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MEM in pictures
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Prediction via Monte Carlo Simulation

The enormous detectors are still being constructed, but we have detailed
simulations of the detectors response.

L(x|H0) =
W

W

H
µ+

µ−

⊕

The advancements in theoretical predictions, detector simulation, tracking,
calorimetry, triggering, and computing set the bar high for equivalent
advances in our statistical treatment of the data.
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Maximum Significance
In [hep-ph/0605268] Tilman and I used the Neyman-Pearson lemma 
to establish a formal maximum expected significance using MEM.

‣ region of the data that maximizes power of a simple hypothesis test 
is given by the likelihood ratio

Expected significance: you don’t need to match specific observations {xi}.  
‣ the MC integration is always “forward” [generate φ, smear via W(x|φ)]

What we really care about computing is the distribution of this ratio, not the 
numerator or the denominator 

‣ theme: instead of computing a cross-section, we compute a formal 
statistical quantity at some order in perturbation theory

Today: some generalizations of this idea
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Marked Poisson Process
Channel: a subset of the data defined by some selection 
requirements.  
‣ eg. all events with 4 electrons with energy > 10 GeV
‣ n: number of events observed in the channel
‣ ν: number of events expected in the channel

Discriminating variable: a property of those events that can be 
measured and which helps discriminate the signal from background
‣ for MEM, this is observed kinematics and particle ID information
‣ f(x): the p.d.f. of the discriminating variable x,  ie. ∫ dφ |M|² W(x|φ) 

Marked Poisson Process:
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f(D|⌫) = Pois(n|⌫)
nY

e=1

f(xe)

D = {x1, . . . , xn}
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Mixture model
Sample: a sample of simulated events corresponding to particular 
type interaction that populates the channel.
‣ statisticians call this a mixture model
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10 ATLAS collaboration: Search for the Standard Model Higgs Boson

Table 5. Numbers of events estimated as background, observed in data and expected from signal in the H → ZZ → !!qq search
for low mass (mH < 360 GeV) and high mass (mH ≥ 360 GeV) selections. The signal, quoted at two mass points, includes small
contributions from !!!! and !!νν decays. Electron and muon channels are combined. The uncertainties shown are the statistical
and systematic uncertainties, respectively.

Source low mass selection high mass selection
Z+jets 214± 4± 27 9.1± 0.9± 1.4
W+jets 0.33 ± 0.16 ± 0.17 −

tt̄ 0.94 ± 0.09 ± 0.25 0.08 ± 0.02± 0.03
Multi-jet 3.81 ± 0.65 ± 1.91 0.11 ± 0.11± 0.06

ZZ 3.80 ± 0.10 ± 0.73 0.30 ± 0.03± 0.06
WZ 2.83 ± 0.05 ± 0.88 0.29 ± 0.02± 0.10

Total background 226± 4± 28 9.9± 0.9± 1.5
H → ZZ → !!qq 0.60 ± 0.01 ± 0.12 (mH = 200 GeV) 0.24± (< 0.001) ± 0.05 (mH = 400 GeV)

Observed 216 11

data. The multi-jet background in the electron channel is
derived from a sample where the electron identification
requirements are relaxed. In the muon channel, the multi-
jet background is estimated from a simulated sample of
semi-leptonically decaying b- and c-quarks and found to be
negligible after the application of the m!! selection. This
was verified in data using leptons with identical charges.

6.3.2 Results for the H → ZZ → !!νν search

The H → ZZ → !!νν analysis is performed for Higgs
boson masses between 200 GeV and 600 GeV in steps of
20 GeV. Table 6 summarises the numbers of events ob-
served in the data, the estimated numbers of background
events and the expected numbers of signal events for two
selectedmH values. For the low mass selections, five events
are observed in data compared to an expected number of
events from background sources only of 5.8±0.5±1.3. The
corresponding results for the high mass selections are five
events observed in data compared to an expected yield of
3.5±0.4±0.8 events from background sources only. In ad-
dition to the H → ZZ → !!νν decays, several other Higgs
boson channels give a non-negligible contribution to the
total expected signal yield. In particular, H → WW (∗) →
!ν!ν decays can lead to final states that are very similar
to H → ZZ → !!νν decays. They are found to contribute
significantly to the signal yield at low mH values. The
expected number of events from H → WW (∗) → !ν!ν de-
cays relative to that from H → ZZ → !!νν decays is 76%
for mH = 200 GeV and 9% for mH = 300 GeV. The kine-
matic selections prevent individual candidates from being
accepted by both searches. The Emiss

T distribution before
vetoing events with low Emiss

T is shown in Fig. 7.

7 Combination method

The limit-setting procedure uses the power-constrained
profile likelihood method known as the Power Constrained
Limit, PCL [13, 14, 64]. This method is preferred to the
more familiar CLs [15] technique because the constraint
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Fig. 7. Distribution of missing transverse energy in the H →
ZZ → !!νν search in the electron channel before vetoing events
with low Emiss

T . The expected yield for a Higgs boson with
mH = 400 GeV is also shown.

is more transparently defined and it has reduced overcov-
erage resulting in a more precise meaning of the quoted
confidence level. The resulting PCL median limits have
been found to be around 20% tighter than those obtained
with the CLs method in several Higgs searches. The ap-
plication of the PCL method to each of the individual
Higgs boson search channels is described in Refs. [7–11].
A similar procedure is used here. The individual analyses
are combined by maximising the product of the likelihood
functions for each channel and computing a likelihood ra-
tio. A single signal normalisation parameter µ is used for
all analyses, where µ is the ratio of the hypothesised cross
section to the expected Standard Model cross section.

Each channel has sources of systematic uncertainty,
some of which are common with other channels. Table 7
lists the common sources of systematic uncertainties, which
are taken to be 100% correlated with other channels. Let
the search channels be labelled by l (l = H → γγ, H →
WW , . . . ), the background contribution, j, to channel l

⌫ = L� = L

Z
d�|M(�)|2W (x|�)

Note, f(x) is a normalized pdf, so all 
rate information due to acceptance 
& tagging encoded in ν

f(x) =
1

�

Z
d�|M(�)|2W (x|�)

What to do for reducible 
backgrounds, where M, W uncertain?
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Parametrizing the model
Parameters of interest (µ): parameters of the theory that modify the 
rates and shapes of the distributions, eg.
‣ the mass of a hypothesized particle
‣ the “signal strength” μ=0 no signal, μ=1 predicted signal rate

Nuisance parameters (θ or αp): associated to uncertainty in:
‣ response of the detector (calibration) 

● typically ignored in MEM, need W(x | φ) → W(x | φ,θ)
‣ theoretical uncertainties

Lead to a parametrized model: 
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⌫ ! ⌫(↵), f(x) ! f(x|↵)

↵ = (µ,✓)

f(D|↵) = Pois(n|⌫(↵))

nY

e=1

f(xe|↵)
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Simultaneous multi-channel model
Control Regions: Some channels are not populated by signal 
processes, but are used to constrain the nuisance parameters
Constraint Terms: Often auxiliary measurements for certain 
nuisance parameters summarized / idealized as 

Simultaneous Multi-Channel Model: Several disjoint regions of 
the data are modeled simultaneously.  Identification of common 
parameters across many channels requires coordination between 
groups such that meaning of the parameters are really the same.

where
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fp(ap|↵p) for p 2 S

for p 2 SDsim = {D1, . . . ,Dc
max

} G = {ap},

f
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Visualizing the combined model

8

RooFit / RooStats: is the modeling language (C++) which provides 
technologies for collaborative modeling
‣ provides technology to publish likelihood functions digitally
‣ and more, it’s the full model so we can also generate pseudo-data

f
tot

(D
sim

,G|↵) =

Y

c2channels

"
Pois(nc|⌫c(↵))

ncY

e=1

fc(xce|↵)

#
·
Y

p2S
fp(ap|↵p)

To incorporate MEM approaches directly into common statistical 
machinery (used for Higgs, SUSY) need interface to RooFit/RooStats
‣ specifically, need a class that inherits from RooAbsPdf



Kyle Cranmer (NYU)

Center for 
Cosmology and 
Particle Physics

MEM, Louvain, 2013

Some confusion

I don’t actually understand this... ∫P(x,α) dx=1 if P is a pdf, and 
Poisson is not e-N, it is 

I would write:

9

Pois(n|⌫) = ⌫ne�⌫

n!

values of x and this ensemble gives rise to a probability density function (pdf) of x, written f(x), which
has the important property that it is normalized to unity

Z
f(x) dx = 1 .

In the case of discrete quantities, such as the number of events satisfying some event selection, the
integral is replaced by a sum. Often one considers a parametric family of pdfs

f(x|↵) ,

read “f of x given ↵” and, henceforth, referred to as a probability model or just model. The parameters
of the model typically represent parameters of a physical theory or an unknown property of the detector’s
response. The parameters are not frequentist in nature, thus any probability statement associated with ↵
is Bayesian.3 In order to make their lack of frequentist interpretation manifest, model parameters will be
written in greek letters, e.g.: µ, ✓, ↵, ⌫.4 From the full set of parameters, one is typically only interested
in a few: the parameters of interest. The remaining parameters are referred to as nuisance parameters,
as we must account for them even though we are not interested in them directly.

While f(x) describes the probability density for the observable x for a single event, we also need
to describe the probability density for a dataset with many events, D = {x

1

, . . . , xn}. If we consider the
events as independently drawn from the same underlying distribution, then clearly the probability density
is just a product of densities for each event. However, if we have a prediction that the total number of
events expected, call it ⌫, then we should also include the overall Poisson probability for observing n
events given ⌫ expected. Thus, we arrive at what statisticians call a marked Poisson model,

f(D|⌫, ↵) = Pois(n|⌫)

nY

e=1

f(xe|↵) , (1)

where I use a bold f to distinguish it from the individual event probability density f(x). In prac-
tice, the expectation is often parametrized as well and some parameters simultaneously modify the ex-
pected rate and shape, thus we can write ⌫ ! ⌫(↵). In RooFit both f and f are implemented with
a RooAbsPdf; where RooAbsPdf::getVal(x) always provides the value of f(x) and depending on
RooAbsPdf::extendMode() the value of ⌫ is accessed via RooAbsPdf::expectedEvents().

The likelihood function L(↵) is numerically equivalent to f(x|↵) with x fixed – or f(D|↵) with
D fixed. The likelihood function should not be interpreted as a probability density for ↵. In particular,
the likelihood function does not have the property that it normalizes to unity

⇠⇠⇠⇠⇠⇠⇠⇠:Not True!

Z
L(↵) d↵ = 1 .

It is common to work with the log-likelihood (or negative log-likelihood) function. In the case of a
marked Poisson, we have what is commonly referred to as an extended maximum likelihood [3]

� ln L(↵) = ⌫(↵) � n ln ⌫(↵)| {z }
extended term

�
nX

e=1

ln f(xe) + ln n!| {z }
constant

.

To reiterate the terminology, probability density function refers to the value of f as a function of x given
a fixed value of ↵; likelihood function refers to the value of f as a function of ↵ given a fixed value of x;
and model refers to the full structure of f(x|↵).

3Note, one can define a conditional distribution f(x|y) when the joint distribution f(x, y) is defined in a frequentist sense.
4While it is common to write s and b for the number of expected signal and background, these are parameters not observ-

ables, so I will write ⌫
S

and ⌫
B

. This is one of few notational differences to Ref. [1].

4

f(D|↵) = Pois(n|⌫(↵))

nY

e=1

f(xe|↵)



Kyle Cranmer (NYU)

Center for 
Cosmology and 
Particle Physics

MEM, Louvain, 2013

The simple hypothesis test case
Special case of the 
general probability model 
(no nuisance parameters)
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Instead of simply counting 
events, the optimal test statistic is 
equivalent to adding events 
weighted by 

ln(1 + signal/background )

The test statistic is a map q:data → ℝ

By repeating the experiment many 
times, you obtain a distribution for q

   q =
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The simple hypothesis test case

11

LEP Higgs Working group developed formalism to combine channels and take advantage of
discriminating variables in the likelihood ratio.

Q =
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=

∏Nchan

i Pois(ni|si + bi)
∏ni

j
sifs(xij)+bifb(xij)

si+bi
∏Nchan

i Pois(ni|bi)
∏ni

j fb(xij)

q = lnQ = −stot

Nchan
∑

i

ni
∑

j

ln

(

1 +
sifs(xij)

bifb(xij)

)

�  (q)
1,b

� (q)
1,s

�
s+b

�
b

�
b

�
s+b

�
s+b

bf (x)
b

sq(x)=log(1+        )
sf (x)f (x)

b

f (x)
s f (x)

b
�
1,b

(q(x))=
�  (q)
1,s

�  (q)
1,b

�
s+b

�= exp[b(  �1) + s(   �1)]
1,b

�
1,s

�= exp[b(    �1)]
b
�

1,b

FFT
�1

FFT

�
b

CL
b

�s L

�s ~(s+b)L

Hu and Nielsen’s CLFFT used Fourier Trans-
form and exponentiation trick to transform
the log-likelihood ratio distribution for one
event to the distribution for an experiment

Cousins-Highland was used for systematic er-
ror on background rate.

Getting this to work at the LHC is tricky nu-
merically because we have channels with ni

from 10-10000 events (physics/0312050)

The Calculation in Words (Cranmer & Plehn)

The problem for experimentalists is we don’t know L(x|H0) & L(x|H1) – It’s a convolution
of |M|2 with detector

By neglecting/simplifying detector effects, we can analytically calculate an upper limit
on the expected significance of a new particle search

From MC generator, we can calculate
distribution of q for one event

Using Fourier Transform, we can eas-
ily calculate distribution of q for N
events (N convolutions).

Using exponentiation trick, we can
obtain distribution of q for a given
luminosity including Poisson fluctua-
tions of N
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1,s
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August 23, 2005

ALCWS, Snowmass, 2005

Higgs at the LHC & SLHC (page 19) Kyle Cranmer

Brookhaven National Lab

+

There is a clever trick for bootstrapping from distribution of q for a 
single event to the distribution for an experiment with N events

The Calculation in Equations

Define likelihood ratio for a single event at phase space x

q(x) = ln

„
L(x|H1)
L(x|H0)

«

= ln

„

1 +
|MH |2 · dLIPS
|MZ |2 · dLIPS

«

x

Define the distribution of these q-values for 1 signal (background) event

ρ1,s(q0) =
1

σH

Z

x

dLIPS |MH |2 · δ(q0 − q(x))

ρ1,b(q0) =
1

σZ

Z

x

dLIPS |MZ |
2 · δ(q0 − q(x))

For N events, use Fourier transform to perform N convolutions

ρN,i(q) = ρN,i(q) ⊕ · · ·⊕ ρN,i(q)
| {z }

N times

= F−1
n

[F (ρ1,i)]
N

o

To include Poisson fluctuations on N for a given luminosity, one can exponentiate

ρi(q) =
∞X

N=0

P (N ; Lσi) · ρN,i(q) = F−1
n

eLσi[F(ρ1,i(q))−1]
o

August 23, 2005

ALCWS, Snowmass, 2005

Higgs at the LHC & SLHC (page 37) Kyle Cranmer

Brookhaven National Lab

K.C., T. Plehn, 
hep-ph/0605268
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The simple hypothesis test case

11

LEP Higgs Working group developed formalism to combine channels and take advantage of
discriminating variables in the likelihood ratio.
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Hu and Nielsen’s CLFFT used Fourier Trans-
form and exponentiation trick to transform
the log-likelihood ratio distribution for one
event to the distribution for an experiment

Cousins-Highland was used for systematic er-
ror on background rate.

Getting this to work at the LHC is tricky nu-
merically because we have channels with ni

from 10-10000 events (physics/0312050)

The Calculation in Words (Cranmer & Plehn)

The problem for experimentalists is we don’t know L(x|H0) & L(x|H1) – It’s a convolution
of |M|2 with detector

By neglecting/simplifying detector effects, we can analytically calculate an upper limit
on the expected significance of a new particle search

From MC generator, we can calculate
distribution of q for one event

Using Fourier Transform, we can eas-
ily calculate distribution of q for N
events (N convolutions).

Using exponentiation trick, we can
obtain distribution of q for a given
luminosity including Poisson fluctua-
tions of N
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Higgs at the LHC & SLHC (page 19) Kyle Cranmer

Brookhaven National Lab

+

There is a clever trick for bootstrapping from distribution of q for a 
single event to the distribution for an experiment with N events

K.C., T. Plehn, 
hep-ph/0605268
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Profile likelihood
When we go beyond simple hypothesis tests to parametrized families 
of distributions, there is no uniformly most powerful test  in general
‣ The most common generalization of the likelihood ratio test statistic is 

to keep null in numerator and best fit in denominator [Feldman-Cousins]
‣ In the presence of nuisance parameters, it is the profile likelihood ratio

‣ The Fourier exponentiation trick doesn’t work anymore, but the 
asymptotically the distributions are known

Specifically, I’d like to incorporate experimental uncertainty into the 
transfer  functions: W(x | φ) → W(x | φ,θ)

12

�(µ) =
L(µ, ˆ̂✓(µ))

L(µ̂, ✓̂)
=

f(D|µ, ˆ̂✓(µ;D) )

f(D|µ̂, ✓̂)

G. Cowan, K. C., E. Gross, O. Vitells.  
Eur. Phys. J., C71 2011. arXiv:1007.1727

http://arxiv.org/abs/arXiv:1007.1727
http://arxiv.org/abs/arXiv:1007.1727
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FIG. 2: Observed 95% CL limits in 1D raster scan (top) and
2D intervals (bottom) for data with 4.6 fb−1 of integrated lu-
minosity. The solid circle indicates the best-fit value and the
lines define regions in which 25, 50, 68, 95, and 99% of exper-
iments would yield results less consistent with the standard
model and the data.

tion. While the resulting discovery significance of the
corrected raster scan will be correct, one will still be left
with an interval in the signal fraction at every mass. In
contrast, in the presence of a signal, the 2D analysis will
provide a range of masses that is consistent with the sig-
nal.

TABLE I: Mass limits on specific spin-1 Z′ models [12] in data
with 4.6 fb−1 of integrated luminosity at 95% confidence level.

Model Z′
l Z′

sec Z′
N Z′

ψ Z′
χ Z′

η Z′
SM

Mass Limit (GeV/c2) 817 858 900 917 930 938 1071

Dominant systematic uncertainties [4] include uncer-
tainties on the PDFs and the dependence of the next-
to-leading order cross section on the dimuon invariant
mass. These weaken the final limits by 5-10% depending
on mass. Additional uncertainties are the level of initial
state radiation and muon acceptance at large transverse

dC
-610 -510 -410 -310 -210 -110

uC

-610

-510

-410

-310

-210

-110

2 = 250 GeV/cZ’M

2 = 500 GeV/cZ’M

2 = 750 GeV/cZ’M

2 = 900 GeV/cZ’M

2 = 1000 GeV/cZ’M

2 = 1100 GeV/cZ’M

q+
xu

 (u
pp

er)

ηZ
ψZ

χZ

q+
xu

 (lo
wer)

B-xL

10
+x5

FIG. 3: Observed 95% CL limits for data with 4.6 fb−1

of integrated luminosity expressed as limits on the up and
down type charges cu and cd [12]. The solid and dotted lines
show possible models in U(1)B−XL and U(1)10+x5̄ groups,
respectively. The dashed lines show the range for models in
the U(1)q+xu group.

momentum.

The raster scan in mass allows us to set strong limits
on specific models of Z ′ production; see Fig. 2 and Table
I. The production cross section times branching fraction
to the dimuon final state is determined by the couplings
of the fermions to the Z ′. Figure 3 shows how mass limits
depend on the charges of the up- and down-type fermions
to the U(1) group associated with the Z ′. Table I shows
the limits for the specific models described in Ref [12].

In conclusion, we have applied the matrix-element-
based likelihood technique to a search for new spin-1 res-
onances decaying to muon pairs, set the strongest limits
to date on the resonance cross section and mass, and in-
troduced a statistical analysis approach that is useful for
this analysis as well as for potential LHC discoveries.
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eeSapienza Università di Roma, I-00185 Roma, Italy

52Rutgers University, Piscataway, New Jersey 08855, USA
53Texas A&M University, College Station, Texas 77843, USA

54Istituto Nazionale di Fisica Nucleare Trieste/Udine,
I-34100 Trieste, ffUniversity of Trieste/Udine, I-33100 Udine, Italy

55University of Tsukuba, Tsukuba, Ibaraki 305, Japan
56Tufts University, Medford, Massachusetts 02155, USA
57University of Virginia, Charlottesville, VA 22906, USA

58Waseda University, Tokyo 169, Japan
59Wayne State University, Detroit, Michigan 48201, USA

60University of Wisconsin, Madison, Wisconsin 53706, USA
61Yale University, New Haven, Connecticut 06520, USA

We present a search for a new narrow, spin-1, high mass resonance decaying to µ+µ− +X, using
a matrix element based likelihood and a simultaneous measurement of the resonance mass and
production rate. In data with 4.6 fb−1 of integrated luminosity collected by the CDF detector in
pp̄ collisions at

√
s = 1960 GeV, the most likely signal cross section is consistent with zero at 16%

confidence level. We therefore do not observe evidence for a high mass resonance, and place limits
on models predicting spin-1 resonances, including M > 1071 GeV/c2 at 95% confidence level for a
Z′ boson with the same couplings to fermions as the Z boson.

PACS numbers: 12.60.-i, 13.85.Rm, 14.80.-j

∗Deceased
†With visitors from aUniversity of Massachusetts Amherst,
Amherst, Massachusetts 01003, bIstituto Nazionale di Fisica Nu-
cleare, Sezione di Cagliari, 09042 Monserrato (Cagliari), Italy,
cUniversity of California Irvine, Irvine, CA 92697, dUniversity of
California Santa Barbara, Santa Barbara, CA 93106 eUniversity
of California Santa Cruz, Santa Cruz, CA 95064, fCERN,CH-
1211 Geneva, Switzerland, gCornell University, Ithaca, NY 14853,
hUniversity of Cyprus, Nicosia CY-1678, Cyprus, iUniversity Col-
lege Dublin, Dublin 4, Ireland, jUniversity of Fukui, Fukui City,
Fukui Prefecture, Japan 910-0017, kUniversidad Iberoamericana,
Mexico D.F., Mexico, lIowa State University, Ames, IA 50011,
mUniversity of Iowa, Iowa City, IA 52242, nKinki University,
Higashi-Osaka City, Japan 577-8502, oKansas State University,

We report a search for a narrow spin-1 resonance (Z ′)
with decays to muon pairs and a mass between 130
GeV/c2 and ≈ 1 TeV/c2. Such a resonance is pre-

Manhattan, KS 66506, pUniversity of Manchester, Manchester M13
9PL, England, qQueen Mary, University of London, London, E1
4NS, England, rMuons, Inc., Batavia, IL 60510, sNagasaki In-
stitute of Applied Science, Nagasaki, Japan, tNational Research
Nuclear University, Moscow, Russia, uUniversity of Notre Dame,
Notre Dame, IN 46556, vUniversidad de Oviedo, E-33007 Oviedo,
Spain, wTexas Tech University, Lubbock, TX 79609, xUniversidad
Tecnica Federico Santa Maria, 110v Valparaiso, Chile, yYarmouk
University, Irbid 211-63, Jordan, ggOn leave from J. Stefan Insti-
tute, Ljubljana, Slovenia,

http://inspirehep.net/search?p=collaboration:%27CDF%27&ln=en
http://inspirehep.net/search?p=collaboration:%27CDF%27&ln=en
http://arxiv.org/abs/arXiv:1101.4578
http://arxiv.org/abs/arXiv:1101.4578


Kyle Cranmer (NYU)

Center for 
Cosmology and 
Particle Physics

MEM, Louvain, 2013

6

]2Z’ mass [GeV/c
200 400 600 800 1000

C
ro

ss
 se

ct
io

n 
[f

b]

0

20

40

60

80

100
 TheorySMZ’

Observed 95% CL limit

Median 95% CL limit

68% of pseudo-experiments

95% of pseudo-experiments

]2Z’ Mass [GeV/c
200 400 600 800 1000

C
ro

ss
 se

ct
io

n 
[f

b]

0

20

40

60

25%

50% 68%
95%

99%

):•Best Fit Point (
2 = 199 GeV/cZ’M

 = 26 fbZ’σ
bkg-only CL = 16%

FIG. 2: Observed 95% CL limits in 1D raster scan (top) and
2D intervals (bottom) for data with 4.6 fb−1 of integrated lu-
minosity. The solid circle indicates the best-fit value and the
lines define regions in which 25, 50, 68, 95, and 99% of exper-
iments would yield results less consistent with the standard
model and the data.

tion. While the resulting discovery significance of the
corrected raster scan will be correct, one will still be left
with an interval in the signal fraction at every mass. In
contrast, in the presence of a signal, the 2D analysis will
provide a range of masses that is consistent with the sig-
nal.

TABLE I: Mass limits on specific spin-1 Z′ models [12] in data
with 4.6 fb−1 of integrated luminosity at 95% confidence level.

Model Z′
l Z′

sec Z′
N Z′

ψ Z′
χ Z′

η Z′
SM

Mass Limit (GeV/c2) 817 858 900 917 930 938 1071

Dominant systematic uncertainties [4] include uncer-
tainties on the PDFs and the dependence of the next-
to-leading order cross section on the dimuon invariant
mass. These weaken the final limits by 5-10% depending
on mass. Additional uncertainties are the level of initial
state radiation and muon acceptance at large transverse
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FIG. 3: Observed 95% CL limits for data with 4.6 fb−1

of integrated luminosity expressed as limits on the up and
down type charges cu and cd [12]. The solid and dotted lines
show possible models in U(1)B−XL and U(1)10+x5̄ groups,
respectively. The dashed lines show the range for models in
the U(1)q+xu group.

momentum.

The raster scan in mass allows us to set strong limits
on specific models of Z ′ production; see Fig. 2 and Table
I. The production cross section times branching fraction
to the dimuon final state is determined by the couplings
of the fermions to the Z ′. Figure 3 shows how mass limits
depend on the charges of the up- and down-type fermions
to the U(1) group associated with the Z ′. Table I shows
the limits for the specific models described in Ref [12].

In conclusion, we have applied the matrix-element-
based likelihood technique to a search for new spin-1 res-
onances decaying to muon pairs, set the strongest limits
to date on the resonance cross section and mass, and in-
troduced a statistical analysis approach that is useful for
this analysis as well as for potential LHC discoveries.
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We directly integrated MEM Likelihood into limit-setting procedure
‣ Included interference of Z’ and Z/γ
‣ 2-d Feldman-Cousins instead of “raster scan”
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FIG. 2: Observed 95% CL limits in 1D raster scan (top) and
2D intervals (bottom) for data with 4.6 fb−1 of integrated lu-
minosity. The solid circle indicates the best-fit value and the
lines define regions in which 25, 50, 68, 95, and 99% of exper-
iments would yield results less consistent with the standard
model and the data.

tion. While the resulting discovery significance of the
corrected raster scan will be correct, one will still be left
with an interval in the signal fraction at every mass. In
contrast, in the presence of a signal, the 2D analysis will
provide a range of masses that is consistent with the sig-
nal.

TABLE I: Mass limits on specific spin-1 Z′ models [12] in data
with 4.6 fb−1 of integrated luminosity at 95% confidence level.

Model Z′
l Z′

sec Z′
N Z′

ψ Z′
χ Z′

η Z′
SM

Mass Limit (GeV/c2) 817 858 900 917 930 938 1071

Dominant systematic uncertainties [4] include uncer-
tainties on the PDFs and the dependence of the next-
to-leading order cross section on the dimuon invariant
mass. These weaken the final limits by 5-10% depending
on mass. Additional uncertainties are the level of initial
state radiation and muon acceptance at large transverse
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FIG. 3: Observed 95% CL limits for data with 4.6 fb−1

of integrated luminosity expressed as limits on the up and
down type charges cu and cd [12]. The solid and dotted lines
show possible models in U(1)B−XL and U(1)10+x5̄ groups,
respectively. The dashed lines show the range for models in
the U(1)q+xu group.

momentum.

The raster scan in mass allows us to set strong limits
on specific models of Z ′ production; see Fig. 2 and Table
I. The production cross section times branching fraction
to the dimuon final state is determined by the couplings
of the fermions to the Z ′. Figure 3 shows how mass limits
depend on the charges of the up- and down-type fermions
to the U(1) group associated with the Z ′. Table I shows
the limits for the specific models described in Ref [12].

In conclusion, we have applied the matrix-element-
based likelihood technique to a search for new spin-1 res-
onances decaying to muon pairs, set the strongest limits
to date on the resonance cross section and mass, and in-
troduced a statistical analysis approach that is useful for
this analysis as well as for potential LHC discoveries.
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pp̄ collisions at
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Cramér-Rao & Fisher Information
Similar to the Neyman-Pearson lemma for simple hypothesis tests 
is the Cramér-Rao bound for the covariance of an (unbiased) estimator

where Iμν is the Fisher Information matrix

In the case of our Marked Poisson model, this is given by

The integral through the transfer function is easy in the “forward” direction
‣ Evaluating derivative would be aided by importance sampling

14

Using this likelihood function we can compute the score,

∂ lnL

∂αµ
=

N
∑

i=1

(
ni

νi
− 1

)
∂νi
∂αµ

= 0 (1.11)

and the Fisher information matrix

∂2 lnL

∂αµ∂αν
=

N
∑

i=1

[(

ni

νi
− 1

)

∂2νi
∂αµ∂αν

−
∂νi
∂αµ

∂νi
∂αν

ni

ν2
i

]

. (1.12)

From (1.12) one sees that the second derivative of lnL is linear in the data values ni.

Thus its expectation value is found simply by evaluating with the expectation values
of the data. The Asimov data ni,A = νi(α) is an artificial dataset that provides a

convenient way to calculate the expected Fisher information matrix 2

Iµν(α) = −E

[
∂2 lnL

∂αµ∂αν
|α
]

= −
∂2 lnLA

∂αµ∂αν
=

N
∑

i=1

∂νi
∂αµ

∂νi
∂αν

1

νi
. (1.13)

Going a step beyond Ref. [?], the continuum limit with an infinite number of

small bins gives νi(α) = ρν(α)f(xi|α), where ρ is the bin density in x. The con-
tribution to the Fisher information from a single channel in the continuum limit

is

Iµν(α) →
∫

dx
∂ ν(α)f(x|α)

∂αµ

∂ ν(α)f(x|α)

∂αν

1

ν(α)f(x|α)
, (1.14)

and the total Fisher information for multiple channels is

Iµν(α) =
∑

c

∫

dxc
∂ νc(α)f(xc|α)

∂αµ

∂ νc(α)f(xc|α)

∂αν

1

νc(α)f(xc|α)
. (1.15)

1.2 Degeneracies, singular matrices, and combinations of experiments

It is common that a given set of measurements are not sufficient to estimate all

the parameters of a theoretical model. In particular, there are often degeneracies
or “flat directions” in the likelihood function. This situation manifests itself as a
singular Fisher information matrix. Nevertheless, the matrix is still useful as its

eigenvectors correspond to directions in α that are constrained by the observations
and a complementary null space.

As can be seen explicitly in Eq. 1.13, the combination of multiple experiments
corresponds to a product of the corresponding likelihood functions and a sum of

the corresponding Fisher information matrices. This combination of multiple exper-
iments can remove the degeneracies and lead to a non-singular Fisher information
matrix. Examples of this are given in Sec. 2.2 and 2.3.1.

2Essentially, the binning of xc corresponds to a simple Riemann approximation of the desired
integral.

– 4 –

Consider Bayesian inference in a theory parametrized in terms of some theo-

retical parameters α with some prior probability density π(α). If we were to con-
sider the same theory parametrized in terms of a theory reparametrized according

to α → β(α), then the laws of probability require that the prior transform as

π(β) = π(α)

∣
∣
∣
∣
det

(
∂α

∂β

)∣
∣
∣
∣
. (1.1)

Similar Jacobian factors appear if we one were to compare simulated samples of

events in a cartesian grid in α or a cartesian grid in β.
Typically there is no justification for parametrizing the theory in terms of α or

β and the prior distribution is often simply a uniform distribution in “whichever

parameters initially come to mind”. If one wishes to introduce informative prior
information on the parameters, then the choice of parametrization is not an issue;

however, if one wishes to use some notion of uninformative priors, then the choice of
parametrization is delicate. This problem motivated physicist and statistician Harold
Jeffreys to seek a prior distribution that was covariant to the choice of parametriza-

tion. Specifically, he proposed a rule, known as Jeffreys’s rule, which would yield
priors with the same transformation properties as Eq. 1.1. The rule is

π(α) ∝ 1/
√

det(Iµν(α)) , (1.2)

where Iµν(α) is the Fisher information defined by

Iµν(α) =

∫

p(x|α)
∂ ln p(x|α)

∂αµ

∂ ln p(x|α)

∂αν
dx = E [∂µ lnL(α)∂ν lnL(α)|α]

= −
∫

p(x|α)
∂2 ln p(x|α)

∂αµ∂αν
dx = −E [∂µ∂ν lnL(α)|α] (1.3)

where p(x|α) is the probability density function for some observable quantities x

predicted by the theory with the parameters α, L(α) is the corresponding likelihood

function, and the second line of equality requires that standard regularity conditions
are satisfied.

The Fisher information matrix is invariant to reparametrization of the observable

quantities x → y(x) and covariant to reparametrization of α → β(α), via

Iκλ(β) =

[
∂αµ

∂βκ

]

Iµν(α)

[
∂αν

∂βλ

]

. (1.4)

A similar line of reasoning was followed by Efron and Amari, but instead of

using the Fisher information to provide a probability measure, they used the Fisher
information to equip the parameter space with a metric. This so-called information

geometry is derived from the metric tensor

gµν(α) = Iµν(α) . (1.5)
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This metric tensor is related to the Kullback-Leibler divergence via:

ds2 = gµν(α) dαµdαν = 2KL[ p(x|α) : p(x|α+ dα)] , (1.6)

where

KL[ p(x) : q(x)] =

∫

p(x) log
p(x)

q(x)
dx . (1.7)

Lastly, the Cramér-Rao bound states that the covariance of any unbiased esti-
mator α̂ satisfies the inequality

cov[α̂|α] ≥ I−1
µν (α) . (1.8)

With sufficient data, maximum likelihood estimators saturate the inequality and
are called minimum variance bound estimators. Thus, one can see the information

metric as measuring distance in a natural parametrization of the theory in which the
expected error ellipses is always a unit circle. Critically, this metric is induced from

the theories observational consequences via p(x|α).

1.1 Efficient Calculation of Fisher Information with the Asimov Data

The Fisher information matrix Iµν(α) is defined with respect to a general probability
density function p(x|α). Equation 1.3 is an imposing quantity to calculate for an

arbitrary statistical model relating experimental observables x and theoretical pa-
rameters α. However, experiments in particle physics typically consist of some basic

ingredients. Consider experiments that consist of several categories of measurements,
indexed by c, and we will take the categories to be disjoint so that no event belongs
to more than one category. Each category has nc events observed and νc(α) events

expected. In addition, for each category there may be some measured quantities xc

with a probability density function f(xc|α). In general, both the number of events νc
and the distribution f(xc|α) depend on the parameters of the theory (and perhaps
some nuisance parameters) α. This leads to a broadly-applicable statistical model

for particle physics experiments 1

p(D|α) =
∏

c

Pois(nc|ν(α))
nc∏

e=1

f(xec|α) , (1.9)

where D = {xce}. One can approximate p(D|α) arbitrarily well by finely binning xc,
in which case the statistical model is simply a product of Poisson distributions

L(α) =
N∏

i=1

Pois(ni|νi(α)) . (1.10)

1This statistical model is often referred to as an extended unbinned likelihood in particle physics
jargon.
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B. Allanach, K.C.
[in prep.]
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Integrate or maximize?
Bayesian / Frequentist often comes down to integrate vs. maximize
‣ true momenta φ plays role of “nuisance parameters”
‣ Lorentz-invariant phase space dφ plays role of prior [w/ frequency interpretation]

Perhaps the “Profiled” MEM is even more powerful?
‣ note, similarity to constrained fit, but also use |M(φ)|2

15

LikelihoodLikelihood

|M(φ)|2 W(x|φ) W(x|φ)

∫dφ Typical Matrix Element Method N/A

supφ “Profiled” MEM Constrained fit
(two-stage: x→ φ → α)
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Warm-up for “Profiled” MEM
Consider a simple case where some interaction characterized by 
M produces particles of energy ei 
‣ the matrix element is represented by Gaussian: G(e|M,σm)
‣ the transfer function is a simple Gaussian: G(x|e,σₑ)

One can find the maximum likelihood estimators

and the estimators are consistent [as n→∞, expectation = true value]

... so far so good.
16

êi = xi M̂ =
1

n

X

i

êi = x̄

P ({xi}|M, {ei}) =
Y

i

G(ei|M,�m)G(xi|ei,�e)

E[M̂ ] = M
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Neyman-Scott Phenomena
Consider a simple case where some interaction characterized by 
M produces particles of energy ei 
‣ the matrix element is represented by falling exponential
‣ the transfer function is a simple Gaussian: G(x|e,σₑ)

One can find the maximum likelihood estimators

but the estimator is inconsistent!

This is a general problem if you add more parameters as you add 
more data, the estimator can be biased even in limit of infinite data!

17

P ({xi}|M, {ei}) =
Y

i

1

M

e

�ei/M
G(xi|ei,�e)

M̂ =
x̄+

p
x̄

2 � 4�2
e

2

E[M̂ ] 6= M
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MEM → MEPSM
Jet-levels: Parton → Hadron → Reconstructed
‣ it may be benificial to factorize these stages for transfer function

● W(Reco|Parton) → W(Reco|Hadron) W(Hadron | Parton)

To deal with extra jet radiation, will need to deal with ME-PS matching
‣ “Poor-man’s MEM”: 

● store large sample at hadron level, only apply W(reco|hadron)
• implementation is trivial, but phase space integration is inefficient

‣ MLM Matching
● basically requires Njet @ hadron-level = Nparton defined at some scale
● alignment of reco jet algorithm with matching procedure would mean 

Njet=Nparton
● if W(reco|parton) encodes jet reconstruction inefficiencies, then ∑dφ |Mn|2 for n≥ njet

18
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A phase space integration idea

Normally, integration over degrees 
of freedom in matrix element 
requires a new Vegas grid for 
each measurement!

Instead, integrate the joint 
distribution 
‣ save joint grid

 Then for each measurement
‣ take a slice through the grid
‣ induced importance sampling

19

Figure 12: Examples of the 2-dimensional foam. Number of cells from 10 to 2500.

because both projections of ρ(x) onto two edges of the rectangle are just flat and our
procedure will pick up some λdiv randomly within (0, 1), while the most economic division
point is in the middle λdiv = 1/2. On the other hand, although the Foam algorithm gets
disoriented for the first division, it will recover and correct for the false start in the next
divisions rather quickly. It will eliminate the two voids from its area of interest.

Let us notice that the distribution of Fig. 13 violates maximally the “principle of
factorizability” ρ(#x) =

∏n
1 ρi(xi), the principle on which the VEGAS family of the programs

is built [3–5]. Contrary to VEGAS the problem with factorizability in Foam is not a general
one, but is limited to a single cell and usually goes away after the cell split. Nevertheless,

31

True

M
ea

su
re

d

The biggest practical issue with the matrix element method is 
that it is very computationally intensive.
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Nested Sampling
In Bayes’s theorem,                            , the normalization P(B) 
often called “evidence”.  Similar to MEM with B→ x, A → φ 

Nested sampling:

20

Kyle Cranmer & Roberto Trotta 

The nested sampling algorithm 

x1

L(x)

0

1

2
!

!

Figure 1: **** Possibly change fig to the one in Feroz et al**** Schematic illustration of the nested
sampling algorithm for the computation of the Bayesian evidence. Levels of constant likelihood in
the two–dimensional parameter space shown at the top right are mapped onto elements of increasing
likelihood as a function of the enclosed prior volume X , with p(m)dm = dX . The evidence is then
computed by integrating the one–dimensional function L(X) from 0 to 1 (from [?])

.

scans). Therefore we adopt NS as an efficient sampler of the posterior. We have compared

the results with our MCMC algorithm and found that they are identical (up to numerical

noise).

2.4 Statistical measures

From the above sequence of samples, obtaining Monte Carlo estimates of expectations for

any function of the parameters becomes a trivial task. For example, the posterior mean is

given by (where 〈·〉 denotes the expectation value with respect to the posterior)

〈m〉 ≈
∫

p(m|d)mdm =
1

M

M−1∑

t=0

m(t), (2.8)

where the equality with the mean of the samples follows because the samples m(t) are gen-

erated from the posterior by construction. In general, one can easily obtain the expectation

value of any function of the parameters f(m) as

〈f(m)〉 ≈
1

M

M−1∑

t=0

f(m(t)). (2.9)

It is usually interesting to summarize the results of the inference by giving the 1–dimensional

marginal probability for the j–th element of m, mj. Taking without loss of generality j = 1

and a parameter space of dimensionality N , the marginal posterior for parameter m1 is

– 6 –

Feroz et al (2008), arxiv: 0807.4512, Trotta et al (2008), arxiv: 0809.3792 

(animation courtesy of David Parkinson)

X(⇥) =
�
L(�)>⇥ P (�)d�

An algorithm originally aimed primarily at the Bayesian 
evidence computation (Skilling, 2006):

P (d) =
�

d�L(�)P (�) =
� 1
0 X(⇥)d⇥

(animation 
courtesy of 
David Parkinson)

P (A|B) =
P (B|A)P (A)

P (B)

P (x) =
1

�

Z
d�|M(�)|2W (x|�)
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Conclusions
MEM natural procedure that provides most powerful test in case of simple 
hypothesis tests
‣ In that case, what we want to integrate is a ratio
‣ noted difficulty when there are  irreducible backgrounds

For parametrized model, Cramér-Rao bound is similar to Neyman-Pearson
‣ Showed explicit form of what we need to calculate in that case
‣ Showed CDF Z’ example for MEM embedded in Feldman-Cousins 

including interference effects
To include experimental uncertainties, parametrize transfer functions!
‣ MEM codes should provide interfaces to RooFit/RooStats

Considered “Profiled” MEM as alternative to traditional MEM
‣ leads to inconsistent estimators and Neyman-Scott phenomena

Some thoughts on “MEPSM” for matching partons
Two thoughts on PS integration: “induced grid” & nested sampling

21
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Neyman-Scott backup
The Gaussian case:

The exponential case:

22

f2@x1_, x2_, M_, e1_, e2_D :=
Exp@-He1 - ML^2ê H2 sm^2LD ê HSqrt@2 PiD smL *Exp@-He2 - ML^2ê H2 sm^2LD ê HSqrt@2 PiD smL *
Exp@-Hx1 - e1L^2ê H2 se^2LD ê HSqrt@2 PiD seL * Exp@-Hx2 - e2L^2ê H2 se^2LD ê HSqrt@2 PiD seL

Solve@D@Log@f2@x, y, M, e1, e2DD, e1D == 0 && D@Log@f2@x, y, M, e1, e2DD, e2D == 0 &&
D@Log@f2@x, y, M, e1, e2DD, MD == 0, 8M, e1, e2<D

::M Æ
x + y

2
, e1 Æ -

-se2 x - 2 sm2 x - se2 y

2 Ise2 + sm2M , e2 Æ -
-se2 x - se2 y - 2 sm2 y

2 Ise2 + sm2M >>

In[34]:= Solve@D@Log@g@x, y, M, e1, e2DD, e1D == 0 && D@Log@g@x, y, M, e1, e2DD, e2D == 0 &&
D@Log@g@x, y, M, e1, e2DD, MD == 0, 8M, e1, e2<D

Out[34]= ::M Æ
1

4
Kx + y - -16 se2 + x2 + 2 x y + y2 O, e1 Æ

1

2

3 x

2
-
y

2
-
1

2
-16 se2 + x2 + 2 x y + y2 ,

e2 Æ
1

2
-
x

2
+
3 y

2
-
1

2
-16 se2 + x2 + 2 x y + y2 >, :M Æ

1

4
Kx + y + -16 se2 + x2 + 2 x y + y2 O,

e1 Æ
1

2

3 x

2
-
y

2
+
1

2
-16 se2 + x2 + 2 x y + y2 , e2 Æ

1

2
-
x

2
+
3 y

2
+
1

2
-16 se2 + x2 + 2 x y + y2 >>

In[23]:= g@x1_, x2_, M_, e1_, e2_D :=
Exp@-e1êMD êM * Exp@-e2êMD êM * Exp@-Hx1 - e1L^2ê H2 se^2LD ê HSqrt@2 PiD seL *
Exp@-Hx2 - e2L^2ê H2 se^2LD ê HSqrt@2 PiD seL
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A short proof of Neyman-Pearson

23

The new region region has less power.

P (x|H1)
P (x|H0)

< k�
P (x|H1)
P (x|H0)

> k�

P ( |H0) = P ( |H0)

P ( |H1) < P ( |H1)

P ( |H1) < P ( |H0) P ( |H1) > P ( |H0)k� k�

P (x|H1)
P (x|H0)

> k�


