

Higgs combination results from ATLAS and CMS

Pavel Jež

Centre for Cosmology, Particle Physics and Phenomenology - CP3 Université catholique de Louvain

November 22, 2012

Higgs Search in Belgium Louvain-la-Neuve

- 2 Exclusion and p-values
- 3 Mass and signal strength
- 4 Compatibility with SM Higgs couplings

2 / 34

CMS

Higgs boson in the SM

cross-section and BR

Mass is a free

bosons and

proportional to

total XS × BR:

few fb - few pb

SM

mass

- ٠ Result of spontaneous symmetry breaking
- Mass to gauge bosons + unitarity at high energy
- ٠ Mass to fermions through Yukawa

Pavel Jež (UCL-CP3)

November 22, 2012

The collider and detectors

- LHC is colliding proton-proton beams since 2009
- Collisions @ 7 TeV in 2010 and 2011
- Collisions @ 8 TeV in 2012
- Up to 15/30 interactions per beam collission in 2011/2012
- O(10⁵) decays of H(125) $ightarrow bar{b}$
- O(10²) decays of H(125) $ightarrow \gamma\gamma$
- CMS and ATLAS:

general purpose detectors at LHC

well suited for all SM H decays

November 22, 2012

Search channels overview

- The Higgs search is done in all channels sensitive for low-mass SM Higgs decays and 2 high-mass sensitive channels
- Every decay analysis is combination of many analyses optimized separately for best sensitivity
- Some analyses tag the specific production mode to increase sensitivity
- Most ATLAS results (except the total signal strength) uses only 5+5 fb⁻¹
- Most CMS analyses use full 17-18 fb⁻¹ dataset except
 - $\gamma\gamma$ uses only 5+5 fb⁻¹
 - t $\bar{t}H \rightarrow t \bar{t} b \bar{b}$ uses only 2011 data
 - \blacktriangleright VH \rightarrow V $au^+ au^-$ uses only 2011 data in
 - ▶ $WH \rightarrow WWW$ uses 5+5 fb⁻¹

Decay	untagged	VBF	VH	t₹H	remarks
$H \rightarrow \gamma \gamma$	\checkmark	\checkmark			excellent mass resolution + sensitivity
					low mass, low BR
$H \rightarrow b \overline{b}$			\checkmark	CMS	high BR, huge background
				only	low mass
$H \rightarrow \tau^+ \tau^-$	\checkmark	\checkmark	\checkmark		moderate BR, complex final states
					low mass
$H \rightarrow W^+ W^-$	\checkmark	\checkmark	CMS		high BR, lepton final states
			only		no peak, low+high mass
$H \rightarrow ZZ$	\checkmark				very low BR, clean signature
					excelent peak, low+high mass

¢

Higgs combinations (ATLAS+CMS

November 22, 2012

5 / 34

1 734

Statistical combination methodology Based on the approach agreed by ATLAS and CMS in http://cdsweb.cern.ch/record/1379837

Likelihood

$$\mathcal{L}(\mathrm{data}|\mu\cdot s+b, heta)=\mathcal{P}(\mathrm{data}|\mu\cdot s+b, heta)\cdot p(ilde{ heta}| heta)$$

P... Product of probabilities over all channels and all bins (or all events)
 p(θ̃|θ)... Probability of observing measured value θ̃ of nuissance parameter θ

Limits

¢

Test statistics:
$$q_{\mu} = -2 \ln \frac{\mathcal{L}(\mathrm{obs}|\mu \cdot s + b, \hat{ heta}_{\mu})}{\mathcal{L}(\mathrm{obs}|\hat{\mu} \cdot s + b, \hat{ heta})}$$

•
$$\mathcal{L}(\mathrm{obs}|\hat{\mu}\cdot s+b,\hat{ heta})\dots$$
 global maximal likelihood

• $\mathcal{L}(obs|\mu \cdot s + b, \hat{\theta}_{\mu}) \dots$ maximal likelihood for fixed value μ

Signal strength $\mu \cdot s$ is excluded at $1 - \alpha$ confidence level if

$$\mathsf{CL}_{\mathrm{s}} = \frac{P(q_{\mu} \ge q_{\mu}^{\mathrm{obs}} | \mu \cdot s + b)}{P(q_{\mu} \ge q_{\mu}^{\mathrm{obs}} | b)} \le \alpha$$

6 / 34

Statistical combination methodology

Based on the approach agreed by ATLAS and CMS in http://cdsweb.cern.ch/record/1379837

Excess of events

Test statistics:
$$q_0 = -2 \ln \frac{\mathcal{L}(\mathrm{obs}|b,\hat{ heta}_0)}{\mathcal{L}(\mathrm{obs}|\hat{\mu}\cdot s+b,\hat{ heta})}$$

• p-value:
$$p_0 = \mathsf{P}(q_0 \geq q_0^{\mathrm{obs}} | b)$$

• significance Z:
$$p_0 = \int_Z^\infty \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx$$

Signal model parameters

Test statistics:
$$q(a) = -2 \ln \frac{\mathcal{L}(\operatorname{obs}|s(a)+b,\hat{\theta}_a)}{\mathcal{L}(\operatorname{obs}|s(\hat{a})+b,\hat{\theta})}$$

- The 68% (95%) CL on a given parameter of interest a_i : $q(a_i) = 1(3.84)$
- For 2D contours, The 68% (95%) CL on a given parameter of interest a_i : $q(a_i, a_j) = 2.3(6)$

34

Exclusion of the SM Higgs boson

Higgs combinations (ATLAS+CMS

CMS

8 / 34

Significance of the observation

Probabibility of background fluctuation

- $5\sigma \cdot 5.73 \times 10^{-7}$
- $6\sigma: 1.97 \times 10^{-9}$
- $7\sigma: 2.56 \times 10^{-12}$

Local p

10 10

10 10 10

10

10

10 10

Pavel Jež (UCL-CP3)

Mass of the new state

Method

- Use $H \rightarrow ZZ \rightarrow 4I$ and $H \rightarrow \gamma\gamma$ channels
- Assume that excess in both channels is due to single particle \Rightarrow common mass m_X
- Test statistics $q(m_X)$, channel signal strengths independent

C

SM compatibility: signal strength Method Use all channels • Test statistics q_{μ} , $\hat{\mu} = \sigma / \sigma_{SM}$ CMS ATLAS √s = 7 TeV, L ≤ 5.1 fb⁻¹ √s = 8 TeV, L ≤ 12.2 fb⁻¹ ATLAS Preliminary m. = 126 GeV CMS Preliminary m_H = 125.8 GeV $W.Z H \rightarrow bb$ Vs = 7 TeV: ∫Ldt = 4.7 fb⁻¹ vs = 8 TeV: Ldt = 13 fb $H \rightarrow bb$ $H \rightarrow \tau \tau$ vs = 7 TeV: Ldt = 4.6 fb⁻¹ VS = 8 TeV: Ldt = 13 fb⁻¹ $H \rightarrow WW^{(*)} \rightarrow IvIv$ $vs = 8 \text{ TeV}: [Ldt = 13 \text{ fb}^{-1}]$ $H \to \tau \tau$ $H \rightarrow \gamma \gamma$ s = 7 TeV: Ldt = 4.8 fb⁻¹ $H \rightarrow \gamma \gamma$ s = 8 TeV: Ldt = 5.9 fb $H \rightarrow ZZ^{()} \rightarrow 4I$ Vs = 7 TeV: Ldt = 4.8 fb s = 8 TeV: Ldt = 5.8 fb $H \rightarrow WW$ $\mu=1.3\pm0.3$ Combined s = 7 TeV: Ldt = 4.6 - 4.8 fb $H \rightarrow ZZ$ s = 8 TeV: Ldt = 5.8 - 13 to -1 +1 1.5 2 0.5 1 25 Best fit o/osm Signal strength (µ) $\hat{\mu} = 1.3 \pm 0.3$ for $m_H = 126.0$ GeV $\hat{\mu} = \mathbf{0.88} \pm \mathbf{0.21}$ for $m_H = 125.8$ GeV CMS Both CMS and ATLAS measurements consistent with SM ($\mu = 1$) 11 / 34

Pavel Jež (UCL-CP3)

November 22, 2012

CMS signal strength: details

- Results as a function of mass/by production mode tag
- ۰ Production tag never 100% pure
- Negative $\hat{\mu}$ means deficit of events w.r.t. expected SM background ۰
- No evidence against SM Higgs hypothesis •

SM compatibility: 2D signal strength

CMS

13 / 34

- Test statistics $q(\mu_{
 m ggH+ttH},\mu_{
 m qqH+VH})$, 2 + 2 production modes grouped together
- Decays as in SM

Pavel Jež (UCL-CP3)

November 22, 2012

Compatibility of couplings

Scaling factors

$$N(xx o H o yy) \sim \sigma(xx o H) \cdot \mathcal{B}(H o yy) \sim rac{\Gamma_{xx}\Gamma_{yy}}{\Gamma_{ ext{tot}}}$$

- 8 independent parameters relevant for current searches
- Γ_{ZZ} , Γ_{WW} , $\Gamma_{\tau\tau}$, Γ_{bb} , $\Gamma_{\gamma\gamma}$, Γ_{gg} , Γ_{tt} , Γ_{tot}
- Not possible to extract those parameters at the moment
- Scaling factors for couplings: $\mathbf{g}_{i} = \kappa_{i} \cdot \mathbf{g}_{i}^{\mathrm{SM}}$
- Introducing $\Gamma_{\rm BSM}$
- Following slides are compatibility tests, not measurements
- Significant deviation of κ 's from 1 would mean BSM physics
 - Re-fit of event yields in particular BSM framework will be also needed

Custodial symmetry

CMS

Couplings to fermions and W/Z: 2D contours

- Assume common scaling factors for fermion and W/Z couplings: κ_f , κ_V
- $\bullet \ \Gamma_{\rm BSM}=0$
- $\Gamma_{gg} \sim \kappa_f^2$
- $\Gamma_{\gamma\gamma} \sim |\alpha\kappa_V + \beta\kappa_f|^2$ (W and t loop) $\Rightarrow \gamma\gamma$ sensitive to relative sign of κ_V and κ_f

Couplings to fermions and W/Z: 1D scans

ATLAS

CMS

New physics in the loops: κ_g and κ_γ

- $\bullet\,$ Loop diagrams sensistive to new particles, $\kappa_{\rm g}$ and κ_{γ} allow contributions from new particles
- $\Gamma_{\rm BSM} = 0$, all other $\kappa_i = 1$

Non SM Higgs decays

C

- Assume tree-level couplings are SM
- fit for $\Gamma_{\rm BSM}$, κ_{γ} and κ_{g}

Fermion coupling asymmetries

ATLAS

CMS

C6 model @ CMS

34

• Assume 6 independent parameters: κ_V , κ_t , κ_b , κ_τ , κ_γ , κ_g ; $\Gamma_{BSM} = 0$

Testing of J^{P}

- Decay to $\gamma\gamma \Rightarrow J = 1$ disfavoured
- Parity tested in *H* → *ZZ* → 4*I*
- Assume SM x-section in both hypotheses
- maximize independently
- Assuming J=0, data disfavours 0⁻ pseudoscalar at 97.6% CL
- Need more data to sort out J=2 from J=0

- Boson at 126 GeV does not go away (significance 6.9σ now), otherwise excluded up to 700 GeV
- mass is around 126 GeV, with 0.5 % precision
- No statistically significant anomalies from the SM predictions observed in any decay channels at both experiments
- Spin is not 1 and 100% pure 0^- boson not likely
- Discovered boson should be treated as a background in all other searches

CN

Additional material

References

- ATLAS exclusions, p-value and mass: Phys. Lett. B 716 (2012) 1-29
- ATLAS signal strength: ATLAS-CONF-2012-162
- ATLAS coupling properties: ATLAS-CONF-2012-127
- CMS Higgs combinations: CMS PAS HIG-12-045
- Procedure for the LHC Higgs boson search combination in Summer 2011: ATL-PHYS-PUB 2011-11, CMS NOTE 2011/005
- Higgs cross-sections and BR's: CERN Yellow Report

Higgs cross-section and BR

26 / 34

CMS

ATLAS channels in combination (signal strength)

CMS

27 / 34

Higgs Boson	Subsequent	Sub-Channels		Pof
Decay	Decay			Kel.
		$2011 \ \sqrt{s} = 7 \ \text{TeV}$		
$H \rightarrow ZZ^{(*)}$	4ℓ	$\{4e, 2e2\mu, 2\mu 2e, 4\mu\}$	4.8	[1]
$H \rightarrow \gamma \gamma$	-	10 categories $\{p_{\text{Tt}} \otimes \eta_{\gamma} \otimes \text{conversion}\} \oplus \{2\text{-jet}\}$	4.8	[1]
	$\tau_{\rm lep} \tau_{\rm lep}$	$\{e\mu\} \otimes \{0\text{-jet}\} \oplus \{\ell\ell\} \otimes \{1\text{-jet}, 2\text{-jet}, p_{\mathrm{T},\tau\tau} > 100 \text{ GeV}, VH\}$	4.6	
$H \rightarrow \tau \tau$	$\tau_{\rm lep} \tau_{\rm had}$	$\{e, \mu\} \otimes \{0\text{-jet}, 1\text{-jet}, p_{T,\tau\tau} > 100 \text{ GeV}, 2\text{-jet}\}$	4.6	[4]
$\Pi \rightarrow \iota \iota$	$ au_{ m had} au_{ m had}$	{1-jet, 2-jet}	4.6	
	$Z \rightarrow \nu \nu$	$E_{\rm T}^{\rm miss} \in \{120 - 160, 160 - 200, \ge 200 \text{ GeV}\} \otimes \{2\text{-jet}, 3\text{-jet}\}$	4.6	
$VH \rightarrow Vbb$	$W \rightarrow \ell \nu$	$p_{\rm T}^W \in \{< 50, 50 - 100, 100 - 150, 150 - 200, \ge 200 \text{ GeV}\}$	4.7	[5]
	$Z \to \ell \ell$	$p_{\rm T}^{\mathbb{Z}} \in \{< 50, 50 - 100, 100 - 150, 150 - 200, \ge 200 \text{ GeV}\}$	4.7	

2012 $\sqrt{s} = 8 \text{ TeV}$

$H \rightarrow ZZ^{(*)}$	4ℓ	$\{4e, 2e2\mu, 2\mu 2e, 4\mu\}$	5.8	[1]
$H \rightarrow \gamma \gamma$	-	10 categories $\{p_{Tt} \otimes \eta_{\gamma} \otimes \text{conversion}\} \oplus \{2\text{-jet}\}$	5.9	[1]
$H \rightarrow WW^{(*)}$	evμv	$\{e\mu, \mu e\} \otimes \{0\text{-jet}, 1\text{-jet}\}$	13	[6]
	$\tau_{\rm lep} \tau_{\rm lep}$	$\{\ell\ell\} \otimes \{1\text{-jet}, 2\text{-jet}, p_{\mathrm{T},\tau\tau} > 100 \text{ GeV}, VH\}$	13	
$H \rightarrow \tau \tau$	$\tau_{\rm lep} \tau_{\rm had}$	$\{e, \mu\} \otimes \{0\text{-jet}, 1\text{-jet}, p_{T,\tau\tau} > 100 \text{ GeV}, 2\text{-jet}\}$	13	[4]
$\Pi \rightarrow \iota \iota$	$ au_{ m had} au_{ m had}$	{1-jet, 2-jet}	13	
	$Z \rightarrow \nu \nu$	$E_{\rm T}^{\rm miss} \in \{120 - 160, 160 - 200, \ge 200 \text{ GeV}\} \otimes \{2\text{-jet}, 3\text{-jet}\}$	13	
$VH \rightarrow Vbb$	$W \rightarrow \ell \nu$	$p_{\rm T}^W \in \{< 50, 50 - 100, 100 - 150, 150 - 200, \ge 200 \text{ GeV}\}$	13	[5]
	$Z \to \ell \ell$	$p_{\rm T}^Z \in \{< 50, 50 - 100, 100 - 150, 150 - 200, \ge 200 \text{ GeV}\}$	13	

ATLAS channels in combination (coupling compatibility ${\cal C}$ tests)

Higgs Boson Decay	Subsequent Decay	Sub-Channels		Ref.		
$\frac{2011 \sqrt{s}}{\sqrt{s}} = 7 \text{ TeV}$						
$H \rightarrow ZZ^{(*)}$	4ℓ	$\{4e, 2e2\mu, 2\mu 2e, 4\mu\}$	4.8	[10]		
$H \rightarrow \gamma \gamma$	-	10 categories $\{p_{\text{Tt}} \otimes \eta_{\gamma} \otimes \text{conversion}\} \oplus \{2\text{-jet}\}$	4.8	[11]		
$H \rightarrow WW^{(*)}$	lvlv	$\{ee, e\mu, \mu\mu\} \otimes \{0\text{-jet}, 1\text{-jet}, 2\text{-jet}\} \otimes \{\text{low, high pile-up}\}$	4.7	[12]		
	$\tau_{\rm lep}\tau_{\rm lep}$	$\{e\mu\} \otimes \{0\text{-jet}\} \oplus \{\ell\ell\} \otimes \{1\text{-jet}, 2\text{-jet}, VH\}$	4.7			
$H \to \tau \tau$	$ au_{\mathrm{lep}} au_{\mathrm{had}}$	$\{e, \mu\} \otimes \{0\text{-jet}\} \otimes \{E_{\mathrm{T}}^{\mathrm{miss}} < 20 \text{ GeV}, E_{\mathrm{T}}^{\mathrm{miss}} \ge 20 \text{ GeV}\} \\ \oplus \{e, \mu\} \otimes \{1\text{-jet}\} \oplus \{\ell\} \otimes \{2\text{-jet}\}$	4.7	[13]		
	$ au_{ m had} au_{ m had}$	{1-jet}	4.7			
	$Z \rightarrow \nu \nu$	$E_{\rm T}^{\rm miss} \in \{120 - 160, 160 - 200, \ge 200 \text{ GeV}\}$	4.6			
$VH \rightarrow Vbb$	$W \rightarrow \ell \nu$	$p_{\rm T}^{W^{2}} \in \{< 50, 50 - 100, 100 - 200, \ge 200 \text{ GeV}\}$	4.7	[14]		
	$Z \to \ell \ell$	$p_{\rm T}^{\rm Z} \in \{< 50, 50 - 100, 100 - 200, \ge 200 \text{ GeV}\}$	4.7			
$2012 \sqrt{s} = 8 \text{ TeV}$						
$H \rightarrow ZZ^{(*)}$	4ℓ	$\{4e, 2e2\mu, 2\mu 2e, 4\mu\}$	5.8	[10]		
$H \rightarrow \gamma \gamma$	_	10 categories $\{p_{Tt} \otimes \eta_{\gamma} \otimes \text{conversion}\} \oplus \{2\text{-jet}\}$	5.9	[11]		
$H \rightarrow WW^{(*)}$	ενμν	$\{e\mu, \mu e\} \otimes \{0\text{-jet}, 1\text{-jet}, 2\text{-jet}\}$	5.8	[15]		

28 / 34

CMS channels in combination

Analyses				$m_{\rm H}$ range	$m_{\rm H}$	Lumi	(fb^{-1})
H decay	H prod	Exclusive final states	channels	(GeV)	resolution	7 TeV	8 TeV
0.01	untagged	$\gamma\gamma$ (4 diphoton classes)	4	110-150	1-2%	5.1	5.3
'r'r	VBF-tag	$\gamma \gamma + (jj)_{VBF}$ (low or high m_{jj} for 8 TeV)	1 or 2	110 - 150	1-2%	5.1	5.3
	VH-tag	$(\nu\nu, ee, \mu\mu, e\nu, \mu\nu \text{ with 2 b-jets}) \times (\text{low or high } p_T^V \text{ or loose b-tag})$	10 or 13	110-135	10%	5.0	12.1
bb	ttH-tag	$(\ell \text{ with } 4,5,\geq 6 \text{ jets}) \times (3,\geq 4 \text{ b-tags});$ $(\ell \text{ with } 6 \text{ jets with } 2 \text{ b-tags});$ $(\ell\ell \text{ with } 2 \text{ or } \geq 3 \text{ b-tagged jets})$	9	110-140		5.0	-
	1-jet	$(e\tau_h, \mu\tau_h, e\mu, \mu\mu) \times (\text{low or high } p_T^{\tau}) \text{ and } \tau_h \tau_h$	9	110 - 145	20%	4.9	12.1
TT	VBF-tag	$(e\tau_h, \mu\tau_h, e\mu, \mu\mu, \tau_h\tau_h) + (jj)_{VBF}$	5	110 - 145	20%	4.9	12.1
$\Pi \rightarrow \tau \tau$	ZH-tag	$(ee, \mu\mu) \times (\tau_h \tau_h, e\tau_h, \mu \tau_h, e\mu)$	8	110-160		5.0	-
	WH-tag	$\tau_h ee, \tau_h \mu \mu, \tau_h e \mu$	3	110 - 140		4.9	-
$WW \rightarrow \ell \nu q q$	untagged	$(ev, \mu v) \times ((jj)_W \text{ with } 0 \text{ or } 1 \text{ jets})$	4	170-600		5.0	12.1
$WW \rightarrow \ell \nu \ell \nu$	0/1-jets	(DF or SF dileptons) \times (0 or 1 jets)	4	110-600	20%	4.9	12.1
$WW \rightarrow \ell \nu \ell \nu$	VBF-tag	$\ell \nu \ell \nu + (jj)_{VBF}$ (DF or SF dileptons for 8 TeV)	1 or 2	110-600	20%	4.9	12.1
$WW \rightarrow \ell \nu \ell \nu$	WH-tag	3ℓ3ν	1	110-200		4.9	5.1
$ZZ \rightarrow 4\ell$	inclusive	4e, 4µ, 2e2µ	3	110-1000	1-2%	5.0	12.2
$ZZ \rightarrow 2\ell 2\tau$	inclusive	$(ee, \mu\mu) \times (\tau_h \tau_h, e\tau_h, \mu \tau_h, e\mu)$	8	180 - 1000	10-15%	5.0	12.2

SM compatibility: signal strength

Remarks

- ATLAS result from discovery paper
- CMS detailed result split by decay mode and production tag

Pavel Jež (UCL-CP3)

30 / 34

Custodial symmetry test: CMS 2D likelihoods

Pavel Jež (UCL-CP3)

Higgs combinations (ATLAS+CMS

November 22, 2012

Summary of CMS compatibility tests

Model parameters	Assessed s	caling factors	Comments
	(95% CL intervals)		
$\lambda_{\rm wz}, \kappa_{\rm z}$	λ_{wz}	[0.57,1.65]	Ratio of couplings to W and Z; ZZ and WW(0/1jet) channels only
$\lambda_{\rm wz}, \kappa_z, \kappa_f$	λ_{wz}	[0.67,1.55]	Ratio of couplings to W and Z
κ _v	$\kappa_{\rm v}$	[0.78,1.19]	Couplings to W/Z-bosons (V); $\kappa_f = 1$
κ _f	κ _f	[0.40, 1.12]	Couplings to fermions (<i>f</i>); $\kappa_v = 1$
$\kappa_{\gamma}, \kappa_{g}$	κγ	[0.98,1.92]	Couplings to photons (γ) and gluons (g)
	κ_g	[0.55,1.07]	(loop-induced couplings)
$\mathcal{B}(H \rightarrow BSM), \kappa_{\gamma}, \kappa_{g}$	$\mathcal{B}(H \to BSM)$	[0.00,0.62]	Branching ratio for decays to BSM particles
$\lambda_{du}, \kappa_v, \kappa_u$	λ_{du}	[0.45,1.66]	Ratio of couplings to down and up-type fermions
$\lambda_{\ell q}, \kappa_{v}, \kappa_{q}$	$\lambda_{\ell q}$	[0.00,2.11]	Ratio of couplings to leptons and quarks
	$\kappa_{\rm v}$	[0.58,1.41]	Couplings to W/Z-bosons (V)
	κ_b	not constrained	Couplings to down-type quarks (b)
$\kappa_v, \kappa_b, \kappa_\tau, \kappa_t, \kappa_g, \kappa_\gamma$	κ_{τ}	[0.00, 1.80]	Couplings to charged leptons (τ)
	κ_t	not constrained	Couplings to top-type quarks (t)
	κ_g	[0.43,1.92]	Effective couplings to gluons (g)
	κ_{γ}	[0.81,2.27]	Effective couplings to photons (γ)

