$H \rightarrow ff$ **ATLAS and CMS Results**

Jesus Vizan Universite catholique de Louvain

Higgs-search-in-Belgium mini workshop 22-23 November 2012 Louvain la Neuve

22th November 2012

Outline

- Higgs candidate and Fermion couplings
- LHC Results
 - \diamond H \rightarrow bb
 - $\diamond \ H \ \rightarrow \ \tau\tau$
- Summary

Data included from 2010-03-30 11:21 to 2012-11-09 09:47 UTC

Jesus Vizan

Introduction: Higgs candidate

- Higgs boson candidated discovered Summer 2012 (ICHEP) with mass ~ 125 GeV:
 - CMS and ATLAS using 10 fb⁻¹ of data at 7 and 8 TeV
 - ◊ Discovery driven by high resolution channels (H → γγ, H → ZZ)
 - ◊ No evidence in fermionic decay channels ($H \rightarrow bb$, $H \rightarrow \tau\tau$)
- Updated results from both collaborations presented last week (HCP Kyoto)
 - Searches in many modes updated including latest data: 10fb⁻¹ → 17fb⁻¹
 - ♦ Including H → bb, H → ττ (this talk) 22th November 2012 → bb, H → ττ (this talk) Jesus Vizan

Introduction: fermion couplings

 $\frac{W^{+}}{GW/z} = \frac{W^{+}}{W^{-}} \frac{\tau^{+}}{\tau^{-}}$ $\frac{W^{-}}{W^{-}} = \frac{W^{+}}{\tau^{-}} \frac{W^{+}}{W^{-}} \frac{W^{+}}{\tau^{-}} \frac{W^{+}}{W^{+}} \frac{W^{+}}{W^{+}} \frac{W^{+}}{\tau^{-}} \frac{W^{+}}{W^{+}} \frac{W^{+}$

Stablish nature of Higgs candidate
 Some properties: Spin 0 or 2, CP nature, better measured using high resolution decay modes (ZZ) but...

• H → ff needed to understand Higgs coupling structure
 • Direct probe Yukawa couplings and properties
 • Access multiple production modes ττ (ggH, VBF), bb (VH)

Channel	m _, range (GeV)	m _н resolution	Production mode				
$H \rightarrow \gamma \gamma$	110-150	1-2%	ggH, VBF				
$H \rightarrow ZZ$	110-1000	1-2%	ggH				
$H \rightarrow WW$	110-150	20%	ggH, VBF, VH				
$H \rightarrow bb$	100-135	10%	VH, ttH				
$H \to \tau \tau$	110-145	15%	ggH, VBF, VH				

- Higgs coupling to b and tau enhanced in some models
 - Neutral MSSM Higgs
 Searches

$H \rightarrow bb$

Most prevalent SM Higgs decay
 At respective DD (Up to b)

- ◊ At m_H ~ 125 GeV: BR (H→bb) ~ 58%
- Direct constraint on couplings to fermions
- Input to measuring VH & tH couplings
- Very challenging jet backgrounds
 7-8 orders of magnitude greater
 Use associated production V=W, Z, tt
 - Clean leptonic decay signatures

VH, H \rightarrow bb

General strategy
 Ibb, Ivbb, vvbb channels

- Main bkg: V+jets, tt, single top
 - Fits using control regions
 - Shapes from MC 22th November 2012

VH, $H \rightarrow$ bb:Validation of the search

95%CL σ X BR upper limit: 1.8 (obs) 1.9 (exp)
 σ/σ_{SM} = -0.4 ± 0.7 (stat) ± 0.8 (sys)
 p_o value: 0.64 (obs) exp (0.15)

22th November 2012

VH, $H \rightarrow bb$: Tevatron Results

 LHC better sensitivty but Tevatron result is still competitive m_{..} = 125 GeV • 95%CL σ X BR upper limit: 2.9(obs) 1.4 (exp) • σ/σ_{SM} = **1.56**^{+0.72} -0.73

• No evidence of excess: 95%CL limit σ/σ_{SM} 3.8 (obs) 4.6 (exp)

22th November 2012

2 MSSM $\Phi \rightarrow bb$: Results tanβ MSSM neutral Higgs boson produced in association with b-quarks All hadronic and semileptonic final states (combined for the first time) Using only 7 TeV data (CMS) Important multijet background estimated using complex data driven methods CMS 2.7-4.8 fb⁻¹ vs = 7 TeV CMS preliminary 2.7-4.8 fb⁻¹ vs = 7 TeV 10^{3} tanβ Upper 95% CL limit on σ x BR(H \rightarrow bb) [pb] observed exp (68%) 60 expected exp (95%) expected (68%) exp (semileptonic) expected (95%) 50 ······ exp (hadronic) 10² 40 CMS PAS HIG-12-026 30 CMS PAS HIG-12-027 10 20 MSSM m_b-max

200 100 150 250 300 350 m_₄ [GeV/c²] m_₄ [GeV/c²] Excluded large tanß region at the 95% CL in the MSSM parameter space (m^{max}_h Scenario) 22th November 2012 12

300

350

100

150

200

250

10

0

μ = -200 GeV

Η → ττ

Search for the Higgs boson in 3 production modes

Using ggF (1 jet) and VBF enriched regions
 Different final states based on τ decay
 eτ_h, μτ_h best sensitivity
 All leptonic: eµ, μμ

♦ All hadronic: $τ_h τ_h$

Η → ττ

- m_ important discriminator
 - Maximum likelihood methods
 - Used to extract signal
- MET reconstruction
 - \diamond Used of the selection and input for m_{π}
 - Resolution and PU dependence improved using MVA regression (CMS)
- Backgrounds
 - ◊ Large Z → ττ using embedding technique
 - QCD, W+jets: data driven methods.
 Same sign events...

22th November 2012

15

• σ/σ_{SM} = 0.7±0.7

MSSM $\Phi \rightarrow \tau \tau$: Results

22th November 2012

Summary

ATLAS VH → bb 95%CL limit: 1.8 (obs) 1.9 (exp) σ/σ_{SM} = -0.4± 0.7 (stat) ± 0.8 (sys) p value: 0.64 (obs) exp (0.15) ATLAS H → ττ 95%CL limit: 1.9 (obs) 1.2 (exp) p value 1.1 s.d (1.7 expected)

$$\circ \sigma/\sigma_{\rm SM} = 0.7 \pm 0.7$$

• CMS VH
$$\rightarrow$$
 bb
• 95%CL limit: 2.5, 1.2 (exp)
• $\sigma/\sigma_{SM} = 1.3 + _{-0.6}^{0.7}$
• p value: 2.2 s.d
• CMS H \rightarrow TT
• 95%CL limits: 1.66, 1.05 (exp)
• $\sigma/\sigma_{SM} = 0.72 \pm 0.52$

- ATLAS: ff final states compatible bkg-only or SM Higgs
 CMS: bb and ττ final states show certain excess well compatible with SM
- ${\ensuremath{\circ}}$ Large regions of MSSM parameter space excluded for neutral Higgs searches in $\Phi \to \tau \tau$
- Excluded large tanβ region at the 95% CL in the MSSM parameter space in Φ → bb

BACK UP

(taken from HCP2012 presentations)

VH, $H \rightarrow bb \ bkg \ estimation$

- Most background shapes are taken from simulation and normalised using data control regions
- Multi-jet background determined entirely from data-driven techniques
- WZ(bb) & ZZ(bb) resonant bkg normalisation and shape from simulation

◊ ATLAS QCD

- 0 lepton
 - Use ABCD method
 - Regions defined by relative directions of MET/jets/pTmiss
 - Found to be small (~1%)
- 1 lepton
 - MET template by reverse isolation cuts
 - Normalised by fitting each WpT bin
 - Electroweak contamination removed from template
- 2 lepton
 - Template: reverse isolation/quality selection
 - Found to be small (<1%)</p>

```
22th November 2012
```

```
Main control regions

Z + jets: Pre-tag and 1 b-tag

W + jets: Pre-tag and 1 b-tag

Top:

0 & 1 lepton channel: + 1jet

2-lepton channel: veto(83< m_{\parallel}< 99)

MET > 60)
```

VH, H \rightarrow bb Yields

♦ ATLAS

	0-lepton, 2 jet			0-lepton, 3 jet		1-lepton				2-lepton						
Bin	$E_{\rm T}^{\rm miss}$ [GeV]					$p_{\mathrm{T}}^{W}[\mathrm{GeV}]$				$p_{\rm T}^{\rm Z}[{\rm GeV}]$						
	120-160	160-200	>200	120-160	160-200	>200	0-50	50-100	100-150	150-200	> 200	0-50	50-100	100-150	150-200	>200
ZH	2.9	2.1	2.6	0.8	0.8	1.1	0.3	0.4	0.1	0.0	0.0	4.7	6.8	4.0	1.5	1.4
WH	0.8	0.4	0.4	0.2	0.2	0.2	10.6	12.9	7.5	3.6	3.6	0.0	0.0	0.0	0.0	0.0
Тор	89	25	8	92	25	10	1440	2276	1120	147	43	230	310	84	3	0
W + c,light	30	10	5	9	3	2	580	585	209	36	17	0	0	0	0	0
W + b	35	13	13	8	3	2	770	778	288	77	64	0	0	0	0	0
Z + c,light	35	14	14	8	5	8	17	17	4	1	0	201	230	9 1	12	15
Z + b	144	51	43	41	22	16	50	63	13	5	1	101 0	1180	469	75	51
Diboson	23	11	10	4	4	3	53	59	23	13	7	37	39	16	6	4
Multijet	3	1	1	1	1	0	890	522	68	14	3	12	3	0	0	0
Total Bkg.	361	127	98	164	63	42	3810	4310	1730	297	138	1500	1770	665	97	72
	± 29	± 11	± 12	± 13	± 8	± 5	± 150	± 86	± 90	± 27	± 14	± 90	± 110	± 47	± 12	± 12
Data	342	131	90	175	65	32	3821	4301	1697	297	132	1485	1773	657	100	69

MSSM $\Phi \rightarrow bb$: Results. For each channel

In the MSSM m_h^{max} benchmark scenario, the definition of theory parameters are the following: $M_{SUSY} = 1 \text{ TeV}/c^2$; $X_t = 2M_{SUSY}$; $\mu = 200 \text{ GeV}/c^2$; $M_{\tilde{g}} = 800 \text{ GeV}/c^2$; $M_2 = 200 \text{ GeV}/c^2$; and $A_b = A_t$; $M_3 = 800 \text{ GeV}/c^2$. Here, M_{SUSY} denotes the common soft-SUSY-breaking squark mass of the third generation; $X_t = A_t - \mu / \tan \beta^2$ is the stop mixing parameter; A_t and A_b are the stop and sbottom trilinear couplings, respectively; μ is the Higgsino mass parameter; $M_{\tilde{g}}$ is the gluino mass; and M_2 is the SU(2)-gaugino mass parameter. The value of M_1 is fixed via the unification relation $M_1 = (5/3)M_2 \sin \theta_W / \cos \theta_W$.

