MATRIX ELEMENT METHOD

2

Florencia Canelli Universität Zürich May 28, 2013

Definition

- Commonly referred as the method that includes the matrix elements calculations for signal and background events to evaluate probability densities in an event-by-event basis
- Sometimes referred as any analysis that uses matrix element as variables, weights or other way
 - ideogram, neutrino weighting, etc. could fit in this category

Measurements and searches

• Originally developed to measure the top quark mass and W helicity in top events ($\alpha = m_t, f_{0,+,-}$)

$$P(\alpha)$$

- Later adapted to searches
 - Main of the effort was made for observation of single top and Higgs

Building P in an ideal case

• Probability density function for ONE event is characterized by a set of measurements x, for a set of parameters α

 $P(x \mid \alpha)$

for a perfect detector

Building P with detector resolutions

Note that W(y,x) can be a function of parameters like JES

Building P - Acceptance

Acceptance limited by the physical properties of the detector and the event selection

$$P(x \mid \alpha) = \frac{A(x) \int d\sigma(y \mid \alpha) W(y, x)}{\sigma(\alpha) < A(\alpha) >}$$
Mean acceptance

$$< A(\alpha) >= \int A(x) P_W(x \mid \alpha) dx$$

Background

 Measurement: sum over all states that can lead to the set of measurements x

$$P(x \mid \alpha) = \sum_{i=states} c_i P_i(x \mid \alpha)$$

• Search: method is turned into a single-variable template analysis

$$EPD = \frac{P_{signal}}{P_{signal} + P_{background}}$$

In principle the extraction of signal is not different than any other template analysis

Likelihood for searches

Example single top at CDF

 $\ensuremath{\mathbb{R}}\xspace$ $\ensuremath{\mathbb{R}}\x$

Likelihood for measurements

- Extracting a set of parameters α given N events is obtained by maximizing

$$L(\alpha, c_s) \propto \prod_{i=1}^{N} P(x_i \mid \alpha) \qquad (\text{with } \int P(x \mid \alpha) \, dx = 1)$$

Fraction of signal events is obtained simultaneously

$$P(x \mid \alpha) = c_s P_s(x \mid \alpha) + (1 - c_s)P_b(x)$$

History

- Introduced in 2000 to measure m_t
 - Very limited statistics, 2 to 1 background contamination
 - Until then m_t was measured using a template of the reconstructed top mass
 - D0 experiment had no b-tagging. CDF much better precision on m_t
 - The goal of the MEM analysis was to use more information with less dependence on the MC
- Before 2000 there were similar ideas
 - K. Kondo: J. Phys. Soc. Japan, 57, 4126 (1988), J. Phys. Soc. Japan, 60, 836 (1991), J. Phys. Soc. Japan, 62, 1177 (1993)
 - R.H. Dalitz and G.R. Goldstein: Phys. Rev. D45, 1541 (1992), Phys. Lett. B287, 225 (1992), Phys. Rev. D47, 967 (1993) (w/ K. Sliwa), J. Mod. Phys. A9, 635 (1994), Proc. Roy. Soc. Lond. A455, 2803 (1999)

History

- In 2004, D0 experiment Nature 429,638 (2004)
 - First complete measurement, including: 1) all detector effects (e.g. reconstruction efficiencies, cuts, trigger, ...), 2) correct normalization, 3) background probabilities, 4) MC tests of linearity, 5) pull calculations and 6) estimation of systematic effects.
- After 2004, it has been applied to all ttbar channels, single top, WH, H to WW at the Tevatron and some LHC use (H to ZZ (4I and 2l2j), VH, H to WW)

Technical details – Matrix element

- Matrix Element
 - In ttbar LO (Mahlon-Parke)
 - For searches Madgraph is usually used for single top and Higgs (HELAS)

$$P(x \mid \alpha) = \frac{1}{\sigma(\alpha)} \int d\sigma(y \mid \alpha) W(y, x \mid JES) f(x_{Bj}^{1}) f(x_{Bj}^{2}) dx_{Bj}^{1} dx_{Bj}^{2}$$
$$d\sigma \approx \frac{|M(\alpha)|^{2}}{\text{flux factor}} \times \text{ phase space}$$

The ME @ LO limits the size of the sample that can be described well by P For example: ttbar in I+jets has 4 jets at LO, we could calculate P for the 4 leading jets in the >4 sample, but not optimally

Technical details - Parton Distribution Functions

Use CTEQ routines (LO vs NLO)

$$P(x \mid \alpha) = \frac{1}{\sigma(\alpha)} \int d\sigma(y \mid \alpha) W(y, x \mid JES) f(x_{Bj}^{1}) f(x_{Bj}^{2}) dx_{Bj}^{1} dx_{Bj}^{2}$$

Technical details - Normalization I

- Cumbersome and CPU intensive
 - Allows to test assumptions and to debug method
 - Sometimes used the $\sigma(\alpha)$ or σ obtained from MC

Technical details - Normalization II

Mean acceptance calculated as function of the parameters to measure

Technical details - Background

Use MC matrix element generators

$$P_b(x) = \frac{1}{\sigma_b} \int d\sigma_b(y) W(y,x)$$

- Note that not all the background processes can be calculated in P_b (fakes, multijets)
 - Creative ways have been used to develop pdfs for these backgrounds

Technical details - Integration

- Careful choice of integration variables
- Careful choice of assumptions in transfer functions
- Use narrow width approximation to smooth out integrand
- Convergence tests
- Methods
 - VEGAS most used for background (larger number of integrations)
 - Radmul (adaptive quadrature) (used for low number of integrations)
 - DIVONNE/CUBA
- CPU (2011) (depends on precision required) in a 2.0 GHz
 - Top mass with 5 integrations: 4 sec per event per point per jet partonassignment (12 comb x 31 mass points x 17 JES points = 7 hours/event)
 - Single top (3 integrations): 1 s to 10 s per event all processes but ttbar in 3 jets (6 integrations) 5 mins
 - Both analyses were close to a million CPU-hours

Transfer functions

 Describe hadronization, detector resolution and reconstruction effects, including the deposition of energy from a parton outside the corresponding jet algorithm and extra energy from underlying event

$$W_{jet}(E_{jet}, E_{parton}) = \frac{1}{\sqrt{2\pi}(p_1 + p_2 p_5)} \left[\exp\frac{-(\delta_E - p_1)^2}{2p_2^2} + p_3 \exp\frac{-(\delta_E - p_4)^2}{2p_5^2}\right]$$

where: $p_i = a_i + b_i E_{parton}$ $\delta E = (E_{parton} - E_{jet})$

- Assume lepton well measured, angles and energy (delta functions)
- Jes, parameterized function for energies (and angles)
 - Use Pythia MC
 - Done for different jet flavors and different eta regions using the same event selection
- Use more information by including tracks, fraction of had and em energy, p_T of jet, etc. in NN to obtain a new "E_{iet}"

Jet-parton permutations and neutrino solutions

 One of the more appealing advantages of the MEM method is that each jet-parton permutation (or lepton) enters with a different weight

$$P(x \mid \alpha) = \frac{1}{\sigma(\alpha) < A(\alpha)} \sum_{jet-parton}^{2,6,12} \int |M(\alpha)|^2 W(y,x \mid JES) f(x_{Bj}^1) f(x_{Bj}^2) dx_{Bj}^1 dx_{Bj}^2 d\Phi$$

- For example in ttbar:
 - Most of the permutations do not contribute to P
 - The right permutation always contribute (among the first 3)
- The neutrino solutions are part of the integration

Tests and checks

Linearity and pull tested with MC

EPD data/MC in different control regions

Is it a better method ?

- In measurements with $\delta_{stat} > \delta_{sys}$ benefit from MEM approach
 - In original mt analysis had a factor of 2 improvement using the same data !
 - If statistics is large, MEM or a simple Mt reco reach the similar sensitivity That being said, more statistical power can help decrease systematics
- The current case of the top mass
 - All uncertainties between 0.1-0.6 GeV
 - Total uncertainty in one analysis is about 1 GeV (0.5 stat + 0.8 syst)
 - Going below will require more understanding of color reconnection, initial/ final state radiation, etc.
 - The statistical power of the MEM could help decrease systematics

Is it a better method ?

- In searches the ME has performed between 0% and 10% gain over the other multivariate analysis (NN and BDT)
 - Found to be 50-70% correlated (later combined)
 - MEM as template ?
 - NLO information not totally used ?
 - More detector information used by NN/BDT ?
 - Analyzer dependence ?
- In general systematic uncertainties have been found to be smaller in MEM results than with other methods

Summary and conclusions

- MEM has provided experiments a different way to analyze data
 - Beyond cut and count and one-variable templates (larger stat power)
 - With complete analyzers control (vs NN)
- Many improvements and optimizations could be envisioned
- Experimentally is a very expensive analysis
 - It is delicate and slow
 - The pace at the LHC might not be right for MEM
- A more collaborative effort among experimentalist and theorists on creating MEM tools would be very beneficial