# Towards a new approach for stop quark searches

Petra Van Mulders Lieselotte Moreels & Thomas Fitoussi

Work in progress!

# ttbar is the main background for stop quark searches



 $pp \to \tilde{t}\tilde{t}^* \to t\bar{t}\tilde{\chi}_1^0\tilde{\chi}_1^0 \to b\bar{b}W^+W^-\tilde{\chi}_1^0\tilde{\chi}_1^0$ 

 $\chi^0$  is the stable lightest supersymmetric particle (LSP)  $\rightarrow$  missing transverse energy (MET)

ttbar:

- less missing transverse energy
- more boosted

Typically stop searches use MET,  $H_T$ , angles between objects, ...

# ttbar is the main background for stop quark searches

 $P_{2}$ 

 $\tilde{t}$ 

Matrixel

→ missing transverse energy (MET)

 ${
m p}
ightarrow {
m t} extsf{f}^*$   ${
m J} {
m W}^+ {
m W}^- {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {$ 

ttbar:

less missing transverse energy

more boosted

Typically analyses use MET,  $H_T$ , angles between objects, ...

#### Case study on muon+jets+MET decay channel with sqrt(s) = 8 TeV

generate  $p p > t t \sim , t > b mu + vm , t \sim > b \sim j j$ 



generate p p > t1 t1~/ sch sq , t1 > b mu+ vm n1 / sch sq , t1~ > b~ jj n1 / sch sq  $\rightarrow$  exclude diagrams involving charginos (sch) and other squarks (sq)!



# The event selection reduces non-ttbar backgrounds to a small fraction



- =1 isolated muon:  $p_T > 25 \text{ GeV}, |\eta| < 2.1$
- $\geq$  4 jets: 2 b-tagged p<sub>T</sub> > 30 GeV,  $|\eta|$ <2.4
- MET > 70 GeV
- H<sub>T</sub> > 250 GeV

 $\rightarrow$  S/B ~ 260/19000 (1.4%)

B = 94% ttbar + 6% other (mainly W+jets and single top)



# Reduce the number of jet-parton assignments from 24 to 2





#### Transfer function for jet energies

from ttbar events using matched jets



- Different for b jets and non-b jets
- Double gaussian with 6 parameters p<sub>i</sub>

 $p_3 \exp[-(\Delta E - p_1)^2/(2p_2^2)] + p_6 \exp[-(\Delta E - p_4)^2/(2p_5^2)]$ 

• Parametrized as a function of E<sub>parton</sub>:

$$P_{i,0} + P_{i,1} \text{sqrt}(E_{parton}) + P_{i,2} E_{parton}$$

- $\rightarrow$  18 (6\*3) parameters
- Assume angles and muon energy perfectly measured



# Calculate the probability for signal (stops) and background (ttbar)

For each event, compute the probability (MadWeight) that it is a:

- ttbar event (i.e. background "B")  $\rightarrow$  P(B)
- stop quark event (i.e. signal "S")  $\rightarrow$  P(S)

$$\mathcal{P}(p^{obs}|\vec{\theta}) = \frac{1}{\sigma(\vec{\theta})} \int dp^{true} |M(\vec{\theta}, p^{true})|^2 W(p^{true}, p^{obs})$$

P(B) and P(S) are obtained for the 2 jet-parton assignments  $\rightarrow$  take the average

 $\rightarrow$  ultimately obtain for each event:

$$LR = rac{\mathcal{P}(S)}{\mathcal{P}(S) + \mathcal{P}(B)}$$

### The probability for signal (stops) and background (ttbar)





#### The discriminator distribution



Provides a first idea of the sensitivity

### The transformed discriminator has more sensitivity



Provides a first idea of the sensitivity

#### Simple analysis using HT+MET



Provides a first idea of the sensitivity



# The matrix element method clearly has a lot of potential in this search



#### The "quick" case study is promising

The first study is promising: factor of 3 improvement (madweight versus 'simple'  $H_T$ +MET)

Time for the real work & detailed studies:

- Closer look at transfer functions:
   η-dependent, less parameters, also muon energy
- Further reduce the cpu time (~7 minutes/event ?)
- Permutations now done 'by hand'
- Normalization factor → interpret weights as probabilities
- What is required to run MadWeight on the grid?

Real experimental analysis:

- Perform a scan on  $(m_{stop}, m_{\gamma^0})$
- Include systematics

```
• ...
```

#### Additional material

# Ultimately: search simultaneously for 2 signal decay channels with MEM!



### The "probability" for signal (stops) and background (ttbar)



#### The parameter space



#### The CMS official exclusion limit

