Probing the "Higgs" Couplings

O. Éboli

IPhT/Saclay - Universidade de São Paulo
with T. Corbett, J Gonzalez-Fraile and C. Gonzalez-Garcia (arXiv:I207.I344 and I2 I I.4580)

- 48 years between theory and discovery
- 1964: theory [Englert\&Brout; Higgs; Guralnik\&Hagen\&Kibble]
- 07/04/20 I2: discovery of the "scalar" boson of the SM
- The discovery required many channels:AA, ZZ,WW...

The new state fits the global picture!

I.Analyses framework

Our assumptions are:

- The observed state belongs to a $\operatorname{SU}(2)$ doublet.
- The state is CP-even as in the Standard Model.
- The observed resonance is narrow.
- There are no overlapping resonances.

To measure departures of the SM predictions we write

$$
\mathcal{L}_{\text {eff }}=\sum_{n} \frac{f_{n}}{\Lambda^{2}} \mathcal{O}_{n}
$$

and add dimension-six operators to the SM

- There are 59 independent dimension-six "operators"
[Buchmuller \& Wyler; Grzadkowski et al. arXiv: I 008.4884]
- The Higgs interactions with gauge bosons are modified by

$\mathcal{O}_{G G}=\Phi^{\dagger} \Phi G_{\mu \nu}^{a} G^{a \mu \nu}$,	$\mathcal{O}_{W W}=\Phi^{\dagger} \hat{W}_{\mu \nu} \hat{W}^{\mu \nu} \Phi, \longleftarrow \uparrow \mathcal{O}_{B B}=\Phi^{\dagger} \hat{B}_{\mu \nu} \hat{B}^{\mu \nu} \Phi$,		
$\mathcal{O}_{B W}=\Phi^{\dagger} \hat{B}_{\mu \nu} \hat{W}^{\mu \nu} \Phi$,	$\mathcal{O}_{W}=\left(D_{\mu} \Phi\right)^{\dagger} \hat{W}^{\mu \nu}\left(D_{\nu} \Phi\right)$,		
$\mathcal{O}_{\Phi, 1}=\left(D_{\mu} \Phi\right)^{\dagger} \Phi \Phi^{\dagger}\left(D^{\mu} \Phi\right)$,	$\mathcal{O}_{\Phi, 2}=\frac{1}{2} \partial^{\mu}\left(\Phi^{\dagger} \Phi\right) \partial_{\mu}\left(\Phi^{\dagger} \Phi\right)$,	,	$\mathcal{O}_{B, 4}=\left(D_{\mu} \Phi\right)^{\dagger} \hat{B}^{\mu \nu}\left(D_{\nu} \Phi\right)$,
:---			
$\mathcal{O}_{\Phi}\left(D^{\mu} \Phi\right)\left(\Phi^{\dagger} \Phi\right)$			

In the unitary gauge

$\Delta S \propto f_{B W}$
$\Delta T \propto f_{\Phi, 1}$

- The Higgs the couplings to fermions are modified by

these modify the couplings of gauge bosons to fermions
- there are also four-fermion operators and

$$
\mathcal{O}_{W W W}=\operatorname{Tr}\left[\hat{W}_{\mu \nu} \hat{W}^{\nu \rho} \hat{W}_{\rho}^{\mu}\right]
$$

- all these operators are NOT independent when we consider the equations of motion

- Idea: operators related by EOM lead to the same S

 matrix elements [e.g.Arzt hep-ph/9304230]- The EOM lead to the relations

$$
\begin{aligned}
& 2 \mathcal{O}_{\Phi, 2}-2 \mathcal{O}_{\Phi, 4}=\sum_{i j}\left(y_{i j}^{e} \mathcal{O}_{e \Phi, i j}+y_{i j}^{u} \mathcal{O}_{u \Phi, i j}+y_{i j}^{d}\left(\mathcal{O}_{d \Phi, i j}\right)^{\dagger}+\text { h.c. }\right) \\
& 2 \mathcal{O}_{\mathcal{B}}+\mathcal{O}_{W B}+\mathcal{O}_{B B}+g^{\prime 2}\left(\mathcal{O}_{\Phi, 1}-\frac{1}{2} \mathcal{O}_{\Phi, 2}\right)=\frac{g^{\prime 2}}{2} \sum_{i}\left(\frac{1}{2} \mathcal{O}_{\Phi L, i i}^{(1)}-\frac{1}{6} \mathcal{O}_{\Phi Q, i i}^{(1)}+\mathcal{O}_{\Phi e, i i}^{(1)}-\frac{2}{3} \mathcal{O}_{\Phi u, i i}^{(1)}+\frac{1}{3} \mathcal{O}_{\Phi d, i i}^{(1)}\right) \\
& 2 \mathcal{O}_{W}+\mathcal{O}_{W B}+\mathcal{O}_{W W}+g^{2}\left(\mathcal{O}_{\Phi, 4}-\frac{1}{2} \mathcal{O}_{\Phi, 2}\right)=-\frac{g^{2}}{4} \sum_{i}\left(\mathcal{O}_{\Phi L, i i}^{(3)}+\mathcal{O}_{\Phi Q, i i}^{(3)}\right)
\end{aligned}
$$

with this we can eliminate 3 operators

- Idea: operators related by EOM lead to the same S

 matrix elements [e.g.Arzt hep-ph/9304230]- The EOM lead to the relations

$$
\begin{aligned}
& 2 \mathcal{O}_{\Phi, 2}-2 \mathcal{O}_{\Phi, 4}=\sum_{i j}\left(y_{i j}^{e} \mathcal{O}_{e \Phi, i j}+y_{i j}^{u} \mathcal{O}_{u \Phi, i j}+y_{i j}^{d}\left(\mathcal{O}_{d \Phi, i j}\right)^{\dagger}+\text { h.c. }\right) \\
& 2 \mathcal{O}_{\mathcal{B}}+\mathcal{O}_{W B}+\mathcal{O}_{B B}+{g^{\prime 2}}^{\prime}\left(\mathcal{O}_{\Phi, 1}-\frac{1}{2} \mathcal{O}_{\Phi, 2}\right)=\frac{g^{\prime 2}}{2} \sum_{i}\left(\frac{1}{2} \mathcal{O}_{\Phi L, i i}^{(1)}-\frac{1}{6} \mathcal{O}_{\Phi Q, i i}^{(1)}+\mathcal{O}_{\Phi e, i i}^{(1)}-\frac{2}{3} \mathcal{O}_{\Phi u, i i}^{(1)}+\frac{1}{3} \mathcal{O}_{\Phi \alpha, i i}^{(1)}\right) \\
& 2 \mathcal{O}_{W}+\mathcal{O}_{W B}+\mathcal{O}_{W W}+g^{2}\left(\mathcal{O}_{\Phi, 4}-\frac{1}{2} \mathcal{O}_{\Phi, 2}\right)=-\frac{g^{2}}{4} \sum_{i}\left(\mathcal{O}_{\Phi L, i i}^{(3)}+\mathcal{O}_{\Phi Q, i i}^{(3)}\right)
\end{aligned}
$$

with this we can eliminate 3 operators

- Very large operator basis => we must choose it to take full advantage of the available data

- strongly constrained operators should be kept

Z pole physics, LEP2, atomic parity violation, etc constrain

- strongly constrained operators should be kept

Z pole physics, LEP2, atomic parity violation, etc constrain

$$
\begin{aligned}
& \mathcal{O}_{\Phi L, i j}^{(1)}=\Phi^{\dagger}\left(\underset{D_{\mu}}{\leftrightarrow} \Phi\right)\left(\bar{L}_{i} \gamma^{\mu} L_{j}\right) \quad \mathcal{O}_{\Phi L,, i j}^{(3)}=\Phi^{\dagger}\left(\left(\stackrel{D_{\leftrightarrow}^{a}}{\leftrightarrow} \Phi\right)\left(\bar{L}_{i} \gamma^{\mu} \sigma_{a} L_{j}\right)\right. \\
& \text { - Z,W } \\
& \mathcal{O}_{\Phi Q, i j}^{(1)}=\Phi^{\dagger}\left(\stackrel{\leftrightarrow}{\overleftrightarrow{D_{\mu}}} \Phi\right)\left(\bar{Q}_{i} \gamma^{\mu} Q_{j}\right) \quad \mathcal{O}_{\Phi Q, i j}^{(3)}=\Phi^{\dagger}\left(i{\stackrel{D}{D^{a}}}^{a} \Phi\right)\left(\bar{Q}_{i} \gamma^{\mu} \sigma_{a} Q_{j}\right) \\
& \mathcal{O}_{\Phi e, i j}^{(1)}=\Phi^{\dagger}\left(i \overleftrightarrow{D}_{\mu} \Phi\right)\left(\bar{e}_{R_{i}} \gamma^{\mu} e_{R_{j}}\right) \\
& \mathcal{O}_{\Phi u, i j}^{(1)}=\Phi^{\dagger}\left(i \overleftrightarrow{D_{\mu}} \Phi\right)\left(\bar{u}_{R_{i}} \gamma^{\mu} u_{R_{j}}\right) \\
& \mathcal{O}_{\Phi d, i j}^{(1)}=\Phi^{\dagger}\left(i \stackrel{\overleftrightarrow{D_{\mu}}}{\longleftrightarrow} \Phi\right)\left(\bar{d}_{R_{i}} \gamma^{\mu} d_{R_{j}}\right) \\
& \mathcal{O}_{\Phi u d, i j}^{(1)}=\tilde{\Phi}^{\dagger}\left(i \overleftrightarrow{D_{\mu}} \Phi\right)\left(\bar{u}_{R_{i}} \gamma^{\mu} d_{R_{j}}\right)
\end{aligned}
$$

EWPT bounds: $\quad \alpha \Delta S=-\hat{e}^{2} \frac{v^{2}}{\Lambda^{2}} f_{B W} \quad$ and $\quad \alpha \Delta T=-\frac{1}{2} \frac{v^{2}}{\Lambda^{2}} f_{\Phi, 1}$

- strongly constrained operators should be kept

Z pole physics, LEP2, atomic parity violation, etc constrain

Z \longrightarrow

$$
\begin{aligned}
& \mathcal{O}_{\Phi L, i j}^{(1)}=\Phi^{\dagger}\left(i \underset{\mu}{\overleftrightarrow{D_{\mu}}} \Phi\right)\left(\bar{L}_{i} \gamma^{\mu} L_{j}\right) \quad \mathcal{O}_{\Phi L, i j}^{(3)}=\Phi^{\dagger}\left(i \stackrel{\leftrightarrow}{\leftrightarrow}{ }_{\mu}^{a} \Phi\right)\left(\bar{L}_{i} \gamma^{\mu} \sigma_{a} L_{j}\right) \\
& \longleftarrow \text { Z, w }
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{O}_{\Phi e, i j}^{(1)}=\Phi^{\dagger}\left(\stackrel{\leftrightarrow}{D_{\mu}} \Phi\right)\left(\bar{e}_{R_{i}} \gamma^{\mu} e_{R_{j}}\right) \\
& \mathcal{O}_{\Phi u, i j}^{(1)}=\Phi^{\dagger}\left(i \overleftrightarrow{D_{\mu}} \Phi\right)\left(\bar{u}_{R_{i}} \gamma^{\mu} u_{R_{j}}\right) \\
& \mathcal{O}_{\Phi d, i j}^{(1)}=\Phi^{\dagger}\left(i \stackrel{\overleftrightarrow{D_{\mu}}}{\longleftrightarrow} \Phi\right)\left(\bar{d}_{R_{i}} \gamma^{\mu} d_{R_{j}}\right) \\
& \mathcal{O}_{\Phi u d, i j}^{(1)}=\tilde{\Phi}^{\dagger}\left(i \overleftrightarrow{D_{\mu}} \Phi\right)\left(\bar{u}_{R_{i}} \gamma^{\mu} d_{R_{j}}\right)
\end{aligned}
$$

EWPT bounds: $\quad \alpha \Delta S=-\hat{e}^{2} \frac{v^{2}}{\Lambda^{2}} f_{B W} \quad$ and $\quad \alpha \Delta T=-\frac{1}{2} \frac{v^{2}}{\Lambda^{2}} f_{\Phi, 1}$
FCNC constrains the off-diagonal elements of

$$
\begin{gathered}
\mathcal{O}_{e \Phi, i j}=\left(\Phi^{\dagger} \Phi\right)\left(\bar{L}_{i} \Phi e_{R_{j}}\right) \quad \mathcal{O}_{u \Phi, i j}=\left(\Phi^{\dagger} \Phi\right)\left(\bar{Q}_{i} \tilde{\Phi} u_{R_{j}}\right) \quad \mathcal{O}_{d \Phi, i j}=\left(\Phi^{\dagger} \Phi\right)\left(\bar{Q}_{i} \Phi d_{R_{j}}\right) \\
\mathcal{L}_{e f f}^{H e e}=\sum_{i, j} \frac{f_{e \Phi, i j}}{\Lambda^{2}} \mathcal{O}_{e \Phi, i j}+\text { h.c. } \Longrightarrow \\
\mathcal{L}^{H e e}=\sum_{i, j} g_{H i j}^{e} h \bar{e}_{L i} e_{R j}+\text { h.c. with } g_{H i j}^{e}=-\frac{m_{i}^{e}}{v} \delta_{i j}+\frac{v^{2}}{\sqrt{2} \Lambda^{2}}\left(f_{e \Phi}\right)_{i j}
\end{gathered}
$$

-The operators $\left(\mathcal{O}_{B}, \mathcal{O}_{W}\right)$ modify the TGV

$$
\begin{gathered}
\mathcal{O}_{W}=\left(D_{\mu} \Phi\right)^{\dagger} \hat{W}^{\mu \nu}\left(D_{\nu} \Phi\right), \quad \mathcal{O}_{B}=\left(D_{\mu} \Phi\right)^{\dagger} \hat{B}^{\mu \nu}\left(D_{\nu} \Phi\right) \\
\mathcal{L}_{W W V}=-i g_{W W V}\left\{g_{1}^{V}\left(W_{\mu \nu}^{+} W^{-\mu} V^{\nu}-W_{\mu}^{+} V_{\nu} W^{-\mu \nu}\right)+\kappa_{V} W_{\mu}^{+} W_{\nu}^{-} V^{\mu \nu}\right\}+
\end{gathered}
$$

with

$$
\begin{aligned}
& \Delta g_{1}^{Z}=g_{1}^{Z}-1=\frac{g^{2} v^{2}}{8 c^{2} \Lambda^{2}} f_{W} \\
& \Delta \kappa_{\gamma}=\kappa_{\gamma}-1=\frac{g^{2} v^{2}}{8 \Lambda^{2}}\left(f_{W}+f_{B}\right) \\
& \Delta \kappa_{Z}=\kappa_{Z}-1=\frac{g^{2} v^{2}}{8 c^{2} \Lambda^{2}}\left(c^{2} f_{W}-s^{2} f_{B}\right)
\end{aligned}
$$

there are data on that.

- we choose the basis:
$\left\{\mathcal{O}_{G G}, \mathcal{O}_{B W}, \mathcal{O}_{W W}, \mathcal{O}_{W}, \mathcal{O}_{B}, \mathcal{O}_{\Phi, 1}, \mathcal{O}_{f \Phi}, \mathcal{O}_{\Phi f}^{(1)}, \mathcal{O}_{\Phi f}^{(3)}\right\}$
- we choose the basis:

- we choose the basis:

- after discarding the constrained operators => I3:
- 9 fermions: $\mathcal{O}_{e \Phi, j j}, \mathcal{O}_{u \Phi, j j}, \mathcal{O}_{d \Phi, j j}$
- gauge bosons: $\mathcal{O}_{W}, \mathcal{O}_{B}, \mathcal{O}_{W W}, \mathcal{O}_{G G}$
- Summarizing:

	$h g g$	$h \gamma \gamma$	$h \gamma Z$	$h Z Z$	$h W^{+} W^{-}$	$\gamma W^{+} W^{-}$	$Z W^{+} W^{-}$
$\mathcal{O}_{G G}$	\checkmark						
$\mathcal{O}_{W W}$		\checkmark	\checkmark	\checkmark	\checkmark		
\mathcal{O}_{B}			\checkmark	\checkmark			
\mathcal{O}_{W}			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

supplemented by shifts in the Yukawa couplings (3rd family) nice feature: dimension-six operators lead to relations between anomalous couplings

- Summarizing:

	$h g g$	$h \gamma \gamma$	$h \gamma Z$	$h Z Z$	$h W^{+} W^{-}$	$\gamma W^{+} W^{-}$	$Z W^{+} W^{-}$
$\mathcal{O}_{G G}$	\checkmark						
$\mathcal{O}_{W W}$		\checkmark	\checkmark	\checkmark	\checkmark		
\mathcal{O}_{B}			\checkmark	\checkmark		\checkmark	\checkmark
\mathcal{O}_{W}			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

supplemented by shifts in the Yukawa couplings (3rd family)

$$
\mathcal{L}_{e f f}=-\frac{\alpha_{s} v}{8 \pi} \frac{f_{g}}{\Lambda^{2}} \mathcal{O}_{G G}+\frac{f_{W W}}{\Lambda^{2}} \mathcal{O}_{W W}+\frac{f_{W}}{\Lambda^{2}} \mathcal{O}_{W}+\frac{f_{B}}{\Lambda^{2}} \mathcal{O}_{B}+\frac{f_{\mathrm{bot}}}{\Lambda^{2}} \mathcal{O}_{d \Phi, 33}+\frac{f_{\tau}}{\Lambda^{2}} \mathcal{O}_{e \Phi, 33}
$$

Fitting procedure

- Inputs: signal strength for the different channels $\mu=\frac{\sigma_{o b s}}{\sigma_{S M}}$ - using all available data

- To evaluate cross sections we write $\underset{\text { FeynRules MadGraphs }}{\sigma_{Y}^{a n o}}=\left.\left|\frac{\sigma_{Y}^{a} \sigma_{Y}^{\text {ano }}}{\sigma_{Y}^{S M}}\right|_{\text {tree }} \sigma_{Y}^{S M}\right|_{\text {soa }}$
- For widths $\Gamma^{a n o}(h \rightarrow X)=\left.\left.\frac{\Gamma^{a n o}(h \rightarrow X)}{\Gamma^{S M}(h \rightarrow X)}\right|_{\text {tree }} \Gamma^{S M}(h \rightarrow X)\right|_{\text {soa }}$

- use all available information

$\mu_{F}=\frac{\epsilon_{g g}^{F} \sigma_{g g}^{a n o}\left(1+\xi_{g}\right)+\epsilon_{V B F}^{F} \sigma_{V B F}^{a n o}+\epsilon_{W H}^{F} \sigma_{W H}^{a n o}+\epsilon_{Z H}^{F} \sigma_{Z H}^{a n o}+\epsilon_{t \bar{t} H}^{F} \sigma_{t \bar{t} H}^{a n o}}{\epsilon_{g g}^{F} \sigma_{g g}^{S M}+\epsilon_{V B F}^{F} \sigma_{V B F}^{S M}+\epsilon_{W H}^{F} \sigma_{W H}^{S M}+\epsilon_{Z H}^{F} \sigma_{Z H}^{S M}+\epsilon_{t \bar{t} H}^{F} \sigma_{t \bar{t} H}^{S M}} \otimes \frac{\mathrm{Br}^{a n o}[h \rightarrow F]}{\mathrm{Br}^{S M}[h \rightarrow F]}$

- The statistical analyses were done using

$$
\chi^{2}=\min _{\xi_{\text {pull }}} \sum_{j} \frac{\left(\mu_{j}-\mu_{j}^{\exp }\right)^{2}}{\sigma_{j}^{2}}+\sum_{\text {pull }}\left(\frac{\xi_{\text {pull }}}{\sigma_{\text {pull }}}\right)^{2}
$$

we neglected correlation between the different channels

EWPT: there anomalous contributions to the oblique parameters

[Hagiwara, et al.; Alam, Dawson, Szalapski]

$$
\begin{aligned}
& \alpha \Delta S=\left.-\hat{e}^{2} \frac{v^{2}}{\Lambda^{2}} f_{B W}\right)-\frac{1}{6} \frac{\hat{e}^{2}}{16 \pi^{2}}\left\{3\left(f_{W}+f_{B}\right) \frac{m_{H}^{2}}{\Lambda^{2}} \log \left(\frac{\Lambda^{2}}{m_{H}^{2}}\right)+2\left(f_{\Phi, 2}-f_{\Phi, 4}\right) \frac{v^{2}}{\Lambda^{2}} \log \left(\frac{\Lambda^{2}}{m_{H}^{2}}\right)\right. \\
&+2\left[\left(5 \hat{c}^{2}-2\right) f_{W}-\left(5 \hat{c}^{2}-3\right) f_{B}\right] \frac{m_{Z}^{2}}{\Lambda^{2}} \log \left(\frac{\Lambda^{2}}{m_{H}^{2}}\right) \\
&-\left[\left(22 \hat{c}^{2}-1\right) f_{W}-\left(30 \hat{c}^{2}+1\right) f_{B}\right] \frac{m_{Z}^{2}}{\Lambda^{2}} \log \left(\frac{\Lambda^{2}}{m_{Z}^{2}}\right) \\
&\left.-24\left(\hat{c}^{2} f_{W W}+\hat{s}^{2} f_{B B}\right) \frac{m_{Z}^{2}}{\Lambda^{2}} \log \left(\frac{\Lambda^{2}}{m_{H}^{2}}\right)\right\}, \\
&+\left(\hat{c}^{2} f_{W}+f_{B}\right) \frac{m_{Z}^{2}}{\Lambda^{2}} \log \left(\frac{\Lambda^{2}}{m_{H}^{2}}\right) \\
&\left.+\left[2 \hat{c}^{2} f_{W}+\left(3 \hat{c}^{2}-1\right) f_{B}\right] \frac{m_{Z}^{2}}{\Lambda^{2}} \log \left(\frac{\Lambda^{2}}{m_{X, 1}^{2}}\right)\right\} \\
& \alpha \Delta \hat{c}^{2} \frac{\hat{e}^{2}}{16 \pi^{2}}\left\{f_{B} \frac{m_{H}^{2}}{\Lambda^{2}} \log \left(\frac{\Lambda^{2}}{m_{H}^{2}}\right)-\left(f_{\Phi, 2}-f_{\Phi, 4}\right) \frac{v^{2}}{\Lambda^{2}}\left(\log \left(\frac{\Lambda^{2}}{m_{H}^{2}}\right)\right)\right. \\
& \alpha \Delta U= \frac{1}{3} \frac{\hat{e}^{2} \hat{s}^{2}}{16 \pi^{2}}\left\{\left(-4 f_{W}+5 f_{B}\right) \frac{m_{Z}^{2}}{\Lambda^{2}} \log \left(\frac{\Lambda^{2}}{m_{H}^{2}}\right)\right. \\
&\left.+\left(2 f_{W}-5 f_{B}\right) \frac{m_{Z}^{2}}{\Lambda^{2}} \log \left(\frac{\Lambda^{2}}{m_{Z}^{2}}\right)\right\}
\end{aligned}
$$

- In the fitting we used that

$$
\Delta S_{P D G}=0.00 \pm 0.10 \quad \Delta T_{P D G}=0.02 \pm 0.11 \quad \Delta U_{P D G}=0.03 \pm 0.09
$$

$$
\rho=\left(\begin{array}{ccc}
1 & 0.89 & -0.55 \\
0.89 & 1 & -0.8 \\
-0.55 & -0.8 & 1
\end{array}\right)
$$

TGV bounds

g_{1}^{Z}	κ_{γ}	κ_{Z}	Ref	Asummption
$0.984_{-0.019}^{+0.022}$	$0.973_{-0.045}^{+0.044}$	$0.924_{-0.056}^{+0.059}$	PDG	1-par fit (others SM)
$1.004_{-0.025}^{+0.024}$	$0.984_{-0.049}^{+0.049}$	GI: $\kappa_{Z}=g_{1}^{Z}-\left(\kappa_{\gamma}-1\right) s^{2} / c^{2}$	LEPEWWG	2-par fit with GI, $\rho=0.11$

2. Results

- First scenario: $\left(f_{G G}, f_{W W}, f_{W}, f_{B}, f_{b o t}=0, f_{\tau}=0\right)$ using collider available data $\quad\left[\begin{array}{lll}\chi_{\text {min }}^{2}=44.0 & \chi_{S M}^{2}=48 & 60 \% \mathrm{CL}\end{array}\right]$

$\mathrm{f}_{9} / \Lambda^{2}\left[\mathrm{TeV}^{-2}\right] \quad \mathrm{f}_{\mathrm{ww}} / \Lambda^{2}\left[\mathrm{TeV}^{-2}\right] \quad \mathrm{f}_{\mathrm{w}} / \wedge^{2}\left[\mathrm{TeV}^{-2}\right] \quad \mathrm{f}_{\mathrm{B}} / \Lambda^{2}\left[\mathrm{TeV}^{-2}\right]$
branching ratios and cross section comparison

Fit with $f_{g}, f_{w}, f_{B}, f_{w w}$ and $f_{\text {bot }}=f_{\tau}=0$

Collider + TGV + EWPD

collider + TGV

interesting correlations

gap is filled without $b \bar{b}$
($\left.\sigma_{g g \text { decreases }}\right)$

- Second scenario: $\left(f_{G G}, f_{W W}, f_{W}, f_{B}, f_{b o t}, f_{\tau}=0\right)$

using all LHC available data and TGV

First scenario
Second scenario

 there is a strong correlation between $f_{G G}$ and $f_{b o t}$
$68 \%, 90 \%, 95 \%$, and 99% CL regions

$\sigma(p p \rightarrow h \rightarrow \gamma \gamma) \propto \frac{f_{G G}^{2}}{f_{b o t}^{2}}$
$68 \%, 90 \%, 95 \%$, and 99% CL regions

$\sigma(p p \rightarrow h \rightarrow \gamma \gamma) \propto \frac{f_{G G}^{2}}{f_{b o t}^{2}}$

effect of the bottom Yukawa on correlations

- Third scenario: $\left(f_{G G}, f_{b o t}, f_{W}=f_{B} \quad, \quad f_{b o t}, f_{\tau}\right)$

Tevatron+LHC+TGV

3. Discussion and conclusions (?)

- Summarizing the results:

	Fit with $f_{\text {bot }}=f_{\tau}=0$		Fit with $f_{\text {bot }}$ and f_{τ}	
	Best fit	90% CL allowed range	Best fit	90% CL allowed range
$f_{g} / \Lambda^{2}\left(\mathrm{TeV}^{-2}\right)$	$1.4,21.3$	$[-1.1,3.8] \cup[19,24]$	$1.6,21.1$	$[-27,5] \cup[17,50]$
$f_{W W} / \Lambda^{2}\left(\mathrm{TeV}^{-2}\right)$	-0.43	$[-0.85,-0.05] \cup[2.8,3.6]$	-0.42	$[-0.85,0] \cup[2.75,3.7]$
$f_{W} / \Lambda^{2}\left(\mathrm{TeV}^{-2}\right)$	1.70	$[-7.2,10]$	0.42	$[-7.5,7]$
$f_{B} / \Lambda^{2}\left(\mathrm{TeV}^{-2}\right)$	-7.6	$[-29,14]$	0.42	$[-7.5,7]$
$f_{b o t} / \Lambda^{2}\left(\mathrm{TeV}^{-2}\right)$	-	-	$0.01,0.89$	$[-1.6,0.25] \cup[0.65,2.5]$
$f_{\tau} / \Lambda^{2}\left(\mathrm{TeV}^{-2}\right)$	-	-	$0.02,0.32$	$[-0.08,0.13] \cup[0.2,0.42]$
$B R_{\gamma \gamma}^{a n o} / B R_{\gamma \gamma}^{S M}$	1.76	$[1.1,2.8]$	1.84	$[0.1,3.4]$
$B R_{W W}^{a n o} / B R_{W W}^{S M}$	0.98	$[0.75,1.15]$	1.03	$[0.05,2.15]$
$B R_{Z Z}^{a n o} / B R_{Z Z}^{S M}$	1.13	$[0.75,1.5]$	1.03	$[0.05,2.15]$
$B R_{b b}^{a n o} / B R_{b b}^{S M}$	1.03	$[0.85,1.1]$	1.03	$[0.4,1.6]$
$B R_{\tau \tau}^{a n o} / B R_{\tau \tau}^{S M}$	1.03	$[0.8,1.1]$	0.84	$[0.05,2.5]$
$\sigma_{g g}^{a n o} / \sigma_{g g}^{S M}$	0.78	$[0.4,1.2]$	0.73	$[0.25,12]$
$\sigma_{V B F}^{a n o} / \sigma_{V B F}^{S M}$	1.03	$[0.9,1.25]$	1.03	$[0.9,1.15]$
$\sigma_{V H}^{a n o} / \sigma_{V H}^{S M}$	0.98	$[0.55,1.4]$	1.03	$[0.55,1.55]$

- $\mathrm{Br}[\mathrm{h}$ to WW/ZZ] is agreement with SM
- data prefer a slightly enhanced $\mathrm{Br}[h$ to AA]
- VH and VBF cross sections in agreement with SM
- There is a preference for a depleted gg cross section
- LHC Higgs data leads to constraints on TGV similar to LEP
- direct limits on $f_{W W}$ better than EWPT

2. there are still large statistical errors
3. we need more data to study Higgs couplings to fermions
4. there are still large statistical errors
5. we need more data to study Higgs couplings to fermions

OVERFLOW

- Comparison between different bases

$\left(f_{G G}, f_{\Phi, 2}, f_{W}=f_{B}, f_{\text {bot }}, f_{\text {top }}=0\right)$

effects of including TGV and EWPT

ATLAS X CMS

- The HVV new interactions are

$$
\begin{aligned}
\mathcal{L}_{\mathrm{eff}}^{\mathrm{HVV}}= & g_{H g g} H G_{\mu \nu}^{a} G^{a \mu \nu}+g_{H \gamma \gamma} H A_{\mu \nu} A^{\mu \nu}+g_{H Z \gamma}^{(1)} A_{\mu \nu} Z^{\mu} \partial^{\nu} H+g_{H Z \gamma}^{(2)} H A_{\mu \nu} Z^{\mu \nu} \\
& +g_{H Z Z}^{(1)} Z_{\mu \nu} Z^{\mu} \partial^{\nu} H+g_{H Z Z}^{(2)} H Z_{\mu \nu} Z^{\mu \nu}+g_{H}^{(\mathrm{Q})} H Z_{\mu} Z^{\mu} \\
& +g_{H W W}^{(1)}\left(W_{\mu \nu}^{+} W^{-\mu} \partial^{\nu} H+\text { h.c. }\right)+g_{H W W}^{(2)} H W_{\mu \nu}^{+} W^{-\mu \nu}+g_{H y}^{(3)} H W_{\mu}^{+} W^{-\mu}
\end{aligned}
$$

with

$$
g_{H g g}=\frac{f_{G G} v}{\Lambda^{2}} \equiv-\frac{\alpha_{s}}{8 \pi} \frac{f_{g} v}{\Lambda^{2}}
$$

$$
g_{H Z Z}^{(1)}=\left(\frac{g^{2} v}{2 \Lambda^{2}}\right) \frac{c^{2} f_{W}+s^{2} f_{B}}{2 c^{2}}
$$

$$
g_{H \gamma \gamma}=-\left(\frac{g^{2} v s^{2}}{2 \Lambda^{2}}\right) \frac{f_{B B}+f_{W W}}{2}
$$

$$
g_{H Z Z}^{(2)}=-\left(\frac{g^{2} v}{2 \Lambda^{2}}\right) \frac{s^{4} f_{B B}+c^{4} f_{W W}}{2 c^{2}}
$$

$$
g_{H Z \gamma}^{(1)}=\left(\frac{g^{2} v}{2 \Lambda^{2}}\right) \frac{s\left(f_{W}-f_{B}\right)}{2 c}
$$

$$
g_{H W W}^{(1)}=\left(\frac{g^{2} v}{2 \Lambda^{2}}\right) \frac{f_{W}}{2}
$$

$$
g_{H Z \gamma}^{(2)}=\left(\frac{g^{2} v}{2 \Lambda^{2}}\right) \frac{s\left[2 s^{2} f_{B B}-2 c^{2} f_{W W}\right]}{2 c}
$$

$$
g_{H W W}^{(2)}=-\left(\frac{g^{2} v}{2 \Lambda^{2}}\right) f_{W W}
$$

- The HVV new interactions are

$$
\begin{aligned}
\mathcal{L}_{\mathrm{eff}}^{\mathrm{HVV}}= & g_{H g g} H G_{\mu \nu}^{a} G^{a \mu \nu}+g_{H \gamma \gamma} H A_{\mu \nu} A^{\mu \nu}+g_{H Z \gamma}^{(1)} A_{\mu \nu} Z^{\mu} \partial^{\nu} H+g_{H Z \gamma}^{(2)} H A_{\mu \nu} Z^{\mu \nu} \\
& +g_{H Z Z}^{(1)} Z_{\mu \nu} Z^{\mu} \partial^{\nu} H+g_{H Z Z}^{(2)} H Z_{\mu \nu} Z^{\mu \nu}+g_{H}^{(2)} \mathcal{L V}_{\mu} Z^{\mu} \\
& +g_{H W W}^{(1)}\left(W_{\mu \nu}^{+} W^{-\mu} \partial^{\nu} H+\text { h.c. }\right)+g_{H W W}^{(2)} H W_{\mu \nu}^{+} W^{-\mu \nu}+g_{H Y}^{(3)} H W_{\mu}^{+} W^{-\mu}
\end{aligned}
$$

with

$$
g_{H g g}=\frac{f_{G G} v}{\Lambda^{2}} \equiv-\frac{\alpha_{s}}{8 \pi} \frac{f_{g} v}{\Lambda^{2}}
$$

$$
g_{H \gamma \gamma}=-\left(\frac{g^{2} v s^{2}}{2 \Lambda^{2}}\right) \frac{f_{B B}+f_{W W}}{2}
$$

$$
g_{H Z \gamma}^{(1)}=\left(\frac{g^{2} v}{2 \Lambda^{2}}\right) \frac{s\left(f_{W}-f_{B}\right)}{2 c}
$$

$g_{H Z \gamma}^{(2)}=\left(\frac{g^{2} v}{2 \Lambda^{2}}\right) \frac{s\left[2 s^{2} f_{B B}-2 c^{2} f_{W W}\right]}{2 c}$

- The HVV new interactions are

$$
\begin{aligned}
\mathcal{L}_{\mathrm{eff}}^{\mathrm{HVV}}= & g_{H g g} H G_{\mu \nu}^{a} G^{a \mu \nu}+g_{H \gamma \gamma} H A_{\mu \nu} A^{\mu \nu}+g_{H Z \gamma}^{(1)} A_{\mu \nu} Z^{\mu} \partial^{\nu} H+g_{H Z \gamma}^{(2)} H A_{\mu \nu} Z^{\mu \nu} \\
& +g_{H Z Z}^{(1)} Z_{\mu \nu} Z^{\mu} \partial^{\nu} H+g_{H Z Z}^{(2)} H Z_{\mu \nu} Z^{\mu \nu}+g_{H}^{(\mathrm{Q})} H Z_{\mu} Z^{\mu} \\
& +g_{H W W}^{(1)}\left(W_{\mu \nu}^{+} W^{-\mu} \partial^{\nu} H+\text { h.c. }\right)+g_{H W W}^{(2)} H W_{\mu \nu}^{+} W^{-\mu \nu}+g_{H y}^{(3)} H W_{\mu}^{+} W^{-\mu}
\end{aligned}
$$

with

$$
g_{H g g}=\frac{f_{G G} v}{\Lambda^{2}} \equiv-\frac{\alpha_{s}}{8 \pi} \frac{f_{g} v}{\Lambda^{2}}
$$

$$
g_{H Z Z}^{(1)}=\left(\frac{g^{2} v}{2 \Lambda^{2}}\right) \frac{c^{2} f_{W}+s^{2} f_{B}}{2 c^{2}}
$$

$$
g_{H \gamma \gamma}=-\left(\frac{g^{2} v s^{2}}{2 \Lambda^{2}}\right) \frac{f_{B B}+f_{W W}}{2}
$$

$$
g_{H Z Z}^{(2)}=-\left(\frac{g^{2} v}{2 \Lambda^{2}}\right) \frac{s^{4} f_{B B}+c^{4} f_{W W}}{2 c^{2}}
$$

$$
g_{H Z \gamma}^{(1)}=\left(\frac{g^{2} v}{2 \Lambda^{2}}\right) \frac{s\left(f_{W}-f_{B}\right)}{2 c}
$$

$$
g_{H W W}^{(1)}=\left(\frac{g^{2} v}{2 \Lambda^{2}}\right) \frac{f_{W}}{2}
$$

$$
g_{H Z \gamma}^{(2)}=\left(\frac{g^{2} v}{2 \Lambda^{2}}\right) \frac{s\left[2 s^{2} f_{B B}-2 c^{2} f_{W W}\right]}{2 c}
$$

$$
g_{H W W}^{(2)}=-\left(\frac{g^{2} v}{2 \Lambda^{2}}\right) f_{W W}
$$

- The HVV new interactions are

$$
\begin{aligned}
& \mathcal{L}_{\mathrm{eff}}^{\mathrm{HVV}}=g_{H g g} H G_{\mu \nu}^{a} G^{a \mu \nu}+g_{H \gamma \gamma} H A_{\mu \nu} A^{\mu \nu}+g_{H Z \gamma}^{(1)} A_{\mu \nu} Z^{\mu} \partial^{\nu} H+g_{H Z \gamma}^{(2)} H A_{\mu \nu} Z^{\mu \nu} \\
& +g_{H Z Z}^{(1)} Z_{\mu \nu} Z^{\mu} \partial^{\nu} H+g_{H Z Z}^{(2)} H Z_{\mu \nu} Z^{\mu \nu}+g_{H}^{(\mathrm{Q})} \ell^{2} H Z_{\mu} Z^{\mu} \\
& +g_{H W W}^{(1)}\left(W_{\mu \nu}^{+} W^{-\mu} \partial^{\nu} H+\text { h.c. }\right)+g_{H W W}^{(2)} H W_{\mu \nu}^{+} W^{-\mu \nu}+g_{H W}^{(3)} H W_{\mu}^{+} W^{-\mu} \\
& g_{H g g}=\frac{f_{G G} v}{\Lambda^{2}} \equiv-\frac{\alpha_{s}}{8 \pi} \frac{f_{g} v}{\Lambda^{2}} \\
& g_{H \gamma \gamma}=-\left(\frac{g^{2} v s^{2}}{2 \Lambda^{2}}\right) \frac{f_{B B}+f_{W W}}{2} \\
& g_{H Z \gamma}^{(1)}=\left(\frac{g^{2} v}{2 \Lambda^{2}}\right) \frac{s\left(f_{W}-f_{B}\right)}{2 c} \\
& g_{H Z \gamma}^{(2)}=\left(\frac{g^{2} v}{2 \Lambda^{2}}\right) \frac{s\left[2 s^{2} f_{B B}-2 c^{2} f_{W W]}\right.}{2 c} \\
& g_{H W W}^{(2)}=-\left(\frac{g^{2} v}{2 \Lambda^{2}}\right) f_{W W}
\end{aligned}
$$

- The HVV new interactions are

$$
\begin{aligned}
\mathcal{L}_{\mathrm{eff}}^{\mathrm{HVV}}= & g_{H g g} H G_{\mu \nu}^{a} G^{a \mu \nu}+g_{H \gamma \gamma} H A_{\mu \nu} A^{\mu \nu}+g_{H Z \gamma}^{(1)} A_{\mu \nu} Z^{\mu} \partial^{\nu} H+g_{H Z \gamma}^{(2)} H A_{\mu \nu} Z^{\mu \nu} \\
& +g_{H Z Z}^{(1)} Z_{\mu \nu} Z^{\mu} \partial^{\nu} H+g_{H Z Z}^{(2)} H Z_{\mu \nu} Z^{\mu \nu}+g_{H}^{(\mathrm{Q})} H Z_{\mu} Z^{\mu} \\
& +g_{H W W}^{(1)}\left(W_{\mu \nu}^{+} W^{-\mu} \partial^{\nu} H+\text { h.c. }\right)+g_{H W W}^{(2)} H W_{\mu \nu}^{+} W^{-\mu \nu}+g_{H y}^{(3)} H W_{\mu}^{+} W^{-\mu}
\end{aligned}
$$

with

$$
g_{H g g}=\frac{f_{G G} v}{\Lambda^{2}} \equiv-\frac{\alpha_{s}}{8 \pi} \frac{f_{g} v}{\Lambda^{2}}
$$

$$
g_{H Z Z}^{(1)}=\left(\frac{g^{2} v}{2 \Lambda^{2}}\right) \frac{c^{2} f_{W}+s^{2} f_{B}}{2 c^{2}}
$$

$$
g_{H \gamma \gamma}=-\left(\frac{g^{2} v s^{2}}{2 \Lambda^{2}}\right) \frac{f_{B B}+f_{W W}}{2}
$$

$$
g_{H Z Z}^{(2)}=-\left(\frac{g^{2} v}{2 \Lambda^{2}}\right) \frac{s^{4} f_{B B}+c^{4} f_{W W}}{2 c^{2}}
$$

$$
g_{H Z \gamma}^{(1)}=\left(\frac{g^{2} v}{2 \Lambda^{2}}\right) \frac{s\left(f_{W}-f_{B}\right)}{2 c}
$$

$$
g_{H W W}^{(1)}=\left(\frac{g^{2} v}{2 \Lambda^{2}}\right) \frac{f_{W}}{2}
$$

$$
g_{H Z \gamma}^{(2)}=\left(\frac{g^{2} v}{2 \Lambda^{2}}\right) \frac{s\left[2 s^{2} f_{B B}-2 c^{2} f_{W W}\right]}{2 c}
$$

$$
g_{H W W}^{(2)}=-\left(\frac{g^{2} v}{2 \Lambda^{2}}\right) f_{W W}
$$

OLD SLIDES

Hunting the SM Higgs

- Higgs production mechanisms and cross sections

Hunting the SM Higgs

- Higgs production mechanisms and cross sections

- We must take into account the H decays

- The Higgs interactions with gauge bosons are modified by

$$
\begin{array}{lll}
\mathcal{O}_{G G}=\Phi^{\dagger} \Phi G_{\mu \nu}^{a} G^{a \mu \nu}, & \mathcal{O}_{W W}=\Phi^{\dagger} \hat{W}_{\mu \nu} \hat{W}^{\mu \nu} \Phi, & \mathcal{O}_{B B}=\Phi^{\dagger} \hat{B}_{\mu \nu} \hat{B}^{\mu \nu} \Phi \\
\mathcal{O}_{B W}=\Phi^{\dagger} \hat{B}_{\mu \nu} \hat{W}^{\mu \nu} \Phi, & \mathcal{O}_{W}=\left(D_{\mu} \Phi\right)^{\dagger} \hat{W}^{\mu \nu}\left(D_{\nu} \Phi\right), & \mathcal{O}_{B}=\left(D_{\mu} \Phi\right)^{\dagger} \hat{B}^{\mu \nu}\left(D_{\nu} \Phi\right) \\
\mathcal{O}_{\Phi, 1}=\left(D_{\mu} \Phi\right)^{\dagger} \Phi \Phi^{\dagger}\left(D^{\mu} \Phi\right), & \mathcal{O}_{\Phi, 2}=\frac{1}{2} \partial^{\mu}\left(\Phi^{\dagger} \Phi\right) \partial_{\mu}\left(\Phi^{\dagger} \Phi\right), & \mathcal{O}_{\Phi, 4}=\left(D_{\mu} \Phi\right)^{\dagger}\left(D^{\mu} \Phi\right)\left(\Phi^{\dagger} \Phi\right)
\end{array}
$$

with

$$
\begin{aligned}
& D_{\mu} \Phi=\left(\partial_{\mu}+i \frac{1}{2} g^{\prime} B_{\mu}+i g \frac{\sigma_{a}}{2} W_{\mu}^{a}\right) \Phi \\
& \hat{B}_{\mu \nu}=i \frac{g^{\prime}}{2} B_{\mu \nu} \\
& \hat{W}_{\mu \nu}=i \frac{g}{2} \sigma^{a} W_{\mu \nu}^{a} \\
& B_{\mu \nu}=\partial_{\mu} B_{\nu}-\partial_{\nu} B_{\mu} \\
& W_{\mu \nu}^{a}=\partial_{\mu} W_{\nu}^{a}-\partial_{\nu} W_{\mu}^{a}-g \epsilon_{a b c} W_{\mu}^{b} W_{\nu}^{c} \\
& G_{\mu \nu}^{a}=\partial_{\mu} G_{\nu}^{a}-\partial_{\nu} G_{\mu}^{a}-g_{s} f_{a b c} G_{\mu}^{b} G_{\nu}^{c}
\end{aligned}
$$

In the unitary gauge

$$
\Phi=\frac{1}{\sqrt{2}}\binom{0}{v+h(x)}
$$

$\Delta S \propto f_{B W}$
$\Delta T \propto f_{\Phi, 1}$

Is this the SM scalar boson?

- Yang's theorem rules out spin one states $V \not \nless \gamma \gamma$
- The state can have spin 0 or 2
- What is the CP assignment of this state?
- We need to measure its couplings to the SM

