Measuring CP violation on Top events with the Matrix Element Method
 ("Top B Physics at the LHC", accepted (PRL), arxiv:12124611)

Oram Gedalia, Gino Isidori, Fabio Maltoni, Gilad Perez, Michele Selvaggi, Yotam Soreq

CP3 - Center for Cosmology, Particle Physics and Phenomenology UCL, Louvain-la-Neuve

Belgium

28/05/2013

Outline

- Proposed measurement
- introduction
- observables
- analysis
- b-charge association
- framework
- kinematic approach
- matrix element method
- results
- Conclusion/outlook

The measurement :
 B Physics with Top events

Introduction

- B-factories
- Babar, Belle : $\Upsilon(4 \mathrm{~s}) \rightarrow b \bar{b}$
- Tevatron, LHCb : $\mathrm{g} \rightarrow b \bar{b}$
- Example from D0 experiment :
- $p \bar{p} \rightarrow b \bar{b} \rightarrow \mu^{ \pm} \mu^{ \pm}$(like-sign dimuon asymmetry)
- like-sign dimuon asymmetry : $A_{b}^{s l}=\frac{N^{++}-N^{--}}{N^{++}+N^{--}}$
- deviates 3.8σ from Standard Model
- LHC is a top factory, and t decays 99% to Wb
- LHC is a b-factory
- use top event for flavor precision measurements
- in particular, probe CPV in heavy flavor mixing and decays

General Idea

- $t \bar{t}$ semi-leptonic events for coherent production of b and \bar{b} :
- make use of leptonic top decay to tell the initial charge of the b (before oscillation)
- hard lepton encodes top charge, hence initial b charge
- soft lepton gives final b charge

Procedure

Two further steps :

- match soft lepton with one b-jet or the other (not done here)
- associate b-jets with with one top leg or the other :
- b-Charge Association

Then we can :

- count events of type ++, -, +-, -+ (lepton charges)
- form asymmetries quantities:
- mixing : $A^{s s}=\frac{N^{++}-N^{--}}{N^{++}+N^{--}} \sim N\left(b \rightarrow \bar{b} \rightarrow \ell^{+}\right)-N\left(\bar{b} \rightarrow b \rightarrow \ell^{-}\right)$
- direct : $A^{o s}=\frac{N^{+-}-N^{-+}}{N^{+-}+N^{-+}} \sim N\left(b \rightarrow \ell^{-}\right)-N\left(\bar{b} \rightarrow \ell^{+}\right)$

b-charge Association

Framework

- MadGraph5+PYTHIA6
- DELPHES for fast detector simulation
- event selection:
- at least one isolated lepton, $p_{T}>20 \mathrm{GeV}$
- two b-jets, $\left(b_{\text {max }}, b_{\min }\right), p_{T}>20 \mathrm{GeV}$
- at least two other jets $\left(j_{\text {max }}, j_{\text {min }}\right), p_{T}>20 \mathrm{GeV}$

FIND OUT AMONG ($b_{\max }, b_{\text {min }}$) which is b and \bar{b}

Reconstructing Top (and W) mass

$$
t \bar{t} \rightarrow \ell^{+} v b, j j \bar{b}
$$

- limited by jet energy resolution, need more sophisticated technique that takes into account all event kinematics
- kinematic fit (cf. CMS-NOTE-2006-023)
- matrix element method

MadWeight

'Automation of the matrix element reweighting method' (arXiv :1007.3300)

For each event, computes the probability that it originates from some process, defined by its born amplitude :

$$
P(x)=\frac{1}{\sigma} \int d y|M(y)|^{2} T(x \mid y)
$$

- σ : effective cross section,
- M : born amplitude
- T : transfer function, gives probability of reconstructing particles of momenta x originating from parton level momenta y.

Extract permutation probabilities

- Transfer function : double gauss p_{T} for jet, δ function for leptons
- correct for ISR by boosting back in ref. frame where $p_{T}=0$
- In previous formula, MadWeight averages over possible final state permutations
- We want to extract the probability of each permutation :
- no ambiguity for ℓ and $E_{T}^{\text {miss }}$
- b-jets (×2)
- light jets $(\times 2) \rightarrow$ degenerate !

For each event, probabilities P_{1} and P_{2} of two possible choices of the b-charge can be computed.

Permutation probabilities

- take four jets and lepton from hard scattering
- excellent discrimination between two assignments
reconstructed level

- hardest reconstructed jets
- double peak structure : some assignments hard to discriminate

W variable

define $W=\left|\frac{P_{1}-P_{2}}{P_{1}+P_{2}}\right|$

- large values of W correspond to good discrimination between the two association hypothesis
- sample with correct association can be selected.
- bonus : background rejection!!

Efficiency vs. charge mis-association rate

Can achieve $\leq 10 \%$ mis-association rate with $\approx 70 \%$ signal efficiency.

Conclusion and outlook

- With the help of Matrix Element Method, we have shown it is possible to almost unambiguously tag the charge of the b-jet in semi-leptonic top pair decays.
- This new technique is very promising, however :
- needs to be checked with full simulation
- validated with data (W variable)
- check the effect of b-tagging mistag rate on misassociation rate
- Optimization and further studies :
- study association of lepton with its b-jet
- optimize transfer function (here trivial double gaussian)
- quantitative study of backgrounds (other \bar{t}, W+jets)
- NLO corrections impact on the W variable
- extend this study to the 1 b -jet sample (possibility to use MEM to b-tag second jet that failed b-tagging)

EXTEND THIS APPROACH TO COMBINATORIAL PROBLEMS
(e.g. ttH)

Backup

In practice in MadWeight ...

If option "bjet_is_jet" is set to F (false), MadWeight will compute 4 weights per event : $w_{A}, w_{B}, w_{C}, w_{D}$ (accessible in the "vegas_value.out" file).

- look at one final state at a time (e.g. e^{+}jjbb MET)
- start with pure parton level (high Q^{2} process, no PS, no hadronization)
- produce 2 .lhco files per event :
- sequence e^{+}, j_{1}, j_{2}, b, and $\bar{b}(1)$
- sequence $e^{+}, j_{1}, j_{2}, \bar{b}$, and $b(2)$
- For both (1) and (2) there will be 2×2 groups of almost equal weights (since only permutation that matters is between b and \bar{b}),
e.g $w_{A} \approx w_{B}, w_{C} \approx w_{D}$, or $w_{A} \approx w_{C}, w_{B} \approx w_{D}$.
- By comparing results from (1) and (2) it is possible to deduce which group corresponds to the correct pairing, and therefore which entry in the .lhco correspond to the b and \bar{b}.

