Madweight and application to ttH

Ist mini-workshop on "Theoretical advances in the Matrix Element Methods"

27 May 2013

Pierre Artoisenet NIKHEF

PART I

MADWEIGHT P.A., V. Lemaitre, F. Maltoni, O. Mattelaer

From a phase-space generator to a dynamical framework for the MEM analyses

Automation of the matrix element reweighting method

Pierre Artoisenet ^a, Vincent Lemaître ^b, Fabio Maltoni ^b, Olivier Mattelaer ^{b,c}

^a Physics Department, The Ohio State University,

Columbus, Ohio 43210, USA

^b Centre for Cosmology, Particle Physic and Phenomenology (CP3)

Université Catholique de Louvain

see Florencia Canelli's talk

processes

Practical Evaluation of the weights

when the dimension of the phase-space is large, this structure in "peaks" complicates the numerical evaluation of the weights

need for an algorithm that is sufficiently fast (large number of weights musț be evaluated)

Monte Carlo integration

I. basic idea: $I = \int_{V} dz f(z)$ is estimated by sampling the volume V=[0,1]^d with N uniformly distributed random points: $E = \frac{1}{N} \sum_{n=1}^{N} f(z_n)$

Monte Carlo integration

II. adaptive MC integration: probe the phase-space volume according to a probability density function $p(z) = p_1(z^1)p_2(z^2) \dots p_d(z^d)$ (grid) that is adapted iteration after iteration

The grid has a factorized dependence in the integration variables

> Here: adapt the expected density of points along the direction Z¹ to resolve the "peak"

Adaptive Monte Carlo integration

the efficiency of the adaptive MC integration depends on the choice of variables of integrations

Z2♠

variables z_1, z_2 :

the grid cannot be adjusted efficiently to the shape of the integrand because the strength of the "peak" in the integrand is not controlled by a single variable of integration

variables z_1 ', z_2 ':

Ζ

Ζ

the probability density along z_1 ' (= variable that controls the strength of the "peak") can be adapted to probe the integration region where the integrand is the largest

10

New phase-space mappings

adaptive MC integration can be used for the computation of the weights, as we know where the "peaks" lie:

- for a given decay chain and a given transfer function, one needs to construct a new parametrization of the phase-space measure
- In the MEM analyses at the Tevatron, this problem was solved on a caseby-case basis

MadWeight

= generator of optimized phase-space mappings $d\phi_y$ for the evaluation of the weights in the Matrix Element Method

- The phase-space measure is decomposed into "blocks"
- The phase-space measure associated with each block is optimized to map the ME + TF enhancements
- momenta are generated backward (from the end of the decay chain to the interaction point)
- ► 12 blocks are defined in MadWeight Sinfinite set of phase-space mappings
- the optimal phase-space mappings are generated automatically and combined in a multichannel approach

MadWeight history

framework for MEM that is reliable user-friendly, reproducible, fast

EXACT phase-space measure:

reproduction of the phase-space volume for a large class of PS parametrizations $\,d\phi_y$

l	blocks	integrated volume	
3	MB A	6.30×10^{-5}	4 5 bl
3	MB B	6.30×10^{-5}	
3	MB C	6.30×10^{-5}	$11 (\nu)$
6	MB D	$694 { m GeV^6}$	2 CS B block F 7
4	MB E	$0.0166 { m ~GeV^2}$	
4	MB F	$0.0166 { m ~GeV^2}$	
5	MB B + SB A	$3.89 \mathrm{GeV^4}$	block $D \checkmark$ 6 8
4	MBB + SBB	$0.0166 { m ~GeV^2}$	
3	MB B + SB C	6.30×10^{-5}	
3	MBB + SBD	6.30×10^{-5}	
4	MB B + SB E	$0.0166 { m ~GeV^2}$	

framework for MEM that is reliable, user-friendly, reproducible, fast

 \Box load madweight implementation in madgraph 5:

bzr branch lp:~maddevelopers/madgraph5/madweight

framework for MEM that is reliable, user-friendly, reproducible, fast

define your own TF parametrization

Source/MadWeight/transfer_function/data/TF_my_tf.dat

```
load TF: type 'change_tf.py '
```

Please choose your transfer_function

- 0 / all_delta
- 1 / dbl_gauss_pt_jet
- 2 / gauss_on_leptons
- 3 / single_gaussian
- 4 / uniform
- 5 / user

framework for MEM that is reliable, user-friendly, reproducible, fast input cards:

the code will load phase-space generator, evaluate the weights, collect the results

framework for MEM that is reliable, user-friendly, reproducible, fast

I.proc_card_mg5 process 3.TF_my_tf.dat, U 2. lhco file 4. transfer card.dat matrix phase-space transfer events element generator function $|M|^{2}(y)$ $W(oldsymbol{x},oldsymbol{y})$ $\{x_i\}$ 4. param_card $P(x_i, \alpha)$ 5. run_card weights for all i 6. madweight card

framework for MEM that is reliable, user-friendly, reproducible, fast

I.proc_card_mg5

framework for MEM that is reliable, user-friendly, reproducible, fast

the time spent on the evaluation of a specific matrix element weight is process-dependent

▶ an easy case:

- exactly constrained system, need to consider one phase-space channel
- 2 parton-jet assignements
- Iess than I min

framework for MEM that is reliable, user-friendly, reproducible, fast

the time spent on the evaluation of a specific matrix element weight is process-dependent

• a difficult case:

- ▶ 8 final-state particles
- overconstrained system,
- 720 parton-jet assignements

Integration <a>> multichannel techniques

strategy:

see Olivier's talk

- Monte Carlo over the different parton-jet assignments
 - pre-training of the TF

Nowadays Monte Carlo generators have reached a high level of automation and reliability

In the same spirit, MadWeight is aimed at providing a reliable and automated framework for Matrix Element Methods

'Automated' does NOT mean that it can be used as a 'black box'. For most analyses, dedicated studies are required:

- I. definitition of the MEM weights
- ad-hoc treatment of ISR ?
- matrix element with higher-order radiation ?
- extraction of the transfer function ?
- normalization of the transfer function ?

need to adjust the input card parameters and/ or update the framework

many discussions resulting from MEM activities in CP3

• ...

'Automated' does NOT mean that it can be used as a 'black box'. For most analyses, dedicated studies are required:

2. CPU time / MC convergence issues:

sum over ALL parton-jet assignments ?

select only specific channel of integrations ?

assume infinite energy resolution for some particle species ?

narrow width approximation ?

specific subprocesses only ?

submission of the jobs ?

need to adjust the input card parameters and/ or update the framework

▶ ...

I. definitition of the MEM weights

2. CPU time / MC convergence issues

gives ideas to improve 1. and 2.

dynamical framework for MEM studies

> gives a practical access to all previous analyses in the 'MadWeight' framework

specific pheno/ exp. analyses

see e.g. talks by Arnaud Pin Alexandre Mertens Michele Selvaggi Petra van Mulders

weight evaluation

- A. proc_card_mg5.dat
- B. run_card.dat, param_card.dat
- C. pythia_card.dat
- D. delphes_card.dat, delphes_trigger.dat
- E. selection.cpp

event generations ³⁰

- A. proc_card_mg5.dat
- B. TF_my_tf.dat,

transfer_card.dat

C. madweight_card.dat

D. run_card.dat, param_card.dat

Monday 27 May 13

I. definitition of the MEM weights

2. CPU time / MC convergence issues

gives ideas to improve 1. and 2.

dynamical framework for MEM studies

> gives a practical access to all previous analyses in the 'MadWeight' framework

specific pheno/ exp. analyses

see e.g. talks by Arnaud Pin Alexandre Mertens Michele Selvaggi Petra van Mulders

Perspectives

more efficient treatment of the systematics (see Kyle Cranmer's talk)

LDS generator (see Oleg Brandt's talk) ...

PART II

ttH with MadWeight*

P.Artoisenet, P. de Aquino, F. Maltoni, O. Mattelaer

search for ttH at the LHC using the the Matrix Element Method (LHC@14 TeV)

compare the significance in the dilepton and single lepton channels

*some slides taken from Priscila's talk

Unravelling $t\bar{t}h$ via the matrix element method

Pierre Artoisenet^a, Priscila de Aquino^b, Fabio Maltoni^c, Olivier Mattelaer^{c,d}
^a Nikhef Theory Group, Science Park 105, 1098 XG Amsterdam, The Netherlands
^b Theoretische Natuurkunde and IIHE/ELEM, Vrije Universiteit Brussel, and International Solvay Institutes, Pleinlaan 2, B-1050 Brussels, Belgium
^c Centre for Cosmology, Particle Physics and Phenomenology (CP3), Université catholique de Louvain, Chemin du Cyclotron 2, B-1348 Louvain-la-Neuve, Belgium
^d Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, IL 61801

Monday 27 May 13

The challenge of observing ttH

 $W^+W^- b \overline{b} b \overline{b}$ final state

2) Challenging backgrounds:

t t + jets

 combinatorial background (identification of the b-jets coming from the Higgs)

QI: can the MEM be used to increase the significance in discriminating S+B and B-only hypotheses ?

Decay channels

single-lepton final state

di-lepton final state

Q2: is the discriminating power in the di-lepton channel higher or less than the one in the semi-lepton channel ?

generation with ME+PS matching, detector response simulated by delphes reasonably close to genuine experimental condition

Event selection: (CMS measurement for tt cross section, di-lept. channel)

- Leptons: $P_T > 20$ GeV and $|\eta| < 2.4$
- Jets: anti-k_T with R=0.5 , $P_T > 30$ GeV and $|\eta| < 2.5$
- At least 4 b-jets required

 \rightarrow lower the risk of selecting the 'wrong' jets for the signal

process	incl. σ	efficiency	$\sigma^{ m rec}$
$t\bar{t}h$, single-lepton	111 fb	0.0485	5.37 fb
$t\bar{t}h$, di-lepton	17.7 fb	0.0359	$0.634 \mathrm{~fb}$
$t\bar{t}$ +jets, single-lepton	256 pb	0.463×10^{-3}	119 fb
$t\bar{t}$ +jets, di-lepton	40.9 pb	0.168×10^{-3}	6.89 fb

• Event selection: (CMS measurement for tt cross section, di-lept. channel)

- Leptons: $P_T > 20$ GeV and $|\eta| < 2.4$
- Jets: anti-k_T with R=0.5 , $P_T > 30$ GeV and $|\eta| < 2.5$
- At least 4 b-jets required

 \rightarrow lower the risk of selecting the 'wrong' jets for the signal

process	incl. σ	efficiency	$\sigma^{ m rec}$
$t\bar{t}h$, single-lepton	111 fb	0.0485	5.37 fb
$t\bar{t}h$, di-lepton	17.7 fb	0.0359	$0.634 \mathrm{~fb}$
$t\bar{t}$ +jets, single-lepton	256 pb	0.463×10^{-3}	119 fb
$t\bar{t}$ +jets, di-lepton	40.9 pb	0.168×10^{-3}	$6.89~{\rm fb}$

single-lepton: S/B ~ I/22

di-lepton: S/B ~ 1/11

I.proc_card_mg5

I.proc_card_mg5

For event i with kinematics $x_{i:}$

 $D_i = \frac{P(x_i|S)}{P(x_i|S) + P(x_i|B)}$

Significance

- To access the significance that can be achieved at the LHC 14 TeV for a given luminosity, we consider a large number of pseudo-experiments
- For each pseudo-experiment, the likelihood ratio is calculated:

$$L_{MEM}^{R} = \prod_{i}^{N} \frac{r_{0}P(x_{i}|S) + (1 - r_{0})P(x_{i}|B)}{P(x_{i}|B)} \qquad r_{0} = \frac{s_{0}}{s_{0} + b_{0}}$$

For a given luminosity, we generate 10⁴ ps-ex under the two hypotheses:

- B-only hypothesis
- S+B hypothesis

... and obtain the distributions of the ps-ex with respect to $ln \ L^R{}_{\text{MEM}}$

Significance

test: confidence level in rejecting S+B hypothesis if B-only hypothesis is realized

• compute $q_{B,1/2}$ = median of the B-only distribution

estimate the p-value as the faction of events in the S+B distribution satisfying $q < q_{B,1/2}$ ▶ C.L. = I-p

Significance

 \blacktriangleright rescale the ttH cross section by a factor $\mu\,$ such that S+B is excluded at 95% C.L

Conclusion

- MadWeight = generic and dynamical framework for Matrix element methods
- ▶ I presented one application: ttH at the LHC, I4 TeV
 - tt+jets + combinatorial backgrounds can be overcome with the MEM
 - the dilepton channel provides (at least) as much discriminant power as the single-lepton channel