more complicated, since | have
more ways of maklng the jet.

C{pm+1}t{Im}) = Z5pTz Jr.3)0(pi — ¢ )6 (ni — n; )

+ Z 0(p1itj — J1.6)0(Divj — 07 )6(nivy — i)



NLO event by event weights with jets.

* The first type of configuration is exactly the same as a EW final state, all
but one final state partons are identified with final state jets and the free
one is integrated over.

® The second configuration is new, and requires the integration over partons
which cluster to form the observed jet.

e This second region is called the Final State Forward Brancher (FSFBPS).

e Note that in this region the jets acquire a mass (and this is integrated over).



—vent by event NLO

We are now in a position to define our NLO event by event
weight.

f(x1) f(x2)
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Pnio = ((1 4 R (Smin)) MO (D 5) 2 + 2Re{M(O)M<1)T(q>B)}>

+ > [ aek @ S 0 @ @s) s
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+ > [ aelS@n) LSOl O @) PCrs(i.) + Osm)

2L,TpS

Which can be used to define an event by event K-factor.

Pnro(®) = K(®B)Pro(®B)



—vent by event NLO

We are now in a posmon to deflne our NLO event by event
weight.

PnLo A O)M(l)T(CI)B)}>



K(%g)

K(%g)

—xamples : Z + 0,1 jets : event by event smin
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Proof is in the pudding, and the dessert of choice is smin
independence at fixed Born phase space point.



—xamples : Integration over the emissions.
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This is a typical event, (for DY), we plot the pt difference from
LO for one of the leptons.



—xamples : Integration over the emissions.
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—xamples : Integration over the emissions.
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—xamples : Integration over the emissions.
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Event Fraction

—xamples : Z+0,1 jets : differential K factors
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The pattern of the differential K-factor for the two types of processes (Z
+0, or 1 jets) are markedly different. Both are defined exclusively, i.e. we
veto radiation above > 20 GeV.

With a LO jet present the spread of K-factors is much larger (we also
find some negative K-factors (fixed by changing scale).



Applications to the M




Our preferred MEM@NLO algorithm

X

boost

e Take an input MC/data event, and generate parton level information through
transfer functions (or lack thereof).

e Boost event such that transverse momentum of the final state balances, thus
defining a Born phase space point, calculate LO and NLO weights.

e The boost was not unigue (many longitudinally equivalent boosts) so
integrate over all allowed boosts (all allowed x).



S00st Integration

e \We define our weights as follows,

1 Lmazx

Pro M ({Qn}) = dz1Pro(®p)
oLO

Lmin

1 Lmax
Prio ({Qn}) = / dr1Pnro(®B)

* The integration limits are found by solving for the maximum rapidity
S| TS Sip
nlab,z _ = lOg a
2 Sab Sat

e Here a and b are the beam particles.




Applications so far

e Applications so far have been somewhat
limited to theoretical study, and mostly

focused on Higgs physics,
Z

e Used (as a backup analysis) in CMS H=>ZZ

e Currently being implemented in CMS
H=>Zy analysis

e Hope to release “MemCFM?” in the latter
half of this year, which will be a version of

MCFM which can provide NLO weights
event by event for every process in MCFM.
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Searches for H=>2y
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Very difficult Channel.



CMS search
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The CMS analysis was
able to set limits at
around 10-50 time the
SM BR.

lts interesting to see how
the MEM does here,

since its really really hard!



Some hope,

e Production mechanisms are different
e Photon prefers to be radiated collinear to quark line in background.
e As a result rapidity/polar angle distributions different.

e Can we utilize this?



he kinematic discriminant

e There are numerous possibilities, we will choose the following,

Pp
PS + Pp

D = —log

e \When the event is more like a background event D is closer to 0. Larger D
correspond to events which look more Higgs like



m.,., ~ Pp—=H—>2Zy,\s=8TeV fraction
e Results
We can make a
two dimensional
histogram in the
invariant mass, D
hstsfusafssany plane.
Background
fraction events have a
T ez longer tail and are
L {s=8TeV
move evenly
distributed In
iInvariant mass.
000l




pp — H— Zy,\s=8 TeV

fraction

Results

The fakes are
similar to the
Irreducible
background.

The effects of the
larger smearing is
are also apparent.
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Invariant

Vlass

We make the
INvariant mass
distribution
before and
after the cut, it
IS clear that S/
B has
INncreased.

With D > 7.5 we
keep ~80% of
the signal and
lose ~40% of
the background.
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S/v B scaling.

e Define the following parameter

B \/NZ'y =+ Nfakes
— NH :

e \Where N is the number of events in the window of invariant mass,

122 < Mo~y < 128 GeV

8

e \\We find AP0

= 1.52.
XD>7.5



Luminosity Improvement

e Since alpha scales as root Luminosity this increase is (statistically)
equivalent to taking 2.3 times more data.

My estimate of the
3.5 e
imits on the cross
3.0 section as a function
525 of Luminosity.
S50l |
Difference between
1.9 LO and NLO is
1.0| { around 10 % (not
0 200 400 600 800 1000 shown here).

Lfb™)



Conclusions

e | have shown how one can reweight LO events to NLO accuracy, on an event
by event basis. Allowing one to define NLO corrections for the MEM.

* The method is general, and should work with any MEM algorithm which uses
a LO Matrix Element.

e Transfer functions will (in principle) change at NLO although | had no time to
discuss this. But these corrections should be relatively small. This probably
needs good interplay between theorists and experimentalists to produce
useful functions.

e Distributions of event by event K-factors seem to vary significantly process to
process and are far from being a delta function (ongoing study).



