MADANALYSIS 5 A new framework for collider phenomenology

Benjamin Fuks (IPHC Strasbourg / Université de Strasbourg)

In collaboration with E. Conte & G. Serret.

The FEYNRULES/MADGRAPH 2012 School on LHC Phenomenology @ Natal (Brazil)

Sep 30 - Oct 05, 2012

Outline	_		

Overview of MADANALYSIS 5.

Installation.

Comprehensive particle physics phenomenology.

Implementation of a new physics model in FEYNRULES.

Model building.

2 Event generation with MADGRAPH **5**.

Parton-level phenomenology.

3 Parton showering and hadronization with **Pythia** or **Herwig**.

Hadron-level phenomenology.

Fast detector simulation with DELPHES or PGS.

Reconstructed-level phenomenology

Need for a new framework for collider phenomenology.

- Several levels of sophistication for phenomenological analyses.
 - * Parton level.
 - * Hadron level.
 - * Reconstructed level.
- Analysis skeleton.
 - * Reading of signal and background event files.
 - * Application of selection cuts.
 - * Creation of histograms and cut-flow charts.
 - * Extraction of information on the signal [usually swamped by backgrounds].
- Drawbacks.
 - * The procedure above is in general based on home-made tools.
 - ► Lack of traceability.
 - ► Validation of the tools?
 - ► Reproducibility of the results?
 - * These tools can in general only be used at a specific sophistication level.

► Lack of flexibility.

- * These tools can in general only be used with a specific event file format.
 - ► Lack of flexibility.

Introducing MADANALYSIS 5.

Alleviation of these issues.

• A new unique framework for phenomenological analyses.

- * Any sophistication level (parton, hadron, reconstructed).
- * Any event file format (STDHEP, HEPMC, LHE, ...).
- * User-friendly \Rightarrow professional analyses in a simple way.
- * Fast: less than a minute for analyzing 100.000 events.
- * Flexible \Rightarrow no limit on the analysis complexity.
- * Easy to maintain.
- * Easy to validate.

This framework is called

MADANALYSIS 5.

	Overview		
Outline	2.		

1 Introduction.

Installation.

Analyzing events with MADANALYSIS 5.

5 MADANALYSIS 5 at the hadron-level: jet reconstruction and merging samples.

Summary

The MADANALYSIS 5 scheme.

• Two modules.

- * A PYTHON command line interface: interactive commands.
- * A C++/ROOT module, SAMPLEANALYZER: performs the analysis.

The MADANALYSIS 5 scheme.

• Normal mode of running (user-friendly).

- * Commands typed in the PYTHON interface.
- * Analysis performed behind the scene (black box).
- * Human readable output: HTML, LATEX.

The MADANALYSIS 5 scheme.

• Expert mode (developer-friendly; not covered oin this tutorial).

- * C++ programming within the SAMPLEANALYZER framework.
- * C++ and ROOT skills required.
- * The PYTHON interface creates a blank analysis as a starting point.

The MADANALYSIS 5 scheme.

• Inputs.

- * Monte Carlo samples (zipped or not) ⇔ datasets.
- * Particle and multiparticle labels.
- * User commands.

The MADANALYSIS 5 scheme.

Jobs and results.

- * Translation of the commands by the interface \Rightarrow C++ job.
- * Uses the SAMPLEANALYZER kernel.
- * Generation of the results; conversion of the events to a compact format.

Basic concepts.

• Command line interface.

- * In-line help.
- * Auto-completion.

• Particles and multiparticles.

- * Particle are defined by labels.
- * A label points to one or several PDG-id(s).
- * MSSM + SM labels: automatic.
- * Can be loaded from UFO files.
- * Labels can be created and deleted.
 ▶ define and remove.

• Datasets.

- * A dataset is a label.
- * Collects similar event samples.
- * Treated in the same way by MADANALYSIS 5.
- * Formats: LHE, LHCO, STDHEP, HEPMC.


```
define tau = tau+ tau-
define mytau+ = -15
remove mytau+
```

```
import tt1.hep as ttbar
import tt2.hep as ttbar
import Wj1.hep as Wjets
import Wj2.hep as Wjets
```

Plots and cuts.

- The command plot (more detailed examples in the rest of the tutorial).
- * Creation of an histogram.
- * Global observables ⇔ the entire event.
- * Properties of the particles in the event.
- * Ordering of the particles.
- * Combining particles
 - ► Sum and differences.
 - ► Vectorial or scalar.
- * Linear or logarithmic scales.
- Cuts (more detailed examples in the rest of the tutorial).
- * Selecting/rejecting events.
- * Selecting/rejecting particles.
 ▶ not rejecting the event.
- Executing the analysis: submit.
- Reports.
- * HTML reports.
- * **LATEX** reports.

plot MET plot N(mu) plot PT(mu[1]) plot ETA(mu) [logY] plot M(mu[1] mu[2]) plot dM(mu+ mu-)

reject MHT < 50 select (mu) PT > 50

1 Introduction.

2 Overview of MADANALYSIS 5

Installation.

- **Analyzing events with** MADANALYSIS 5.
- 5 MADANALYSIS 5 at the hadron-level: jet reconstruction and merging samples.

Summar

Installation.

Requirements.

- ► These programs are assumed to be already installed.
 - PYTHON 2.6 or a more recent version (but not the 3.X series). http://www.python.org/
 - > The GNU GCC compiler version 4.3.0 or more recent. http://gcc.gnu.org/
 - $\diamond~{\rm ROOT}$ v5.27 or a more recent version.
 - ► with the PYTHON libraries
 - root-config --version
 - ./configure --with-python
 - $\diamond~{\rm ZLIB}$ headers and libraries.
 - http://zlib.net/
- Installing MADANALYSIS 5.
 - DOWNLOAD: http://madanalysis.irmp.ucl.ac.be
 - ♦ Unpacking the tar-ball:
 - mkdir madanalysis5 cd madanalysis5 tar wuf ma5 u1 1 2 ta
 - tar xvf ma5_v1.1.2.tgz

Starting MADANALYSIS 5 (1).

Installation.

● First start of MADANALYSIS 5 ⇒ typing in a shell: bin/ma5

```
WELCOME to MADANALYSIS 5
           /'\_/'\/\ __ \/\ ___\
           /\ \\\_\\\\__/
           \ \ \__ \ \ __ \ \___ ' \
           \ \ \_/\ \ \/\ \/\ \_\ \
            \ \_\\ \_\ \_\ \_\ \_\
             MA5 release : 1.1.2
                                    2012/10/01
The MadAnalysis Development Team - Please visit us at
http://madanalysis.irmp.ucl.ac.be
         Type 'help' for in-line help.
```

Starting MADANALYSIS 5 (2).

• First start of MADANALYSIS $5 \Rightarrow$ testing all the dependencies.

Checking ROOT libraries ... Loading ROOT libraries ... Checking g++ libraries ... Checking zlib libraries ... Checking fastjet libraries ... ** WARNING: FastJet configuration program is not found. JetClustering algorithm will be disabled. ** WARNING: To enable this functionnality, please type 'install fastjet'.

- ◊ Warning messages are printed if relevant.
- ♦ FastJet is not installed here...
 - ► to be addressed later...
- ◊ If you get error messages, please use the Virtual Box.
 - ▶ probably an issue with the installation of ROOT.

Starting MADANALYSIS 5 (3).

● First start of MADANALYSIS 5 ⇒ compiling SampleAnalyzer.

- ◊ Compilation of the core library.
- ◊ Linking of the core library.
- ◊ Core library then ready to be used.

Starting MADANALYSIS 5 (4).

• First start of MADANALYSIS $5 \Rightarrow$ locating MADGRAPH 5.

MadGraph 5 NOT found => default particle names from: /madanalysis5/madanalysis/input/particles_name_default.txt 84 particles have been successfully exported. MadGraph 5 NOT found => default multiparticle definitions from: madanalysis5/madanalysis/input/multiparticles_default.txt Creation of a multiparticle labelled by 'invisible' (related to missing energy). Creation of a multiparticle labelled by 'hadronic' (related to jet transverse energy). 8 multiparticles have been successfully exported.

♦ MadGraph 5 not found

 \Rightarrow MADANALYSIS 5 used as a standalone package.

Particle and multiparticle labels loaded.

Installation of FASTJET.

• Typing in the interpreter: install fastjet.

```
ma5>install fastjet
How many cores would you like to use for the compilation ?
   default = max=16
Answer:
Number of cores used for the compilation = 16
Testing the access to MadAnalysis 5 website ...
'tools' folder is already created
Creating temporary folder '/tmp/ma5install_bfuks' ...
1/1 Downloading the file 'fastjet.tar.gz' ...
Extracting the package ...
Configuring the package ...
Compiling the package ...
Copying headers and libraries into 'tools/fastjet' ...
Checking installation ...
Installation complete.
```

♦ Fully automated.

3 Installation

5 MADANALYSIS 5 at the hadron-level: jet reconstruction and merging samples.

Summar

Setup of the analysis.

- Sample(s) to be analyzed:
 - * Test samples provided with MADANALYSIS 5: ▶install samples
 - * Your favorite sample(s):
 - ► Please generate it yourself
- In these slides: four different samples.
 - *tī* production (two event files; simplified LHE plus HEP).

 ▶ dileptonic mode: LHC-8, merging up to 2 extra jets.
 ▶ semileptonic mode: LHC-8, merging up to 2 extra jets.
 - ◇ Z+jets; dileptonic and invisible modes (simplified LHE plus HEP).
 ▶LHC-8, merging up to 4 extra jets.
 - W+jets (simplified LHE plus HEP).
 ►LHC-8, merging up to 4 extra jets.

Try do produce similar analyses with your own samples OR

ask for the four samples above.

Particle properties.

• Kinematical distributions related to particle species.

* Available observables:

BETA, DELTAR, E, ET, ETA, GAMMA, M, MT, P, PHI, PT, PX, PY, PZ, R, THETA, Y.

Exercises

- * Where are the W-events?
- * How to get rid of the Drell-Yan background?

Leading lepton properties.

- Particle ordering.
 - * Can be access with the squared brackets [<i>] .
 - * Several possible ordering variables. E, ET, ETA, P, PT, PX, PY, PZ.
- Check the transverse momentum of the leading lepton, using energy ordering.
- Other features: cross sections, integrated luminosity.

Global event observables.

- Global event kinematical observables.
 - * Missing and visible energy of the event MET, TET.
 - * Missing and visible hadronic energy of the event MHT, THT
 - * Partonic center-of-mass energy SQRTS.

Exercises

* Do we have enough statistics?

Multiplicities.

• Particle content.

- * Particle content of the event NPID, NAPID.
- * Particle multiplicity N

- Cuts.
 - ♦ Through the commands select and reject followed by a condition.
 - ◊ Particle candidates.
 - * Lepton candidates: $p_T > 10$ GeV.
 - * Jet candidates: $p_T > 20$ GeV.
 - ♦ Events.
 - * Selected events: $H_T > 200$ GeV.

Signal over background ratios.

• Automated computation of the signal over background ratio.

- * Samples can be tagged as signal or background.
- * Formula for the signal over background ratio can be provided.
- * Automatic cut-flow chart with uncertainties.

```
set wjets.type = background
set zjets.type = background
set main.SBratio = 'S/B'
set main.SBerror = '1./(B**2)*sqrt(B**2*ES**2+S**2*EB**2)'
resubmit
generate_html mydir_html
open mydir_html
```

Cuts	Signal (S)	Background (B)	S vs B
Initial	2792000	919940000	0.00303
cut 1	2792000	919940000 +/- 0.000173	3.034981e-03 +/- 5.7e-16
cut 2	2792000	919940000 +/- 0.000173	3.034981e-03 +/- 5.7e-16
cut 3	1928561 +/- 772	9583745 +/- 3079	0.201233 +/- 0.000103

Introduction.

2 Overview of MADANALYSIS 5.

3 Installation

- Analyzing events with MADANALYSIS 5.
- 5 MADANALYSIS 5 at the hadron-level: jet reconstruction and merging samples.

Summary

Checking the merging procedure (1).

- Merging matrix-elements with 0,1,2,3,... extra jets.
 - ◊ Study of the smoothness of the differential jet rate distributions.
 - ▶ The scale for which an event goes from a $N \rightarrow N + 1$ jet configuration.
 - **•** Extremely sensible to the merging procedure.
 - ♦ This validates the choices for the merging parameters.
 - ◊ See Fabio's lecture.

• Running MADANALYSIS 5 in hadron-level mode: bin/ma5 -H

```
import zjets.hep.gz as zjets
set zjets.xsection=10319
set main.lumi = 20
set main.matching.check = true
set main.matching.njets = 4
submit mydir
generate_html mydir_html
open mydir_html
```

 $\diamond~$ We can choose \textit{N}_{\max} \Rightarrow the number of desired histograms.

Checking the merging procedure (2).

Benjamin Fuks - The FR-MG 2012 School on LHC Phenomenology - 02.10.2012 - 31

Reconstructing and analyzing hadron-level files (1).

The (STDHEP or HEPMC) event files contain tons of hadrons.
 Jet clustering is required.

This is a task for MADANALYSIS 5. The reco mode: bin/ma5 -R

• MADANALYSIS **5** is interfaced to FASTJET.

Large selection of jet algorithms

ma5>set main	.clustering.a	lgorithm =		
antikt	cdfjetclu	genkt	kt	siscone
cambridge	cdfmidpoint	gridjet	none	

• Adopting a jet algorithm \Rightarrow new options (the algorithm parameters).

```
set main.clustering.algorithm = antikt
set main.clustering.ptmin = 5
set main.clustering.radius = 1
```

Introduction Overview Installation. Analyses with MADANALYSIS 5 MADANALYSIS 5 @ the hadron-level. Summar

Reconstructing and analyzing hadron-level files (2).

• A small example.

```
set main.clustering.algorithm=antikt
set main.clustering.ptmin = 5
set main.clustering.radius = 1
import ttbar_21.hep.gz as ttbar
import ttbar_11.hep.gz as ttbar
import wjets.hep.gz as wjets
import zjets.hep.gz as zjets
set ttbar.xsection=139.6
set wjets.xsection=35678
set zjets.xsection=10319
set main.lumi = 20
set main.normalize = lumi
select (1) PT > 20
reject (j) PT < 50
reject THT < 200
plot DELTAR(1[1], j[1]) 30 0 7 [logY]
submit mydir
generate_html mydir_html
open mydir_html
```


MADANALYSIS 5

			Summary O
Outline	е.		

1 Introduction.

2 Overview of MADANALYSIS 5.

3 Installation.

- Analyzing events with MADANALYSIS 5.
- 5 MADANALYSIS 5 at the hadron-level: jet reconstruction and merging samples.

6 Summary.

Summary.

- MADANALYSIS **5** is a new framework for collider phenomenology.
 - * **Unique** \Rightarrow partonic, hadronic or reconstructed events.
 - * User-friendly \Rightarrow PYTHON command line interface.
 - * Flexible \Rightarrow a C++ kernel.
- A special mode for expert users also exists.
 - * **Developer-friendly** \Rightarrow C++ and ROOT skills required.
 - * No limitations.
 - * See the manual.

Try the code (and love it).

http://madanalysis.irmp.ucl.ac.be ma5team@iphc.cnrs.fr