Higgs Characterization with MEM
 (in $X \rightarrow Z Z^{*} \rightarrow \ell^{+} \ell^{-} \ell^{+} \ell^{-}$channel)

Myeonghun Park (CERN)

With J. Gainer, J. Lykken, K. Matchev and S. Mrenna.
This talk is based on
"Geolocating the Higgs Boson Candidate at the LHC" (arXiv:1304.4936)

Motivations

- With a newly discovered particle, we want to measure its properties, especially the coupling structure to two Z bosons.
- We want to be general as much as possible.
- But we want to keep analyses manageable, thus we try to reduce parameters (eliminating unnecessary degree of freedom)
- In real analyses, we may not need to generate pseudo experiments with whole parameter space.

General spin 0 particle

- We consider a spin-0 particle X, which is a linear combination of $C P$ eigenstates, $C P$ even $H\left(0^{+}\right)$and $C P$ odd scalar $A\left(0^{-}\right)$,

$$
X \equiv H \cos \alpha-A \sin \alpha
$$

- In general X is not a CP eigenstate, but a mixture of both.

$$
\begin{aligned}
& \alpha=0: \text { Pure CP even state } \\
& \alpha=\frac{\pi}{2}: \text { Pure CP odd state }
\end{aligned}
$$

- We assume that the other mass eigenstate is heavy, and can be neglected in our analysis of $M_{x} \sim 125 \mathrm{GeV}$ study.

General structure

- The most general Lagrangian can be written with three terms,

$$
\mathcal{L} \ni \frac{M_{Z}^{2}}{v} H Z^{\mu} \hat{f}_{\mu \nu}^{(H)} Z^{\nu}+\frac{1}{2} H F^{\mu \nu} \hat{f}_{\mu \nu \rho \sigma}^{(H)} F^{\rho \sigma}+\frac{1}{2} A F^{\mu \nu} \hat{f}_{\mu \nu \rho \sigma}^{(A)} F^{\rho \sigma}
$$

with form factor fs,
CP even terms which violates gauge invariance.
CP even terms which preserves gauge invariance.
CP odd terms which preserves gauge invariance.

- In a mass eigenstate, we can rewrite the Lagrangian as

$$
\mathcal{L}=X\left[\kappa_{1} \frac{m_{Z}^{2}}{v} Z_{\mu} Z^{\mu}+\frac{\kappa_{2}}{2 v} F_{\mu \nu} F^{\mu \nu}+\frac{\kappa_{3}}{2 v} F_{\mu \nu} \tilde{F}^{\mu \nu}\right]
$$

Form factors

- With $F^{\mu \nu} F_{\mu \nu} \ni Z^{\mu}\left(\vec{\partial}_{\mu} \overleftarrow{\partial}_{\nu}-g^{\mu \nu} \vec{\partial}^{\varsigma}{ }_{\partial}^{\rho} \rho\right) Z_{\mu}$ we do the change of basis to single out
 gauge invariant term (also symmetrization for two Zs)

$$
\begin{aligned}
& \hat{f}_{\mu \nu}^{(H)} \equiv g_{1} g_{\mu \nu}+\frac{g_{5}}{\Lambda^{2}}\left(\vec{\partial}_{\mu} \bar{\partial}_{\nu}+g_{\mu \nu} \vec{\partial}^{\rho} \hat{\partial}_{\rho}\right)+\frac{g_{6}}{\Lambda^{2}} g_{\mu \nu}(\stackrel{\rightharpoonup}{\square})+\mathcal{O}\left(\frac{1}{\Lambda^{4}}\right), ~ S \not((2) \\
& \hat{f}_{\mu \nu \rho \sigma}^{(H)} \equiv \frac{g_{2}}{\Lambda} g_{\mu \rho} g_{\nu \sigma \sigma}+\frac{g_{3}}{\Lambda^{3}} g_{\mu \rho} \partial_{\nu} \partial_{\sigma}+\mathcal{O}\left(\frac{1}{\Lambda^{5}}\right) \\
& \overline{\mathrm{SU}(2) \text { gauge inv. }} \\
& \hat{f}_{\mu \nu \rho \sigma}^{(A)}=\frac{g_{4}}{\Lambda} \varepsilon_{\mu \nu \rho \sigma}+\mathcal{O}\left(\frac{1}{\Lambda^{5}}\right) \\
& \overline{\operatorname{SU}(2) \text { gauge inv. }}
\end{aligned}
$$

Coupling structure

- If we consider only the first terms

$$
\begin{aligned}
& \hat{f}_{\mu \nu}^{(H)} \equiv g_{1} g_{\mu \nu}+\frac{g f}{\Lambda^{2}}\left(\vec{\partial}_{\mu} \bar{\partial}_{\nu}+g_{\mu \nu} \vec{\partial}^{\circ} \bar{\partial}_{\rho}\right)+\frac{g f}{\Lambda^{2}} g_{\mu \nu}(\underline{\square}+\vec{\square})+\mathcal{O}\left(\frac{1}{\Lambda^{4}}\right) \longrightarrow \kappa_{1} \equiv g_{1} \cos \alpha \\
& \hat{f}_{\mu \nu \rho \sigma}^{(H)} \equiv \frac{g_{2}}{\Lambda} g_{\mu \rho} g_{\nu \sigma}+\frac{g^{\prime}}{\Lambda^{3}} g_{\mu \rho} \partial_{\nu} \partial_{\sigma}+\mathcal{O}\left(\frac{1}{\Lambda^{5}}\right) \longrightarrow \kappa_{2} \equiv g_{2} \frac{v}{\Lambda} \cos \alpha \\
& \hat{f}_{\mu \nu \rho \sigma}^{(A)}=\frac{g_{4}}{\Lambda} \varepsilon_{\mu \nu \rho \sigma}+\mathcal{O}\left(\frac{1}{\Lambda^{5}}\right) \longrightarrow \kappa_{3} \equiv g_{4} \frac{v}{\Lambda} \sin \alpha \\
& \mathcal{L}=X\left[\kappa_{1} \frac{m_{Z}^{2}}{v} Z_{\mu} Z^{\mu}+\frac{\kappa_{2}}{2 v} F_{\mu \nu} F^{\mu \nu}+\frac{\kappa_{3}}{2 v} F_{\mu \nu} \tilde{F}^{\mu \nu}\right]
\end{aligned}
$$

We have three degree of freedom, and
we will reduce a d.o.f by factoring out overall normalization from measured total rate.

Coupling structure

$$
\mathcal{L}=X\left[\kappa_{1} \frac{m_{Z}^{2}}{v} Z_{\mu} Z^{\mu}+\frac{\kappa_{2}}{2 v} F_{\mu \nu} F^{\mu \nu}+\frac{\kappa_{3}}{2 v} F_{\mu \nu} \tilde{F}^{\mu \nu}\right]
$$

- These operators cover all possible Lorentz structure in the amplitude. [e.g., Gao, Gritsan, Guo, Melnikov, Schulze, Tran (2010), De Rújula, Lykken, Pierini, Rogan, Spiropulu (20I0), Bolognesi, Gao, Gritsan, Melnikov, Schulze, Tran, Whitbeck (2012)]

$$
A\left(X \rightarrow V_{1} V_{2}\right)=v^{-1} \epsilon_{1}^{* \mu} \epsilon_{2}^{* \nu}\left(a_{1} g_{\mu \nu} m_{H}^{2}+a_{2} q_{\mu} q_{\nu}+a_{3} \epsilon_{\mu \nu \alpha \beta} q_{1}^{\alpha} q_{2}^{\beta}\right)
$$

from Bolognesi.et.al, 2012

Parameter space

- Lagrangian must be real, so kappa are real.
- Amplitude receives corrections from loops
I. Contributions from heavy particles loops are real.

2. Contributions from light particles loops are complex

- These complex contributions can be mimicked by complex kappas.

Ellipsoid of a higgs

With NWA, we will single out the overall scale. $\quad \Gamma(X \rightarrow Z Z)=\Gamma_{S M} \sum_{i, j} \gamma_{i j} \kappa_{i} \kappa_{j}$
The constraint will be expressed as a partial width

$$
\left(k_{1}, k_{2}, k_{3}\right)=(1,0,0):
$$

Process	γ_{11}	γ_{22}	γ_{33}	γ_{12}
$X \rightarrow Z Z$ (DF)	1	0.090	0.038	-0.250
$X \rightarrow Z Z$ (SF)	1	0.081	0.032	-0.243
$X \rightarrow \gamma \gamma$	0	1	1	0
$X \rightarrow W W$	1	0.202	0.084	-0.379

rl 3 and r 23 will be 0 through the phase space integration.

Larger(smaller) total rate will make the ellipsoid inflated (deflated), but the shape of ellipsoid remains same.

- Mathematically, from the phase space integrations for a width of a boson X, we get the analytical expression for $r_{i j}$. (also in Sara Bolognesi et.al., arXiv:1208.4018v1)
- r_{13}, r_{23} will be 0 since terms in $|M|^{2}$ proportional to $k_{1} k_{3}$ or $k_{2} k_{3}$ are parity odd.
- But with cuts (limitation on the phase space integrations) I. r_{ij} will be changed.

2. There may be non-zero $\mathrm{r}_{13}, \mathrm{r}_{23}$ terms through incomplete phasespace integration.

- If the cuts are even under parity (pt cut, eta cut, invariant-mass cut), then even after cuts, r_{13}, r_{23} will be still 0 .

Geolocating the Higgs boson!

$$
\begin{aligned}
& \mathcal{L}=X\left[\kappa_{1} \frac{m_{Z}^{2}}{v} Z_{\mu} Z^{\mu}+\frac{\kappa_{2}}{2 v} F_{\mu \nu} F^{\mu \nu}+\frac{\kappa_{3}}{2 v} F_{\mu \nu} \tilde{F}^{\mu \nu}\right] \\
& \Gamma(X \rightarrow Z Z)=\Gamma_{S M} \sum_{i, j} \gamma_{i j} \kappa_{i} \kappa_{j} \text { (antipodal sym) }
\end{aligned}
$$

Process	γ_{11}	γ_{22}	γ_{33}	γ_{12}
$X \rightarrow Z Z$ (DF)	1	0.090	0.038	-0.250
$X \rightarrow Z Z$ (SF)	1	0.081	0.032	-0.243
$X \rightarrow \gamma \gamma$	0	1	1	0
$X \rightarrow W W$	1	0.202	0.084	-0.379
after cuts				
$X \rightarrow Z Z$ (DF)	1	0.101	0.037	-0.277

Will be distorted ${ }^{(a)}$ by analysis cuts.

${ }^{\circ} \kappa_{3}$
Change of variables

3D presentation
(b)
b)

2D presentation, using Mollweide projection.

Geolocating the Higgs boson!

- There will be many ways to do a change of variable.

In our case, we do the simple triangular transform: $x_{i}=\sum O_{i j} \kappa_{j}$

$$
\begin{aligned}
& O_{1 i}=\gamma_{1 i} / \sqrt{\gamma_{11}}, \quad(i=1,2,3), \\
& O_{2 i}=\frac{\gamma_{11} \gamma_{2 i}-\gamma_{12} \gamma_{1 i}}{\sqrt{\left(\gamma_{11} \gamma_{22}-\gamma_{12}^{2}\right) \gamma_{11}}, \quad(i=2,3),} \\
& O_{33}=\sqrt{\operatorname{det}\left\|\gamma_{i j}\right\| /\left(\gamma_{11} \gamma_{22}-\gamma_{12}^{2}\right)} . \\
& x_{1}=\kappa_{1}-0.25 \kappa_{2} \\
& x_{2}=0.17 \kappa_{2}, x_{3}=0.19 \kappa_{3}
\end{aligned}
$$

(b)

A=SM

- =only K2 nonzero.
*=pure pseudo
$\boldsymbol{+}=\left(\kappa_{1}=\kappa_{2}=\kappa_{3}\right)$

Cut effects

- What we observed is the one after analysis cuts.
- Efficiencies of cuts are different point by point on higgs' ellipsoid from 36% to 53%. Thus we need to consider cut effects when we make higgs' ellipsoid.
analysis cuts:
electrons: $\mathrm{Pt}>7 \mathrm{GeV}$ and \mid eta $\mid<2.5$ mouns: $\mathrm{Pt}>5 \mathrm{GeV}$ and \mid eta $\mid<2.4$

$$
M_{z 1}>40 \mathrm{GeV}, M_{z 2}>10 \mathrm{GeV}
$$

Cut effects

- The main source of the change of efficiency on the ellipsoid seems to be the $M_{\mathrm{z} 2}$ (the smaller invariant mass of two leptons).
- Actually the $M_{z 2}$ is one of the strong discriminator for higgs property studies.
(For example, Choi, Miller, Muhlleitner, and Zerwas, 2003, Godbole, Miller, and Muhlleitner, 2007 ,
Boughezal, LeCompte, and F. Petriello, 20I2, ...

Geolocating the Higgs boson!

- We simulated 1000 pseudo experiments. (for Opposite flavor 300 events after analysis cuts.)
- When data comes from a pure standard model higgs case, $\mathcal{L}=X\left[\kappa_{1} \frac{m_{Z}^{2}}{v} Z_{\mu} Z^{\mu}\right.$
]

Geolocating the Higgs boson!

- When data comes from XFF term, $\mathcal{L}=X\left[\quad \frac{\kappa_{2}}{2 v} F_{\mu \nu} F^{\mu \nu}\right.$

Number of pseudo experiments.

Geolocating the Higgs boson!

- When data comes from a pure pseudo scalar case, $\mathcal{L}=X[$

$$
\left.\frac{\kappa_{3}}{2 v} F_{\mu \nu} \tilde{F}^{\mu \nu}\right]
$$

Geolocating the Higgs boson!

Matrix Element Re-weighting

$$
\left(\phi_{\text {test }}, \lambda_{\text {test }}\right)
$$

- Do we need to generate pseudo-experiments on each parameter point on this huge space?!?

Matrix Element Re-weighting

- Do we need to generate pseudo-experiments on each parameter point on this huge space?!?

Matrix Element Re-weighting

Matrix Element Re-weighting

- Even though we need to cover the whole parameter space, we don't need generate pseudo experiments on each parameter point.
- We just need to generate pseudo-exps on a specific point. (here, labeled 0 for example.)

Matrix Element Re-weighting

- We just need to generate pseudo-exps on a specific point. (here, labeled 0 for example.)
- Now for another parameter point (labeled as "test"), we simply need to re-weight events by the ratio:

$$
\left(\phi_{\text {test }}, \lambda_{\text {test }}\right)
$$

$$
\frac{P\left(\mathbf{p}_{i}, \phi_{\text {test }}, \lambda_{\text {test }}\right)}{P\left(\mathbf{p}_{i}, \phi_{0}, \lambda_{0}\right)}
$$

where p_{i} is the i -th event in sample generated on $\left(\phi_{0}, \lambda_{0}\right)$

Matrix Element Re-weighting

- Now for another parameter point (labeled as "test"), we simply need to re-weight events by the ratio: $\frac{P\left(\mathbf{p}_{i}, \phi_{\text {test }}, \lambda_{\text {test }}\right)}{P\left(\mathbf{p}_{i}, \phi_{0}, \lambda_{0}\right)}$
- Now to calculate a likelihood L;
$\ln \mathcal{L}(\phi, \lambda)=\sum_{i} \ln P\left(\overline{\mathbf{p}}_{i}, \phi, \lambda\right)$

$$
\ln \mathcal{L}(\phi, \lambda)=\sum_{i} \frac{P\left(\mathbf{p}_{i}, \phi_{\text {test }}, \lambda_{\text {test }}\right)}{P\left(\mathbf{p}_{i}, \phi_{0}, \lambda_{0}\right)} \ln P\left(\mathbf{p}_{i}, \phi, \lambda\right)
$$

where p is the i -th event in sample generated on $\left(\phi_{0}, \lambda_{0}\right)$

Matrix Element Re-weighting

- We can also apply to get the efficiencies of analysis cuts on the higgs' ellipsoid by re-weighting events.

Other spheres

- Now we allow to have complex kappas.

$$
\mathcal{L}=X\left[\kappa_{1} \frac{m_{Z}^{2}}{v} Z_{\mu} Z^{\mu}+\frac{\kappa_{2}}{2 v} F_{\mu \nu} F^{\mu \nu}+\frac{\kappa_{3}}{2 v} F_{\mu \nu} \tilde{F}^{\mu \nu}\right]
$$

- Scenario $\mathrm{I}: \mathrm{k}_{\mathrm{l}}=0$, other kappas can be complex.
- Scenario 2: $\mathrm{k}_{2}=0$. Mixing of SM scalar with pseudo scalar
- Scenario 3 : $\mathrm{k}_{3}=0$. Arbitrary CP even scalar

Example

$$
\mathcal{L}=X\left[\kappa_{1} \frac{m_{Z}^{2}}{v} Z_{\mu} Z^{\mu}+\frac{\kappa_{2}}{2 v}-F^{\mu \nu}+\frac{\kappa_{3}}{2 v} F_{\mu \nu} \tilde{F}^{\mu \nu}\right]
$$

- Degree of freedoms: 2 magnitude +2 phase
- One overall phase is irrelevant.
- We can call a relative phase as ϕ_{13}.
- Rate restrict overall magnitude of couplings.
- One of remaining degree of freedoms is ratio of couplings:

$$
x_{13}=\frac{\left|\kappa_{3}\right|^{2}}{\left|\kappa_{1}\right|^{2}+\left|\kappa_{3}\right|^{2}}=\sin ^{2} \theta_{13}
$$

Conclusions

- Matrix Element Method can be very useful, especially when we can reconstruct events. We can go beyond four leptons
-X to two photons
-X to WW to two leptons+invisibles: Need to integrate over unknown neutrinos' momentum.(A. Freitas, J. S. Gainer, arxiv:12|2.3589)
- While many operators may affect the coupling between spin 0 particle and bosons, it is reasonable to focus on three lowest dimensional operators from each class of couplings.
- With measured total rate, we can eliminate one degree of freedom and can give constraints among couplings $k_{i} \rightarrow$ Analysis on the closed hyper surface.
- We can re-weight events by matrix elements to cover various study points.

MEM as a cut

- How much can we separate signals from background?

Comparison with projected variables

We plotted several projected variables (angular variables, Invariant mass variables)

