

ATLAS and CMS results for BEH → VV

Xavier Janssen Higgs-search-in-Belgium mini workshop Louvain-La-Neuve November 22, 2012

The Large Hadron Collider @ CERN

Proton-proton collisions at 7 TeV (2010/11) & 8 TeV (2012) (and ~14 TeV after 2013/14 upgrade)

SM Higgs Boson Production and Decay at LHC

Gluon fusion (gg \rightarrow H) it the dominant production mechanism at LHC but VBF, VH and ttH allow to test H properties.

WW and ZZ decays are largest contributions but $\gamma\gamma$, $\tau\tau$ and bb decays important at low mass due to large SM irreducible backgrounds: WW, ZZ, ...

Observation of a new boson at a mass of ~126 GeV

Results from "July" papers:

	ATLAS	CMS
Local p-value	6.0 σ + Nothing else significant	5.0 σ + Nothing else significant
Mass [GeV]	126.0 ± 0.4 (stat.) ± 0.4 (syst.)	125.3 ± 0.4 (stat.) ± 0.5 (syst.)
Signal Strength	1.4 ± 0.3	$\boldsymbol{0.87 \pm 0.23}$

Observation of a new boson at a mass of ~126 GeV

Results from "July" papers:

	ATLAS	CMS		
Local p-value	6.0 σ + Nothing else significant	5.0 σ + Noting else significant		
Mass [GeV]	126.0 ± 0.4 (stat.) ± 0.4 (syst.)	125.3 ± 0.4 (stat.) ± 0.5 (syst.)		
Signal Strength	1.4 ± 0.3	$\boldsymbol{0.87 \pm 0.23}$		

→ Compatible with Standard Model expectation

But is it THE Standard Model Brout-Englert-Higgs Boson ?

- **Does it couple/decay to fermions** (τ, b) as expected in the SM ?
- \Box Are all the couplings (γ , W, Z, t, b, gluons, ...) SM-like ?
- □ What are its quantum numbers (Spin and CP) ?
- □ What about individual production mechanism strength (gg, VBF, VH, ttH) ?

 \rightarrow Jesus talk

 \rightarrow Pavel talk

$H \rightarrow VV$ Analyses Overview

	Probed Prod. Mech.	Mass	ATLAS		CMS	
		range [GeV]	7 TeV [fb ⁻¹]	8TeV [fb ⁻¹]	7 TeV [fb ⁻¹]	8 TeV [fb ⁻¹]
н→үү	gg VBF	110 -150	4.8	5.9	5.1	4.8
H→ZZ→4I	Untag	110-600 CMS →1000	4.8	5.8	5.1	12.2
$H \rightarrow ZZ \rightarrow 2l_2v$	gg VBF	200-600	4.7		5	5
(H→ZZ→lljj)	~ gg	120-600	4.7		4.6	
H→WW→2l2v	gg VBF	110-600	4.7	13	4.9	12.1
H→WW→lvjj	~ gg	160-600	4.7		5	12
WH→WWW→3l3v	VH	110-200	4.7		4.9	5.1
(VH→VWW→jj2lv)	VH	120-190			4.9	

CMS Experiment at the LHC, CERN Data recorded: 2012-May-13 20:08:14.621490 GMT Run/Event: 194108 / 564224000

CMS Experiment at the LHC, CERN Data recorded: 2012-May-13 20:08:14.621490 GMT Run/Event: 194108 / 564224000

No update since ICHEP

Overall small signal BR between 0.14% and 0.23% for 110<M_H<150 GeV

Clean final-state topology: two isolated and high-Pt photons
 Small-narrow peak on large continuous background

Crucial ingredients m_{γγ}² = 2*E₁E₂(1 - cos α)
 Robust photon reco, isolation and identification
 Good energy calibration and primary vertex reconstruction (α depends on PV and cluster position)
 Good background modeling

$H \rightarrow \gamma\gamma$: Analysis Method

Analysis separated in several di-photon categories based on p_T, η, photon ID, vertex info, mass resolution ... to exploit different S/B ratio.
 Dedicated VBF categories: 2 jets well separated in pseudo-rapidity

□ Background shape fitted from the data

→ Mass peak in all category combined with and without S/B weighting

$H \rightarrow \gamma \gamma$: CLs and significance

□ Large excess around 126 (125) GeV observed by ATLAS (CMS)
 □ Results consistent between 7 & 8 TeV and improved by VBF category
 □ Over 4σ observed local significance for both ATLAS and CMS

10

$H \rightarrow \gamma \gamma$: Mass and signal strength

ATLAS

CMS

□ Signal strength compatible with SM within the present uncertainties

$H \rightarrow \gamma \gamma$: Signal strength per category

ATLAS: $\sigma/\sigma_{SM} = 1.8 \pm 0.5$

CMS: $\sigma/\sigma_{SM} = 1.56 \pm 0.43$

□ Compatible with SM within the present uncertainties
 □ No difference between gg and VBF signal strength within uncertainties
 □ New data being analyzed but need a bit more time/scrutiny
 → Possibility to measure some J^{CP} properties + add VH/ttH categories

Small rates, but high S/B

Can be fully reconstructed; mass resolution ~2% at 130 GeV

Backgrounds:

- Irreducible: $pp \rightarrow ZZ^{(*)} \rightarrow 4$ (precise EWK prediction)
- Reducible: Z+jets, Zbb, tt (sizeable at low Higgs masses)

Considered channels:

♦ ATLAS : $ZZ \rightarrow 4I$; $I = e, \mu$

♦ CMS : ZZ → 4I; I = e, μ ZZ → 2I2τ; I = e, μ

Event: 71902630 Date: 2012-06-10 Time: 13:24:31 CEST

$H \rightarrow ZZ \rightarrow 41$: Invariant mass

→ Peak around 126 GeV on top of a relatively flat background both in ATLAS (4.8+5.8 fb⁻¹) and CMS (5+12 fb⁻¹) analysis

$H \rightarrow ZZ \rightarrow 41$: CMS Kinematic Discriminant

 \mathbf{x}_{o}

CMS

enhances analysis sensitivity

(s=7 TeV, L=5.05 fb⁻¹; (s=8 TeV, L=12.21 fb⁻¹

+ 4e

$H \rightarrow ZZ \rightarrow 41$: Results

X. Janssen – 22/11/2012 ATLAS and CMS results for X126 (BEH?) → VV

17

$H \rightarrow ZZ \rightarrow 41$: Spin/Parity Measurement (CMS)

$H \rightarrow ZZ \rightarrow 41$: Extending to 1 TeV (CMS)

New since ICHEP:

Reweight of high mass Higgs lineshape Including interference effects according to:

- N. Kauer et al. [arXiv:1201.1667,1206.4803]
- G. Passarino [arXiv:1206.3824]
- S. Goria et al. [arXiv:1112.5517]
- J.-M. Campbell [arXiv:1107.5569]
- V. Hirshi et al. [in preparation]

→ Effect important for mH >~ 500 GeV

- → Also applied in all post-ICHEP high mass analysis:
 - $-H \rightarrow WW \rightarrow 2I2v$
 - $H \rightarrow WW \rightarrow I_V j j$

+ future updates $(H \rightarrow ZZ \rightarrow 2l_{2\nu}, ...)$ \Box Merged with $H \rightarrow ZZ \rightarrow 2l_{2\tau}$ channel

→No significant SM Higgs-like excess beyond 126 GeV one

$H \rightarrow ZZ \rightarrow 2l2\nu$: Search strategy (CMS example)

- Well identified and isolated ee or μμ; invariant mass close to Z boson mass
- Selection efficiencies corrected for data/MC difference
- Z+jets background
 - Fake MET due to jet mismeasurement
 - Cut on MET and veto jet faking MET events
 - Modeled from y+jets data

- Extra lepton veto
- b-tagged jet veto

Non-resonant backgrounds

- Select eµ events, applied ll/eµ scale factors
- Scale factors computed in Z mass peak sideband events
- MET and transverse mass cuts tuned for different signal mass hypothesis to look for excess above background

$$M_{\mathrm{T}}^2 = \left[\sqrt{p_{\mathrm{T},\ell\ell}^2 + m_{\ell\ell}^2} + \sqrt{E_{\mathrm{T}}^{\mathrm{miss},2} + m_{\ell\ell}^2}\right]^2 - \left[\vec{p}_{\mathrm{T},\ell\ell} + \vec{E}_{\mathrm{T}}^{\mathrm{miss}}\right]^2$$

More details in Jian's talk (CMS only session)

$H \rightarrow ZZ \rightarrow 2l2\nu$: Results

□ No significant excess \rightarrow Excluding SM Higgs for m_H in [228,600] GeV for CMS

 \Box One of the most sensitive channel at high mass \rightarrow Looking forward for updates ...

- □ IIHE also pursuing non-resonant $ZZ \rightarrow 2I2v$ analysis:
 - → Understand background to H studies
 - → Limits on anomalous TGC
- Open theory points:
 - \rightarrow Prediction for interference between gg->H->2l2v and gg->2l2v
 - → gZZ & ZZZ TGC only available in Sherpa !

$H \rightarrow WW \rightarrow 212v$

Event Signature:

- 2 isolated, high p_T leptons (e or m only in this analysis) with small opening angle
- High Missing E_{T} from escaping n's
- Analysis performed on exclusive jet multiplicities (0, 1, 2-jet bins)
 - → WW (and Top for 1/2-jet bins) are "irreducible" backgrounds

Signal Extraction:

CMS

Data

Run/

.um

- Optimized Cut Based selection for each Higgs mass hypothesis:
 - $-p_{T}(I)$, m_I, m_T and Df(II) as discriminating variables in 0/1 jet bins
 - Dedicated VBF selection for 2-jet bin
- Shape Analysis for 0/1 jet bins

→Channel with best S/B in a wide mass range but no mass peak (resolution) → event counting analysis Use of different helicity correlations of the leptons for WW and H->WW to further separate them (smaller opening angle for H->WW) :

□ 12.1 fb⁻¹ @ 8 TeV:

0-jets, <mark>shape</mark>	1-jet, <mark>shape</mark>	2-jets, VBF	different flavor, DF
0-jets	1-jets	2-jets, VBF	same flavor, SF substantial DY
			background

jets with p_{τ} > 30 GeV

- different flavor (DF) most sensitive (0 and 1 jet categories)
- shape analysis for those two DF categories only
- other categories use easier to control cut-and-count strategy
- New for HCP
 - shape analysis uses $(m_{I}-m_{T})$ plane
 - mass independent DY rejection, VBF selection optimized

Combine with published 7 TeV analysis (4.9 fb⁻¹)

$H \rightarrow WW \rightarrow 2l2\nu$: CMS Cut&Count (0 jet DF)

m_{H}	$\begin{array}{c} H \\ \rightarrow W^+W^- \end{array}$	$\rightarrow \overset{pp}{W^+W^-}$	$WZ + ZZ + Z/\gamma^* \rightarrow \ell^+ \ell^-$	Тор	W + jets	$W\gamma^{(*)}$	all bkg.	data
0-jet category $e\mu$ final state								
120	34.0 ± 7.3	162 ± 16	5.3 ± 0.5	8.6 ± 2.0	38 ± 14	23.1 ± 8.8	237 ± 23	285
125	58 ± 12	203 ± 19	6.6 ± 0.6	11.0 ± 2.5	44 ± 16	25.6 ± 9.5	291 ± 27	349
130	86 ± 18	226 ± 21	7.1 ± 0.7	12.2 ± 2.8	47 ± 17	27 ± 10	319 ± 29	388
160	238 ± 51	125 ± 12	3.7 ± 0.4	13.1 ± 3.1	5.9 ± 2.7	2.6 ± 1.5	160 ± 13	197
200	95 ± 21	204 ± 19	6.3 ± 0.6	28.9 ± 6.4	7.7 ± 3.5	1.3 ± 0.9	278 ± 21	309
400	40 ± 11	133 ± 15	6.2 ± 0.7	50 ± 11	7.6 ± 3.3	3.5 ± 2.1	200 ± 19	198
600	6.6 ± 2.3	42.2 ± 4.8	2.5 ± 0.3	16.5 ± 3.8	4.4 ± 2.0	2.4 ± 1.8	67.9 ± 6.7	64

X. Janssen – 22/11/2012 ATLAS and CMS results for X126 (BEH?) → VV

$H \rightarrow WW \rightarrow 212v : CMS 2D$ Shape

- Easier interpretation than multivariate discriminants
- Use of mass-like variables
 - m_T: higgs transverse mass

$$m_T = \sqrt{2 p_T^{\ell \ell} E_T^{\mathrm{miss}} \left(1 - \cos \Delta \phi_{E_T^{\mathrm{miss}} \ell \ell}
ight)}$$

- mee: di-lepton invariant mass
- Different backgrounds peaking at different location

Relaxed selection with respect to cut-based

- Exploit the full range of the variables
- Improved sensitivity at low m_H from additional sideband constraint of backgrounds
- Mass independent selection for low/high mass searches

Applied to DF 0/1-jet channels

Most sensitive channels with sufficient statistics for a 2D analysis

→ 13 fb⁻¹ @ 8 TeV:

 Fit the m_T spectrum of the signal region and the normalizations of (blue) control regions

systematics included as nuisance parameters

 Plan to update to full 2012 dataset and combine with improved 7 TeV result in the future

Events / 10 GeV

 μ has higher p_{τ}

Single Top

H [125 GeV]

W+iets

Z+iets

ATLAS Preliminary

\s = 8 TeV, Ldt = 13.0 fb⁻¹

100 H→WW^(*)→µvev (0 jets)

$H \rightarrow WW \rightarrow 212v$: Results

$H \rightarrow WW \rightarrow lvjj$

95% C.L. limit on $\sigma/\sigma(SM)$

10

Expected

Observed

 $\pm 1\sigma$

 $+2\sigma$

- Reconstruct $m_{ww} = m_{Inii}$
- 4 categories (e $\mid \mu$) x (2j \mid 3j)
 - apply the same techniques
- Implement MVA
- **Data-driven techniques** for high rate backgrounds

√s=7 TeV

- $\sigma(WH_{SM}(m_H=125))\sim 0.7 \text{ pb}$, drops rapidly
- Analysis based on ICHEP dataset (10 fb⁻¹)
- Cut-and-count, optimize for $M_{\rm H} = 125 \, \text{GeV}$
- Include WH $\rightarrow \tau \tau$ in the signal
- Apply many of the same techniques as 212v
- Good agreement between data and background prediction
- Upper limits calculated on 10 fb-1 of data from 2011 and 2012
- The limits are ~ 5 times larger than SM expectation for $M_H = 125$ GeV
- Analysis of 2012 data continues

 $H \rightarrow WW$: ggH, VBF and VH (CMS)

□ ggH → Compatible with average signal strength (all decays: γγ, ZZ, WW, ττ, bb)

- \Box VBF \rightarrow Only 1s lower than average signal strength
- \Box VH \rightarrow Uncertainty remains large at the present luminosity

 \rightarrow No significant difference between the 3 production mechanisms

CONCLUSIONS

$H \rightarrow \gamma \gamma$

- \Box Over 4 σ observed local significance for both ATLAS and CMS for m_x ~ 126 GeV
- $\Box \mu = 1.56 \pm 0.43$ (1.8±0.5) for m_x ~ 126 GeV for CMS (ATLAS)
- Evidence for the existence of a new boson decaying in two photons excludes the spin 1 hypothesis

$H \rightarrow ZZ \rightarrow 4I$

□ CMS update to 5+12 fb-1 with 7+8 TeV datasets

- \Box 4.5 (3.6) σ of local significance for m_X ~ 126 GeV for CMS (ATLAS)
- $\mu = 0.8+0.35-0.8$ (1.4±0.6) for m_X ~ 126 GeV for CMS (ATLAS)
- □ CMS: Upper limits at 95% CL exclude the SM Higgs boson in the ranges 113-116 and 129-720 GeV
- □ CMS: 2.5 standard deviations disfavoring particle to be pseudo scalar

$H \rightarrow WW$

- □ Study of gg, VBF and VH
- □ 3.1 (2.6) σ of local significance for m_X ~ 126 GeV for CMS (ATLAS) in H → WW → 2I2v
- □ Additional SM Higgs-like bosons are excluded to at least 95% CL from 128-600 GeV

\rightarrow New results consistent with publications and the SM Higgs expectation

BACKUP

5

$H \rightarrow ZZ \rightarrow 4l$: CMS Data Reco&Sel

m_{z2} (GeV)

Building 4I-candidates

& Pair #1

- ষ 40<m(II)<120 GeV, nearest to Z0 mass
- a Final state radiation recovery (FSR)
- ন্ব Lepton isolation

& Pair #2

- a 12<m(II)<120 GeV, highest PT leptons
- ର୍କ FSR
- ম Lepton isolation

\aleph Note on FSR photon:

- a accept if dR(I,y)<0.07 PT>2 GeV OR: dR(I,y)<0.5 PT>4 GeV plus isolated Condition: |m(IIy)-mZ⁰|<|m(II)-mZ⁰|
- a FSR expected in 6.8% events (observed: 6±2%)

$H \rightarrow ZZ \rightarrow 4l$: ATLAS - Data Reco&Sel

Event Selection

- Two same-flavour opposite-sign di-leptons (e/µ)
- Optimised phase space to enhance low mass sensitivity
 - p_T^{1,2,3,4} > 20,15, 10, 7 GeV (6 GeV for μ)
 - Leading di-lepton mass : 50 < m₁₂ < 106GeV
 - Sub-leading di-lepton mass :
 - m_{thr} (m₄₁) < m₃₄ < 115 GeV ;m_{thr} = 17.5 50 GeV
 - all same-flavour opposite-sign pairs m_{II}>5 GeV
 - $\Delta R(I,I') > 0.10(0.20)$ for all same(different)-flavour
- Additional requirements to reduce background
 - Calorimeter isolation
 - Track isolation
 - Impact parameter significance
- Z mass constraint of leading Z

$H \rightarrow ZZ \rightarrow 2l2j$

$H \rightarrow WW \rightarrow 212v$: Backgrounds

$H \rightarrow WW \rightarrow 212v$: Backgrounds

<u>Top (tt & tW):</u>

Dominant background in 1 and 2 jet bins

□ Measure Top tagging efficiency from data

Control region in data enriched in tt/tW by inverting top veto:

Non resonant WW:

□ For low mass Higgs, normalize WW from high lepton invariant mass region in data:

$H \rightarrow WW \rightarrow 2l2\nu$: CMS Cut&Count (1 jet DF)

	$m_{\rm H}$	$\begin{array}{c} H \\ \rightarrow W^+W^- \end{array}$	$\rightarrow \overset{pp}{w^+w^-}$	$WZ + ZZ + Z/\gamma^* \rightarrow \ell^+ \ell^-$	Тор	W + jets	$W\gamma^{(*)}$	all bkg.	data
Ī	1-jet category $e\mu$ final state								
	120	14.9 ± 4.3	38.9 ± 6.4	5.3 ± 0.6	40.3 ± 3.0	19.1 ± 7.4	7.1 ± 3.4	111 ± 11	123
	125	27.3 ± 8.0	47.9 ± 7.8	6.5 ± 0.7	49.5 ± 3.3	22.4 ± 8.6	7.1 ± 3.4	134 ± 13	160
Т	130	40 ± 12	53.9 ± 8.8	7.3 ± 0.8	55.2 ± 3.6	24.5 ± 9.4	7.1 ± 3.4	148 ± 14	182
	160	131 ± 37	44.4 ± 7.0	5.3 ± 0.7	51.8 ± 3.5	9.0 ± 3.9	0.6 ± 0.4	111.1 ± 8.8	145
	200	58 ± 15	80 ± 13	6.8 ± 0.8	114.6 ± 6.5	16.1 ± 6.5	0.4 ± 0.3	238 ± 16	276
	400	29.4 ± 8.1	81 ± 13	7.9 ± 1.2	129.0 ± 7.1	16.8 ± 6.6	0.6 ± 0.5	235 ± 16	226
	600	6.9 ± 1.8	30.0 ± 4.8	3.1 ± 0.4	40.3 ± 3.0	8.4 ± 3.5	0.0 ± 0.0	81.8 ± 6.6	74

X. Janssen – 22/11/2012 ATLAS and CMS results for X126 (BEH?) → VV

$H \rightarrow WW \rightarrow 212\nu$

CMS

New Shape Analysis – Ex. DF 0-jet ²

ATLAS and CMS results for X126 (BEH?) → VV

$H \rightarrow WW \rightarrow 212\nu$

Shape – 2 D (m_{μ}, m_{τ}) – 0 jet

$H \rightarrow WW \rightarrow 212v$

Shape – 2 D (m_{μ}, m_{τ}) – 1 jet

$H \rightarrow WW \rightarrow 212v$ Shape - 2 D (m_{μ}, m_{τ}) projected

Projected the signal is better visible

- clear enhancement in data where signal is predicted

30

 $H \rightarrow WW \rightarrow 212v$

Signal Strength

Steeply falling signal strength versus mass

- measure signal strength: 0.74 \pm 0.25 (at m_{μ} = 125 GeV)
- 7 TeV as published, 8 TeV data with new 2D shape analysis

32