Higgs Characterization with MEM (in $X \to ZZ^* \to \ell^+ \ell^- \ell^+ \ell^-$ channel)

Myeonghun Park (CERN)

With J. Gainer, J. Lykken, K. Matchev and S. Mrenna.

This talk is based on "Geolocating the Higgs Boson Candidate at the LHC" (arXiv:1304.4936)

Motivations

- With a newly discovered particle, we want to measure its properties, especially the coupling structure to two Z bosons.
- We want to be general as much as possible.
- But we want to keep analyses manageable, thus we try to reduce parameters (eliminating unnecessary degree of freedom)
- In real analyses, we may not need to generate pseudo experiments with whole parameter space.

General spin 0 particle

 We consider a spin-0 particle X, which is a linear combination of CP eigenstates, CP even H (0^+) and CP odd scalar A (0^-),

$$X \equiv H \cos \alpha - A \sin \alpha.$$

• In general X is not a CP eigenstate, but a mixture of both.

 $\alpha = 0$: Pure CP even state $\alpha = \frac{\pi}{2}$: Pure CP odd state

• We assume that the other mass eigenstate is heavy, and can be neglected in our analysis of $M_x \sim 125$ GeV study.

General structure

• The most general Lagrangian can be written with three terms,

$$\mathcal{L} \ni \frac{M_Z^2}{v} H Z^\mu \hat{f}^{(H)}_{\mu\nu} Z^\nu + \frac{1}{2} H F^{\mu\nu} \hat{f}^{(H)}_{\mu\nu\rho\sigma} F^{\rho\sigma} + \frac{1}{2}$$

with form factor fs.

CP even terms which violates gauge invariance. CP even terms which preserves gauge invariance. CP odd terms which preserves gauge invariance.

In a mass eigenstate, we can rewrite the Lagrangian as

$$\mathcal{L} = X \left[\kappa_1 \frac{m_Z^2}{v} Z_\mu Z^\mu + \frac{\kappa_2}{2v} F_{\mu\nu} F^{\mu\nu} + \frac{\kappa_3}{2v} F_{\mu\nu} \tilde{F}^\mu \right]$$

 $\frac{1}{5}AF^{\mu\nu}\hat{f}^{(A)}_{\mu\nu\rho\sigma}F^{\rho\sigma}$

ν

Form factors

• With
$$F^{\mu\nu}F_{\mu\nu} \ni Z^{\mu}\left(\vec{\partial}_{\mu}\overleftarrow{\partial}_{\nu} - g^{\mu\nu}\vec{\partial}^{\rho}\overleftarrow{\partial}_{\rho}\right)Z_{\mu}$$

we do the change of basis to single out gauge invariant term (also symmetrization for two Zs)

$$\begin{split} \hat{f}_{\mu\nu}^{(H)} &\equiv g_1 g_{\mu\nu} + \frac{g_5}{\Lambda^2} \left(\vec{\partial}_{\mu} \overleftarrow{\partial}_{\nu} + g_{\mu\nu} \vec{\partial}^{\rho} \overleftarrow{\partial}_{\rho} \right) + \frac{g_6}{\Lambda^2} g_{\mu\nu} \left(\overleftarrow{\Box} + \overrightarrow{\Box} \right) + \mathcal{O} \left(\frac{1}{\Lambda} \right) \\ \hat{f}_{\mu\nu\rho\sigma}^{(H)} &\equiv \frac{g_2}{\Lambda} g_{\mu\rho} g_{\nu\sigma} + \frac{g_3}{\Lambda^3} g_{\mu\rho} \partial_{\nu} \partial_{\sigma} + \mathcal{O} \left(\frac{1}{\Lambda^5} \right) \quad \overline{\text{SU(2) gauge}} \\ \hat{f}_{\mu\nu\rho\sigma}^{(A)} &= \frac{g_4}{\Lambda} \varepsilon_{\mu\nu\rho\sigma} + \mathcal{O} \left(\frac{1}{\Lambda^5} \right) \quad \overline{\text{SU(2) gauge}} \end{split}$$

e inv.

CP odd

e inv.

1040

(1), (2), CP even

Coupling structure

• If we consider only the first terms

 $\hat{f}_{\mu\nu}^{(H)} \equiv g_1 g_{\mu\nu} + \frac{g_{\vec{p}}}{\Lambda^2} \left(\vec{\partial}_{\mu} \overleftarrow{\partial}_{\nu} + g_{\mu\nu} \vec{\partial}^{\rho} \overleftarrow{\partial}_{\rho} \right) + \frac{g_6}{\Lambda^2} g_{\mu\nu} \left(\overleftarrow{\Box} + \overrightarrow{\Box} \right) + \mathcal{O} \left(\frac{1}{\Lambda^4} \right) \longrightarrow \kappa_1 \equiv g_1 \cos \alpha$ $\hat{f}^{(H)}_{\mu\nu\rho\sigma} \equiv \frac{g_2}{\Lambda} g_{\mu\rho} g_{\nu\sigma} + \frac{g_3}{\Lambda^3} g_{\mu\rho} \partial_{\nu} \partial_{\sigma} + \mathcal{O}\left(\frac{1}{\Lambda^5}\right) - \frac{g_3}{\Lambda^5} g_{\mu\rho} \partial_{\nu} \partial_{\sigma} + \frac{g_3}{\Lambda^5} g_{\mu\rho} \partial_{\sigma} + \frac{g_3}{\Lambda^5} g_{\mu\rho} \partial_{\nu} \partial_{\sigma} + \frac{g_3}{\Lambda^5} g_{\mu\rho} \partial_{\nu} \partial_{\sigma} + \frac{g_3}{\Lambda^5} g_{\mu\rho} \partial_{\mu} \partial_{\sigma} + \frac{g_3}{\Lambda^5} g_{\mu\rho} \partial_{\mu} \partial_{\sigma} + \frac{g_3}{\Lambda^5} g_{\mu\rho} \partial_{\mu} \partial_{\mu} \partial_{\sigma} + \frac{g_3}{\Lambda^5} g_{\mu\rho} \partial_{\mu} \partial_{\mu} \partial_{\sigma} + \frac{g_3}{\Lambda^5} g_{\mu\rho} \partial_{\mu} \partial_{\mu}$ $\hat{f}^{(A)}_{\mu\nu\rho\sigma} = \frac{g_4}{\Lambda} \varepsilon_{\mu\nu\rho\sigma} + \mathcal{O}\left(\frac{1}{\Lambda^5}\right)$

$$\mathcal{L} = X \left[\kappa_1 \frac{m_Z^2}{v} Z_\mu Z^\mu + \frac{\kappa_2}{2v} F_{\mu\nu} F^{\mu\nu} + \frac{\kappa_3}{2v} \right]$$

 $\left| F_{\mu\nu} \tilde{F}^{\mu\nu} \right|$ We have three degree of freedom, and we will reduce a d.o.f by factoring out overall normalization from measured total rate.

6

$\longrightarrow \kappa_2 \equiv g_2 \frac{v}{\Lambda} \cos \alpha$ $\rightarrow \kappa_3 \equiv g_4 \frac{v}{\Lambda} \sin \alpha$

Coupling structure

$$\mathcal{L} = X \left[\kappa_1 \frac{m_Z^2}{v} Z_\mu Z^\mu + \frac{\kappa_2}{2v} F_{\mu\nu} F^{\mu\nu} + \frac{\kappa_3}{2v} F_\mu \nabla F^\mu \nabla$$

• These operators cover all possible Lorentz structure in the amplitude. [e.g., Gao, Gritsan, Guo, Melnikov, Schulze, Tran (2010), De Rújula, Lykken, Pierini, Rogan, Spiropulu (2010), Bolognesi, Gao, Gritsan, Melnikov, Schulze, Tran, Whitbeck (2012)]

from bolognesi.et.al, 2012

$F_{\mu\nu}\tilde{F}^{\mu\nu}$

 $a_3\epsilon_{\mu
ulphaeta}q_1^{lpha}q_2^{eta}\Big)$

Parameter space

- Lagrangian must be real, so kappa are real.
- Amplitude receives corrections from loops

I. Contributions from heavy particles loops are real.

2. Contributions from light particles loops are complex

 These complex contributions can be mimicked by complex kappas.

Ellipsoid of a higgs

With NWA, we will single out the overall scale. $\Gamma(X \to ZZ) = \Gamma_{SM} \sum_{i,j} \gamma_{ij} \kappa_i \kappa_j$. The constraint will be expressed as a partial width The constraint will be expressed as a partial width

Process	γ_{11}	γ_{22}	γ_{33}	γ_{12}
$X \to ZZ$ (DF)	1	0.090	0.038	-0.250
$X \to ZZ$ (SF)	1	0.081	0.032	-0.243
$X \rightarrow \gamma \gamma$	0	1	1	0
$X \to WW$	1	0.202	0.084	-0.379

r 13 and r23 will be 0 through the phase space integration.

Larger(smaller) total rate will make the ellipsoid inflated (deflated), but the shape of ellipsoid remains same.

- Mathematically, from the phase space integrations for a width of a boson X, we get the analytical expression for r_{ij} . (also in Sara Bolognesi et.al., arXiv:1208.4018v1)
- r_{13} , r_{23} will be 0 since terms in $|M|^2$ proportional to k_1k_3 or k_2k_3 are parity odd.
- But with cuts (limitation on the phase space integrations) $I. r_{ii}$ will be changed. 2. There may be non-zero r_{13} , r_{23} terms through incomplete phasespace integration.
- If the cuts are even under parity (pt cut, eta cut, invariant-mass cut), then even after cuts, r_{13} , r_{23} will be still 0.

<i>γ</i> 11	$\gamma 22$	γ33	γ12
1	0.090	0.038	-0.250
1	0.081	0.032	-0.243
0	1	1	0
1	0.202	0.084	-0.379
	after cuts		
1	0.101	0.037	-0.277

• There will be many ways to do a change of variable. In our case, we do the simple triangular transform: $x_i = \sum O_{ij} \kappa_j$

 \mathbf{O}

Cut effects

latitude

- What we observed is the one after analysis cuts.
- Efficiencies of cuts are different point by point on higgs' ellipsoid from 36% to 53%. Thus we need to consider cut effects when we make higgs' ellipsoid. **Efficiency Map**

analysis cuts:

electrons: Pt> 7GeV and |eta|<2.5 mouns: Pt> 5GeV and |eta|<2.4 $M_{z1} > 40 \text{ GeV}, M_{z2} > 10 \text{GeV}$

Cut effects

- two leptons).
- studies.

(For example, Choi, Miller, Muhlleitner, and Zerwas, 2003, Godbole, Miller, and Muhlleitner, 2007, Boughezal, LeCompte, and F. Petriello, 2012, ...

• The main source of the change of efficiency on the ellipsoid seems to be the M_{z2} (the smaller invariant mass of

• Actually the M_{z2} is one of the strong discriminator for higgs property

- We simulated 1000 pseudo experiments. (for Opposite flavor 300 events after analysis cuts.)
- When data comes from a pure standard model higgs case,

$$\mathcal{L} = X \left[\kappa_1 \frac{m_Z^2}{v} Z_\mu Z^\mu \right]$$

atitude

• When data comes from XFF term,

$$\mathcal{L} = X \left[\frac{\kappa_2}{2v} F_{\mu\nu} F^{\mu\nu} \right]$$

When data comes from a pure pseudo scalar case,

$$\mathcal{L} = X \left[\frac{\kappa_3}{2v} F_{\mu\nu} \tilde{F}^{\mu\nu} \right]$$

• Do we need to generate space???

15

pseudo-experiments on each parameter point on this huge

 Do we need to generate space???

15

pseudo-experiments on each parameter point on this huge

• Do we need to generate space???

15

pseudo-experiments on each parameter point on this huge

- Even though we need to cover the whole parameter space, we don't need generate pseudo experiments on each parameter point.
- We just need to generate pseudo-exps on a specific point. (here, labeled 0 for example.)

- We just need to generate pseudo-exps on a specific point. (here, labeled 0 for example.)
- Now for another parameter point (labeled as "test"), we simply need to re-weight events by the ratio:

 $\frac{P(\mathbf{p}_i, \phi_t)}{P(\mathbf{p}_i, \phi_t)}$

where p_i is the i-th event in sample generated on (ϕ_0, λ_0)

$$(\frac{\lambda_{test}}{\phi_0,\lambda_0})$$

where p_i is the i-th event in sample generated on (ϕ_0, λ_0)

8

simply need to re-weight events

$$rac{\phi_{test}, \lambda_{test})}{\mathbf{p}_i, \phi_0, \lambda_0)} \ln P(\mathbf{p}_i, \phi, \lambda)$$

• We can also apply to get the efficiencies of analysis cuts on the higgs' ellipsoid by re-weighting events.

19

with a normalization factor

 $N = \sum_{i} \frac{P(p_i, \phi_{\text{test}}, \theta_{\text{test}})}{P(p_i, \phi_0, \theta_0)}$

Other spheres

• Now we allow to have complex kappas.

$$\mathcal{L} = X \left[\kappa_1 \frac{m_Z^2}{v} Z_\mu Z^\mu + \frac{\kappa_2}{2v} F_{\mu\nu} F^{\mu\nu} + \frac{\kappa_3}{2v} F_{\mu\nu} \tilde{F}^{\mu\nu} \right]$$

- Scenario $I: k_1=0$, other kappas can be complex.
- Scenario 2: k₂=0. Mixing of SM scalar with pseudo scalar
- Scenario 3: $k_3=0$. Arbitrary CP even scalar

$$\mathcal{L} = X \left[\kappa_1 \frac{m_Z^2}{v} Z_\mu Z^\mu + \frac{\kappa_2}{2v} F^{\mu\nu} F^{\mu\nu} + \frac{\kappa_3}{2v} I \right]$$

- Degree of freedoms: 2 magnitude + 2 phase
- One overall phase is irrelevant.
- We can call a relative phase as ϕ_{13} .
- Rate restrict overall magnitude of couplings.
- One of remaining degree of freedoms is ratio of couplings: $x_{13} = \frac{|\kappa_3|^2}{|\kappa_1|^2 + |\kappa_3|^2} = \sin^2 \theta_{13}$

 $F_{\mu
u}\tilde{F}^{\mu
u}$

Conclusions

- Matrix Element Method can be very useful, especially when we can reconstruct events. We can go beyond four leptons
 - -X to two photons

-X to WW to two leptons+invisibles: Need to integrate over unknown neutrinos' momentum.(A. Freitas, J. S. Gainer, arxiv:1212.3589)

- While many operators may affect the coupling between spin 0 particle and bosons, it is reasonable to focus on three lowest dimensional operators from each class of couplings.
- With measured total rate, we can eliminate one degree of freedom and can give constraints among couplings $k_i \rightarrow Analysis$ on the closed hyper surface.
- We can re-weight events by matrix elements to cover various study points.

MEM as a cut

• How much can we separate signals from background?

arXiv:1210.0896

Comparison with projected variables

